首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schardl CL  Craven KD 《Molecular ecology》2003,12(11):2861-2873
Fungi (kingdom Mycota) and oomycetes (kingdom Stramenopila, phylum Oomycota) are crucially important in the nutrient cycles of the world. Their interactions with plants sometimes benefit and sometimes act to the detriment of humans. Many fungi establish ecologically vital mutualisms, such as in mycorrhizal fungi that enhance nutrient acquisition, and endophytes that combat insects and other herbivores. Other fungi and many oomycetes are plant pathogens that devastate natural and agricultural populations of plant species. Studies of fungal and oomycete evolution were extraordinarily difficult until the advent of molecular phylogenetics. Over the past decade, researchers applying these new tools to fungi and oomycetes have made astounding new discoveries, among which is the potential for interspecific hybridization. Consequences of hybridization among pathogens include adaptation to new niches such as new host species, and increased or decreased virulence. Hybrid mutualists may also be better adapted to new hosts and can provide greater or more diverse benefits to host plants.  相似文献   

2.
3.
Recently, molecular environmental surveys of the eukaryotic microbial community in lakes have revealed a high diversity of sequences belonging to uncultured zoosporic fungi. Although they are known as saprobes and algal parasites in freshwater systems, zoosporic fungi have been neglected in microbial food web studies. Recently, it has been suggested that zoosporic fungi, via the consumption of their zoospores by zooplankters, could transfer energy from large inedible algae and particulate organic material to higher trophic levels. However, because of their small size and their lack of distinctive morphological features, traditional microscopy does not allow the detection of fungal zoospores in the field. Hence, quantitative data on fungal zoospores in natural environments is missing. We have developed a quantitative PCR (qPCR) assay for the quantification of fungal zoospores in lakes. Specific primers were designed and qPCR conditions were optimized using a range of target and non-target plasmids obtained from previous freshwater environmental 18S rDNA surveys. When optimal DNA extraction protocol and qPCR conditions were applied, the qPCR assay developed in this study demonstrated high specificity and sensitivity, with as low as 100 18S rDNA copies per reaction detected. Although the present work focuses on the design and optimization of a new qPCR assay, its application to natural samples indicated that qPCR offers a promising tool for quantitative assessment of fungal zoospores in natural environments. We conclude that this will contribute to a better understanding of the ecological significance of zoosporic fungi in microbial food webs of pelagic ecosystems.  相似文献   

4.
1. Leaf litter breakdown by shredders in the field is affected by leaf toughness, nutritional value and the presence of secondary compounds such as polyphenols. However, experiments involving the use of single fungal strains have not supported the assumption that leaf parameters determine food selection by shredders perhaps because of a failure to test for high consumption prior to isolation of fungal strains, overrepresentation of hyphomycetes or the potential effects of accompanying bacteria. In this study, we used bacteria‐free, actively growing fungi and oomycetes isolated from conditioned leaf litter for which a shredder had already shown high consumption rates. 2. Black alder (Alnus glutinosa) leaf litter was exposed to the littoral zone of Lake Constance in autumn, and subsamples were analysed for leaf parameters and consumption by Gammarus roeselii under standard conditions at regular intervals. On dates with a high consumption rate of the exposed leaves, 14 single strains of fungi and oomycetes were isolated, freed of bacteria and grown on autoclaved leaves. 3. Six of eight measured leaf parameters of exposed leaves were significantly correlated with Gammarus consumption rates, with high colinearity among leaf parameters hampering the identification of causal relations between leaf parameters and feeding activity. 4. When single strains of fungi and oomycetes were grown on autoclaved leaf litter, toughness of colonised leaves was always lower than in the control and the content of protein, N and P were increased. There were pronounced strain‐specific effects on leaf parameters. Consumption rates also differed significantly, with nine of fourteen isolates consumed at higher rates than controls and none proving to be a deterrent. Protein and polyphenol content were significantly correlated with consumption rates. Oomycete‐colonised leaves were consumed at similar rates but were of lower food quality than fungi‐colonised leaves. 5. We argue that direct strain‐specific attractant or repellent effects of fungi and oomycetes on consumption by G. roeselii are not important. However, we found indirect strain‐specific role operating via effects on leaf parameters.  相似文献   

5.
高飞雁  李玲  王教瑜  王艳丽  孙国昌 《遗传》2017,39(10):908-917
过氧化物酶体(peroxisomes)是一类真核生物中普遍存在的细胞器,参与β-氧化、乙醛酸循环等多种重要的生化代谢。研究表明,过氧化物酶体在植物病原真菌侵染寄主过程中具有着举足轻重的作用。参与过氧化物酶体形成与增殖的基因,通常称为PEX基因。近年来,越来越多的PEX基因在植物病原真菌中得到鉴定,真菌过氧化物酶体的形成机制及其在植物病原真菌生长发育和致病过程中的作用越来越受到研究者的关注。本文围绕PEX 基因在过氧化物酶体形成中的作用、对过氧化物酶体相关生化代谢的影响,以及与植物病原真菌生长发育和致病性的关系进行了综述,以期为植物病原真菌致病机理研究和病害防控提供借鉴和参考。  相似文献   

6.
Oomycetes cause devastating plant diseases of global importance, yet little is known about the molecular basis of their pathogenicity. Recently, the first oomycete effector genes with cultivar-specific avirulence (AVR) functions were identified. Evidence of diversifying selection in these genes and their cognate plant host resistance genes suggests a molecular "arms race" as plants and oomycetes attempt to achieve and evade detection, respectively. AVR proteins from Hyaloperonospora parasitica and Phytophthora infestans are detected in the plant host cytoplasm, consistent with the hypothesis that oomycetes, as is the case with bacteria and fungi, actively deliver effectors inside host cells. The RXLR amino acid motif, which is present in these AVR proteins and other secreted oomycete proteins, is similar to a host-cell-targeting signal in virulence proteins of malaria parasites (Plasmodium species), suggesting a conserved role in pathogenicity.  相似文献   

7.
Established methods for quantifying experimental Cryptosporidium infection are highly variable and subjective. We describe a new technique using quantitative real-time PCR (qPCR) that can be used to measure in vitro and in vivo laboratory infections with Cryptosporidium. We show for the first time that qPCR permits absolute quantification of the parasite while simultaneously controlling for the amount of host tissue and correlates significantly with established methods of quantification in in vitro and in vivo laboratory models of infection.  相似文献   

8.
A quantitative real-time PCR (qPCR) marker Ta0 with hydrolysis probe (“TaqMan”), targeted to the internal transcribed spacer region of the ribosomal DNA, has been developed for quantification of summer truffle (Tuber aestivum) mycelium. Gene copy concentrations determined by the qPCR were calibrated against pure culture mycelium of T. aestivum, enabling quantification of the mycelium in soil and in host roots from the fields. Significant concentrations of the fungus were observed not only in the finest roots with ectomycorrhizae but also in other root types, indicating that the fungus is an important component of the microbial film at the root surface. The concentration of T. aestivum in soil is relatively high compared to other ectomycorrhizal fungi. To evaluate the reliability of the measurement of the soil mycelium density using qPCR, the steady basal extracellular concentration of the stabilized T. aestivum DNA should be known and taken into account. Therefore, we addressed the stability of the qPCR signal in soil subjected to different treatments. After the field soil was sieved, regardless of whether it was dried/rewetted or not, the T. aestivum DNA was quickly decomposed. It took just about 4 days to reach a steady concentration. This represents a conserved pool of T. aestivum DNA and determines detection limit of the qPCR quantification in our case. When the soil was autoclaved and recolonized by saprotrophic microorganisms, this conserved DNA pool was eliminated and the soil became free of T. aestivum DNA.  相似文献   

9.
In the past 10 years, different strategies have been used to produce transgenic plants that are less susceptible to diseases caused by phytopathogenic fungi and bacteria. Genes from different organisms, including bacteria, fungi and plants, have been successfully used to develop these strategies. Some strategies have been shown to be effective against different pathogens, whereas others are specific to a single pathogen or even to a single pathovar or race of a given pathogen. In this review, we present the strategies that have been employed to produce transgenic plants less susceptible to bacterial and fungal diseases and which constitute an important area of plant biotechnology.The authors are with the Departamento de Ingeniería Genética de Plantas. Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Km 9.6 del Libramiento Norte carretera Irapuato-León, Apdo Postal 629, Irapuato, Mexico.  相似文献   

10.
Established methods for quantifying experimental Cryptosporidium infection are highly variable and subjective. We describe a new technique using quantitative real-time PCR (qPCR) that can be used to measure in vitro and in vivo laboratory infections with Cryptosporidium. We show for the first time that qPCR permits absolute quantification of the parasite while simultaneously controlling for the amount of host tissue and correlates significantly with established methods of quantification in in vitro and in vivo laboratory models of infection.  相似文献   

11.
Root‐associated fungi and host‐specific pathogens are major determinants of species coexistence in forests. Phylogenetically related neighboring trees can strongly affect the fungal community structure of the host plant, which, in turn, will affect the ecological processes. Unfortunately, our understanding of the factors influencing fungal community composition in forests is still limited. In particular, investigation of the relationship between the phytopathogenic fungal community and neighboring trees is incomplete. In the current study, we tested the host specificity of members of the root‐associated fungal community collected from seven tree species and determined the influence of neighboring trees and habitat variation on the composition of the phytopathogenic fungal community of the focal plant in a subtropical evergreen forest. Using high‐throughput sequencing data with respect to the internal transcribed spacer (ITS) region, we characterized the community composition of the root‐associated fungi and found significant differences with respect to fungal groups among the seven tree species. The density of conspecific neighboring trees had a significantly positive influence on the relative abundance of phytopathogens, especially host‐specific pathogens, while the heterospecific neighbor density had a significant negative impact on the species richness of host‐specific pathogens, as well as phytopathogens. Our work provides evidence that the root‐associated phytopathogenic fungi of a host plant depend greatly on the tree neighbors of the host plant.  相似文献   

12.
Seed‐borne pathogenic fungi can cause serious damage to soybean crops by reducing the germination, vigour and emergence of the seeds. Special attention should be paid to pathogen detection in seeds to prevent its introduction in disease‐free areas. Considering the importance of rapid and successful diagnosis of seed‐borne pathogenic fungi in soybeans, this study evaluated a method to detect Sclerotinia sclerotiorum and Phomopsis spp. in seeds using quantitative polymerase chain reaction (qPCR). Naturally infested samples were subjected to detection using qPCR and blotter test, and the findings were compared. Using soybean seeds soaked in water, both pathogens were detected at an infestation level up a 0.0625% (one infected seed out of 1,599 healthy seeds) by qPCR. This technique allowed the detection of 300 fg of S. sclerotiorum and 30 fg of Phomopsis spp. DNA in the seed samples. Phomopsis spp. was detected in 40.7% of the evaluated seed batches (81 batches) and S. sclerotiorum was detected in 32.1% of the evaluated batches, although most of the seeds had low infestation levels. It was up to 28.5 times more efficient to use qPCR rather than blotter test to detect pathogens with a low incidence of occurrence in soybean seeds. If routinely used to test healthy seeds, qPCR would contribute to reducing soybean losses due to diseases as well as decreasing the costs required to control those diseases.  相似文献   

13.
Reactive oxygen species (ROS) are formed by fungi in the course of metabolic activity. ROS production increases in fungi due to various stress agents such as starvation, light, mechanical damage, and interactions with some other living organisms. Regulation of ROS level appears to be very important during development of the fungal organism. ROS sources in fungal cells, their sensors, and ROS signal transduction pathways are discussed in this review. Antioxidant defense systems in different classes of fungi are characterized in detail. Particular emphasis is placed on ROS functions in interactions of phytopathogenic fungi with plant cells.  相似文献   

14.
Abalone Haliotis midae exhibiting typical clinical signs of tubercle mycosis were discovered in South African culture facilities in 2006, posing a significant threat to the industry. The fungus responsible for the outbreak was identified as a Peronosporomycete, Halioticida noduliformans. Currently, histopathology and gross observation are used to diagnose this disease, but these 2 methods are neither rapid nor sensitive enough to provide accurate and reliable diagnosis. Real-time quantitative PCR (qPCR) is a rapid and reliable method for the detection and quantification of a variety of pathogens, so therefore we aimed to develop a qPCR assay for species-specific detection and quantification of H. noduliformans. Effective extraction of H. noduliformans genomic DNA from laboratory grown cultures, as well as from spiked abalone tissues, was accomplished by grinding samples using a pellet pestle followed by heat lysis in the presence of Chelax-100 beads. A set of oligonucleotide primers was designed to specifically amplify H. noduliformans DNA in the large subunit (LSU) rRNA gene, and tested for cross-reactivity to DNA extracted from related and non-related fungi isolated from seaweeds, crustaceans and healthy abalone; no cross-amplification was detected. When performing PCR assays in an abalone tissue matrix, an environment designed to be a non-sterile simulation of environmental conditions, no amplification occurred in the negative controls. The qPCR assay sensitivity was determined to be approximately 0.28 pg of fungal DNA (~2.3 spores) in a 25 μl reaction volume. Our qPCR technique will be useful for monitoring and quantifying H. noduliformans for the surveillance and management of abalone tubercle mycosis in South Africa.  相似文献   

15.
植物病原真菌的自噬   总被引:1,自引:0,他引:1  
刘伟  杜春梅 《微生物学报》2021,61(11):3363-3376
作为真核生物中普遍存在的现象,自噬不但实现了对细胞内物质的降解和回收利用,而且与植物病原真菌早期侵染阶段的附着胞发育、膨压升高、菌丝体形成、完成侵染等一系列过程密切相关,并且发挥了重要的作用。本文归纳了植物病原真菌自噬的相关基因和自噬过程;总结了自噬对病原真菌生长发育、致病力的调控和影响;概括了病原真菌自噬所涉及的信号通路;阐明了自噬影响植物病原真菌侵染过程的主要分子机制。为今后以自噬相关基因或蛋白作为靶点来筛选抑制病原真菌侵染的新型药物提供新的策略和思路。  相似文献   

16.
Although the oomycetes and fungi are evolutionarily very distantly related, both taxa evolved biotrophy on plant hosts several times independently, giving rise to rust- and mildew-like phenotypes. Differences in host colonization and adaptation may be reflected in genome size and by gain and loss of genes. In this opinion article we combine classical knowledge with recently sequenced pathogen genomes and present new hypotheses about the convergent evolution that led to these two distinct phenotypes in obligate biotrophs.  相似文献   

17.
Zea mays L. ssp. mexicana (teosinte) is a naturally occurring grass related to maize. The two plants have developed foliar fungal diseases that can be controlled with beneficial bacterial antagonists. While the beneficial effects on stem and root development of the application of bacteria of the genus Azospirillum is widely known, the effects of the bacteria on the control of the phytopathogenic fungi associated with teosinte leaves and seeds are unknown. Bacterium of the species A. brasilense that present acetylene reducing activity, siderophore production and the ability to antagonise pathogenic fungi in vitro and in vivo in teosinte plants were selected for this study, in which the incidence of fungal diseases caused by Alternaria, Bipolaris and Fusarium were reduced in plants. Furthermore, biomass (root and stem) production increased, improving teosinte plant health in greenhouse and field conditions.  相似文献   

18.
Rajam B  Rajam MV 《Mycopathologia》1996,133(2):95-103
Polyamine (PA) biosynthesis inhibitors, difluoromethylornithine (DFMO), difluoromethylarginine (DFMA), methylglyoxal bis-(guanylhydrazone) (MGBG) and bis-(cyclohexylammonium) sulphate (BCHA) have been tested for their effects on colony diameters at different intervals after inoculation of four plant pathogenic fungi (Helminthosporium oryzae, Curvularia lunata, Pythium aphanidermatum and Colletotrichum capsici). All these inhibitors, except DFMA had strongly retarded the growth of four fungi in a dose- and species-dependent fashion, and H. oryzae and C. lunata were found to be most sensitive to the effects of PA inhibitors. P. aphanidermatum and C. capsici were relatively insensitive and required rather high concentrations of inhibitors to get greater inhibition of mycelial growth, except DFMA which had stimulatory effect on the growth of these two fungi. However DFMA had greatly suppressed the growth of H. oryzae and C. lunata. The effect was generally more pronounced with MGBG than with DFMO and BCHA, and 1 mM Put completely prevented the inhibitory effects of 1 and 5 mM DFMO. Analysis of free and conjugated PAs in two sensitive fungi (H. oryzae and C. lunata) revealed that Put was present in highest concentrations followed by Spd and Spm and their levels were greatly reduced by DFMO application, and such inhibitions were totally reversed by exogenously supplied Put; in fact, PA titers were considerably increased by 1 mM Put alone and in combination with 1 mM DFMO. These results suggest that PA inhibitors, particularly DFMO and MGBG may be useful as target-specific fungicides in plants.  相似文献   

19.
An investigation was undertaken to optimise the microtitre plate-based assay for undertaking in-depth analyses of the potency and mode of action of cyanobacterial metabolites exhibiting fungicidal activity. The 96-well titre plate, using potato dextrose agar medium was standardised for evaluating minimum inhibitory concentration (MIC) of cyanobacterial metabolites against several phytopathogenic fungi, in terms of volume of media, concentration/volume of metabolite, inoculum and wavelength to be used for scanning. The optimised protocol was employed for recording growth inhibition in terms of MIC and facilitating microscopic analyses of morphological abnormalities induced by cyanobacterial metabolites in the fungal hyphae. This study not only illustrated the utility of the newly developed titre plate assay for analyses of large number of samples simultaneously and but also represented a first time report on microscopic observations related to various facets of fungicidal activity exhibited by cyanobacterial metabolites. Future research is directed towards scale up of this method for studies on tripartite interactions of cyanobacterial metabolites, target fungi with selected host plants, as a prelude to their use as biocontrol agents.  相似文献   

20.
以河南郑州和江苏徐州采集到的杜仲为材料,采用纯培养方法对杜仲内生真菌进行分离。将分离纯化得到的90株真菌通过形态学鉴定并进行多样性分析,90株内生真菌分别属于13个属,其中茎点霉属(Phoma)和链格孢属(Alternaria)为优势菌群,分别占总菌株数的18%和16%;其次为黑孢属(Nigrospora)和枝孢属(Cladosporium),均占总菌株数的10%。用平板对峙法对分离得到的杜仲内生真菌进行抗植物病原真菌实验,发现有18个菌株对至少一种病原真菌具有明显的拮抗作用。通过比色法进行内生真菌产IAA(吲哚乙酸)定性实验,结果显示,有37株真菌具有产IAA能力,通过分光光度法对这37株真菌进行产IAA定量实验,发现有8株有较好的产IAA活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号