首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phylogeographical analysis of Ranunculus platanifolius, a typical European subalpine tall‐herb species, indicates the existence of two main genetic lineages based on amplified fragment length polymorphism (AFLP) markers. One group comprises populations from the Balkan Peninsula and the south‐eastern Carpathians and the other includes the remaining part of the range of the species, encompassing the western Carpathians, Sudetes, Alps, Pyrenees and Scandinavia. The main phylogeographical break observed in this species runs across the Carpathians and separates the main parts of this range (western and south‐eastern Carpathians), supporting a distinct glacial history of populations in these areas. The high genetic similarity of the Balkan Peninsula and south‐eastern Carpathian populations could indicate a common glacial refugium for these contemporarily isolated areas of species distribution. The western and northern part of the species range displays an additional weak differentiation into regional phylogeographical groups, which could have been shaped by isolation in glacial refugia or even by a postglacial isolation. The observed weak phylogeographical structure could also be linked with ecological requirements, allowing survival along streams in relatively low, forested mountain ranges. © 2013 The Linnean Society of London  相似文献   

2.
Genetic admixture is supposed to be an important trigger of species expansions because it can create the potential for selection of genotypes suitable for new climatic conditions. Up until now, however, no continent‐wide population genetic study has performed a detailed reconstruction of admixture events during natural species expansions. To fill this gap, we analysed the postglacial history of Alnus glutinosa, a keystone species of European swamp habitats, across its entire distribution range using two molecular markers, cpDNA and nuclear microsatellites. CpDNA revealed multiple southern refugia located in the Iberian, Apennine, Balkan and Anatolian Peninsulas, Corsica and North Africa. Analysis of microsatellites variation revealed three main directions of postglacial expansion: (i) from the northern part of the Iberian Peninsula to Western and Central Europe and subsequently to the British Isles, (ii) from the Apennine Peninsula to the Alps and (iii) from the eastern part of the Balkan Peninsula to the Carpathians followed by expansion towards the Northern European plains. This challenges the classical paradigm that most European populations originated from refugial areas in the Carpathians. It has been shown that colonizing lineages have met several times and formed secondary contact zones with unexpectedly high population genetic diversity in Central Europe and Scandinavia. On the contrary, limited genetic admixture in southern refugial areas of A. glutinosa renders rear‐edge populations in the Mediterranean region more vulnerable to extinction due to climate change.  相似文献   

3.
Corynephorus canescens (L.) P.Beauv. is an outbreeding, short‐lived and wind‐dispersed grass species, highly specialised on scattered and disturbance‐dependent habitats of open sandy sites. Its distribution ranges from the Iberian Peninsula over Atlantic regions of Western and Central Europe, but excludes the two other classical European glacial refuge regions on the Apennine and Balkan Peninsulas. To investigate genetic patterns of this uncommon combination of ecological and biogeographic species characteristics, we analysed AFLP variation among 49 populations throughout the European distribution range, expecting (i) patterns of SW European glacial refugia and post‐glacial expansion to the NE; (ii) decreasing genetic diversity from central to marginal populations; and (iii) interacting effects of high gene flow and disturbance‐driven genetic drift. Decreasing genetic diversity from SW to NE and distinct gene pool clustering imply refugia on the Iberian Peninsula and in western France, from where range expansion originated towards the NE. High genetic diversity within and moderate genetic differentiation among populations, and a significant pattern of isolation‐by‐distance indicate a gene flow drift equilibrium within C. canescens, probably due to its restriction to scattered and dynamic habitats and limited dispersal distances. These features, as well as the re‐colonisation history, were found to affect genetic diversity gradients from central to marginal populations. Our study emphasises the need for including the specific ecology into analyses of species (re–)colonisation histories and range centre–margin analyses. To account for discontinuous distributions, new indices of marginality were tested for their suitability in studies of centre–periphery gradients.  相似文献   

4.
Aim We investigated Quaternary range dynamics of two closely related but ecologically divergent species (cold‐tolerant Edraianthus serpyllifolius and thermophilic Edraianthus tenuifolius) with overlapping distribution ranges endemic to the western Balkan Peninsula, an important yet understudied Pleistocene refugium. Our aims were: to test predictions of the ‘refugia‐within‐refugia’ model of strong genetic subdivisions due to population isolation in separate refugia; to explore whether two ecologically divergent species reacted differently to Pleistocene climatic fluctuations; and to test predictions of the displacement refugia model of stronger differentiation among populations in the thermophilic E. tenuifolius compared with the cold‐tolerant E. serpyllifolius. Location The western Balkan Peninsula. Methods We gathered amplified fragment‐length polymorphism (AFLP) data and plastid DNA sequences from two to five individuals from 10 populations of E. serpyllifolius and 22 populations of E. tenuifolius, spanning their entire respective distribution areas. AFLP data were analysed using a Bayesian clustering approach and a distance‐based network approach. Plastid sequences were used to depict relationships among haplotypes in a statistical parsimony network, and to obtain age estimates in a Bayesian framework. Results In E. serpyllifolius, both AFLP and plastid sequence data showed clear geographic structure. Western populations showed high AFLP diversity and a high number of rare fragments. In E. tenuifolius, both markers congruently identified a major phylogeographic split along the lower Neretva valley in central Dalmatia. The most distinct and earliest diverging chloroplast DNA (cpDNA) haplotypes were found further south in the south‐easternmost populations. North‐western populations, identified as a separate cluster by Bayesian clustering, were characterized by low genetic diversity and a low number of rare AFLP markers. Main conclusions Clear evidence for multiple Pleistocene refugia is found not only in the high‐elevation E. serpyllifolius, but also in the lowland E. tenuifolius, despite the lack of obvious dispersal barriers, in line with the refugia‐within‐refugia model. Genealogical relationships and genetic diversity patterns support the hypothesis that cold‐adapted E. serpyllifolius responded to climatic oscillations mostly by elevational range shifts, whereas thermophilic E. tenuifolius did so mainly by latitudinal range shifts, with different phases (and probably extents) of range expansion. In contrast to the displacement refugia hypothesis, the two elevationally differentiated species do not differ in their genetic diversity.  相似文献   

5.
Glacial and interglacial cycles of the Pleistocene have led to severe range fluctuations of many species. These range shifts of the past often are reflected by extant genetic signatures. Retractions of distribution areas often have fostered splits into several small and isolated retreats as remnants of the formerly interconnected range. These processes often go in line with losses of intraspecific diversity. By contrast, large and interconnected distribution ranges mostly sustain high levels of genetic variability. The genetic impact of both scenarios strongly depends on the temporal scale. In the present study, we tested the genetic effects of an assumed long‐lasting widespread distribution during glacial periods and more short‐term population retractions to mountain archipelagos during warm stages. We analyzed polymorphic allozymes for individuals of the Eastern Large Heath butterfly, Coenonympha rhodopensis, including major parts of its distribution, such as central Italy and the Balkan Peninsula. Our data show extraordinarily high genetic diversity. The only remarkable genetic split is detectable between the central Apennines (Italy) and the Balkan mountain systems. The populations sampled over seven Balkan mountain systems (Jakupica, Shar Planina, Ossogovo, Pirin, Rila, Rhodopes, and Stara Planina) show low genetic differentiation. This low genetic differentiation and high genetic diversity diverges from the genetic structures frequently found in species with disjunct distributions. We therefore hypothesize that the obtained molecular structure is the product of down‐slope shift during the last cold stage and subsequent expansion over the lowlands of the Balkan Peninsula. The current mountain restriction most probably occurred with the beginning of the postglacial warming, which is too short a time span to be of evolutionary relevance. Therefore, the recent high genetic diversities and low differentiation may still reflect long‐lasting glacial panmixia but not (yet) the recent disjunction. The strong genetic differentiation between the Balkans and Italian Apennines must result from an earlier dispersal process, most probably from the Balkans to Italy. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110; , 281–290.  相似文献   

6.
Aim The range of the subalpine species Hypochaeris uniflora covers the Alps, Carpathians and Sudetes Mountains. Whilst the genetic structure and post‐glacial history of many high‐mountain plant taxa of the Alps is relatively well documented, the Carpathian populations have often been neglected in phylogeographical studies. The aim of the present study is to compare the genetic variation of the species in two major European mountain systems – the Alps and the Carpathians. Location Alps and Carpathians. Methods The genetic variation of 77 populations, each consisting of three plants, was studied using amplified fragment length polymorphism (AFLP). Results Neighbour joining and principal coordinate analyses revealed three well‐supported phylogeographical groups of populations corresponding to three disjunct geographical regions – the Alps and the western and south‐eastern Carpathians. Moreover, two further clusters could be distinguished within the latter mountain range, one consisting of populations from the eastern Carpathians and the second consisting of populations from the southern Carpathians. Populations from the Apuseni Mountains had an intermediate position between the eastern and southern Carpathians. The genetic clustering of populations into four groups was also supported by an analysis of molecular variance, which showed that most genetic variation (almost 46%) was found among these four groups. By far the highest within‐population variation was found in the eastern Carpathians, followed by populations from the southern and western Carpathians. Generally, the populations from the Alps were considerably less variable and displayed substantially fewer region‐diagnostic markers than those from the south‐eastern Carpathians. Although no clear geographical structure was found within the Alps, based on neighbour joining or principal coordinate analyses, some trends were obvious: populations from the easternmost part were genetically more variable and, together with those from the south‐western part, exhibited a higher proportion of rare AFLP fragments than populations in other areas. Moreover, the total number of AFLP fragments per population, the percentage of polymorphic loci and the proportion of rare AFLP fragments significantly decreased from east to west. Main conclusions Deep infraspecific phylogeographical gaps between the populations from the Alps and the western and south‐eastern Carpathians suggest the survival of H. uniflora in three separate refugia during the last glaciation. Our AFLP data provide molecular evidence for a long‐term geographical disjunction between the eastern and western Carpathians, previously suggested from the floristic composition at the end of 19th century. It is likely that Alpine populations survived the Last Glacial in the eastern part of the Alps, from where they rapidly colonized the rest of the Alps after the ice sheet retreated. Multiple founder effects may explain a gradual loss of genetic variation during westward colonization of the Alps.  相似文献   

7.
The Arabidopsis arenosa complex is closely related to the model plant Arabidopsis thaliana. Species and subspecies in the complex are mainly biennial, predominantly outcrossing, herbaceous, and with a distribution range covering most parts of latitudes and the eastern reaches of Europe. In this study we present the first comprehensive evolutionary history of the A. arenosa species complex, covering its natural range, by using chromosome counts, nuclear AFLP data, and a maternally inherited marker from the chloroplast genome [trnL intron (trnL) and trnL/F intergenic spacer (trnL/F-IGS) of tRNA(Leu) and tRNA(Phe), respectively]. We unravel the broad-scale cytogeographic and phylogeographic patterns of diploids and tetraploids. Diploid cytotypes were exclusively found on the Balkan Peninsula and in the Carpathians while tetraploid cytotypes were found throughout the remaining distribution range of the A. arenosa complex. Three centers of genetic diversity were identified: the Balkan Peninsula, the Carpathians, and the unglaciated Eastern and Southeastern Alps. All three could have served as long-term refugia during Pleistocene climate oscillations. We hypothesize that the Western Carpathians were and still are the cradle of speciation within the A. arenosa complex due to the high species number and genetic diversity and the concurrence of both cytotypes there.  相似文献   

8.
It is well known that the current genetic pattern of many European species has been highly influenced by climatic changes during the Pleistocene. While there are many well known vertebrate examples, knowledge about squamate reptiles is sparse. To obtain more data, a range‐wide sampling of Lacerta viridis was conducted and phylogenetic relations within the L. viridis complex were analysed using an mtDNA fragment encompassing part of cytochrome b, the adjacent tRNA genes and the noncoding control region. Most genetic divergence was found in the south of the distribution range. The Carpathian Basin and the regions north of the Carpathians and Alps are inhabited by the same mitochondrial lineage, corresponding to Lacerta viridis viridis. Three distinct lineages occurred in the south‐eastern Balkans — corresponding to L. v. viridis, L. v. meridionalis, L. v. guentherpetersi— as well as a fourth lineage for which no subspecies name is available. This distribution pattern suggests a rapid range expansion of L. v. viridis after the Holocene warming, leading to a colonization of the northern part of the species range. An unexpected finding was that a highly distinct genetic lineage occurs along the western Balkan coast. Phylogenetic analyses (Bayesian, maximum likelihood, maximum parsimony) suggested that this west Balkan lineage could represent the sister taxon of Lacerta bilineata. Due to the morphological similarity of taxa within the L. viridis complex this cryptic taxon was previously assigned to L. v. viridis. The distribution pattern of several parapatric, in part highly, distinct genetic lineages suggested the existence of several refuges in close proximity on the southern Balkans. Within L. bilineata sensu stricto a generally similar pattern emerged, with a high genetic diversity on the Apennine peninsula, arguing for two distinct refuges there, and a low genetic diversity in the northern part of the range. Close to the south‐eastern Alps, three distinct lineages (L. b. bilineata, L. v. viridis, west Balkan taxon) occurred within close proximity. We suggest that the west Balkan lineage represents an early offshoot of L. bilineata that was isolated during a previous Pleistocene glacial from the more western L. bilineata populations, which survived in refuges on the Apennine peninsula.  相似文献   

9.
Refugia are critical for the maintenance of biodiversity during the periods of Quaternary climatic oscillations. The long‐term persistence of refugial populations in a large continuous refugium has resulted in a homogenous pattern of genetic structure among populations, while highly structured evolutionary lineages characterize the restriction of refugial populations to smaller subrefugia. These mechanisms have resulted in the identification of hot spots of biodiversity within putative glacial refugia. We studied phylogeography of Potamon ibericum (Brachyura: Potamidae) in the drainages of the western Caucasus biodiversity hot spot (i.e., Colchis and the Caucasus) to infer spatial genetic structure and potential refugia for a freshwater crab in this region. These areas have traditionally considered as a refugium due to the presence of Tertiary relict species. We integrated population genetic data and historical demographic analysis from cytochrome oxidase subunit I sequences and paleoclimatic data from species distribution modeling (SDM). The results revealed the lack of phylogeographic structure and provided evidence for demographic expansion. The SDM presented a rather homogenous and large refugium that extended from northeast Turkey to Colchis during the last glacial period. In contrast to these findings, previous phylogeographic study on P. ibericum of the eastern Caucasus biodiversity hot spot (i.e., Hyrcania) identified multiple independent refugia. By combining these results, we explain the significance of this important western Palearctic hot spot of biological diversity in shaping the geographic distribution of intraspecific genetic diversity in a freshwater taxon.  相似文献   

10.
The Mediterranean Basin is typified by a high degree of species rarity and endemicity that reflects its position, geomorphology, and history. Although the composition and cryptic variation of the bat faunas from the Iberian and Balkan Peninsulas are relatively well studied, data from the Apennine Peninsula are still incomplete. This is a significant shortfall, given the presumed refugial role of this region in the context of Europe's Pleistocene phylogeography. It was thus our aim to supplement the phylogeographical information from the region, generating mitochondrial sequences and reviewing published data, with a focus on the dispersal and diversification patterns characterizing taxa with different life strategies. Site‐specific lineages were ascertained, especially in the genera Myotis and Plecotus and amongst the pipistrelloid bats, representing speciose radiations. It was possible to observe disjunct ranges with patches isolated south of the Alps in several species, corresponding with evolution of elevated genetic distance. The genetic subdivision within the continuous Italian range into northern and southern lineages in several taxa indicated the possible past substructure of the refugium. Several shared lineages between the Apennine and Ibero‐Maghrebian regions were observed, indicating connectivity between the Adriatic and Atlantic?Mediterranean refuges, and raising questions as to which region these clades originated from and what was the direction of faunal exchange between them. In contrast to Europe's other two main refugia, the Apennine Peninsula is a smaller region with simpler phylogeographical patterns. Nevertheless, our results support the idea that the region generated novel lineages. Whereas diversification in sedentary bats may have been driven through the generation of in situ adaptations, specialization, and niche differentiation, the emergence of species with a tramp strategy could have entailed the utilization of faunal drift and the taxon cycle. © 2015 The Linnean Society of London  相似文献   

11.
Identifying sources of genetic variation and reconstructing invasion routes for non‐native introduced species is central to understanding the circumstances under which they may evolve increased invasiveness. In this study, we used genome‐wide single nucleotide polymorphisms to study the colonization history of Centaurea solstitialis in its native range in Eurasia and invasions into the Americas. We leveraged this information to pinpoint key evolutionary shifts in plant size, a focal trait associated with invasiveness in this species. Our analyses revealed clear population genomic structure of potential source populations in Eurasia, including deep differentiation of a lineage found in the southern Apennine and Balkan Peninsulas and divergence among populations in Asia, eastern Europe and western Europe. We found strongest support for an evolutionary scenario in which western European populations were derived from an ancient admixture event between populations from eastern Europe and Asia, and subsequently served as the main genetic ‘bridgehead’ for introductions to the Americas. Introductions to California appear to be from a single source region, and multiple, independent introductions of divergent genotypes likely occurred into the Pacific Northwest. Plant size has evolved significantly at three points during range expansion, including a large size increase in the lineage responsible for the aggressive invasion of the California interior. These results reveal a long history of colonization, admixture and trait evolution in C. solstitialis, and suggest routes for improving evidence‐based management decisions for one of the most ecologically and economically damaging invasive species in the western United States.  相似文献   

12.
The sweet chestnut (Castanea sativa Mill.) is a widely spread and important multipurpose tree species in the Mediterranean area, which has played an important role in human history. Natural events, such as glaciations, and human influence played significant roles in the distribution and genetic makeup of the sweet chestnut. In order to better understand how natural and human-mediated past events affected the current genetic diversity and structure of the sweet chestnut, we analysed populations from Central Europe and the western part of the Balkan Peninsula, utilizing ten polymorphic nuclear microsatellite markers. The study revealed the existence of three genetically and, to a large extent, geographically distinct and well-defined groups of sweet chestnut populations. Two not entirely separated groups of populations were detected in the northern part of the studied area and one in the southern. Our results indicate that the genetic structure of sweet chestnut populations in Central Europe and the western part of the Balkan Peninsula is the result of both natural colonization events and significant and lengthy human impact. Furthermore, it has been proven that the gene flow between cultivated/grafted trees’ and wild chestnut stands can influence their genetic structure. However, our results reveal that cultivated-to-wild introgression in the sweet chestnut is dependent on the close proximity of chestnut orchards and naturally occurring populations.  相似文献   

13.
Grass snakes (Natrix natrix) represent one of the most widely distributed snake species of the Palaearctic region, ranging from the North African Maghreb region and the Iberian Peninsula through most of Europe and western Asia eastward to the region of Lake Baikal in Central Asia. Within N. natrix, up to 14 distinct subspecies are regarded as valid. In addition, some authors recognize big‐headed grass snakes from western Transcaucasia as a distinct species, N. megalocephala. Based on phylogenetic analyses of a 1984‐bp‐long alignment of mtDNA sequences (ND4+tRNAs, cyt b) of 410 grass snakes, a nearly range‐wide phylogeography is presented for both species. Within N. natrix, 16 terminal mitochondrial clades were identified, most of which conflict with morphologically defined subspecies. These 16 clades correspond to three more inclusive clades from (i) the Iberian Peninsula plus North Africa, (ii) East Europe and Asia and (iii) West Europe including Corso‐Sardinia, the Apennine Peninsula and Sicily. Hypotheses regarding glacial refugia and postglacial range expansions are presented. Refugia were most likely located in each of the southern European peninsulas, Corso‐Sardinia, North Africa, Anatolia and the neighbouring Near and Middle East, where the greatest extant genetic diversity occurs. Multiple distinct microrefugia are inferred for continental Italy plus Sicily, the Balkan Peninsula, Anatolia and the Near and Middle East. Holocene range expansions led to the colonization of more northerly regions and the formation of secondary contact zones. Western Europe was invaded from a refuge within southern France, while Central Europe was reached by two distinct range expansions from the Balkan Peninsula. In Central Europe, there are two contact zones of three distinct mitochondrial clades, and one of these contact zones was theretofore completely unknown. Another contact zone is hypothesized for Eastern Europe, which was colonized, like north‐western Asia, from the Caucasus region. Further contact zones were identified for southern Italy, the Balkans and Transcaucasia. In agreement with previous studies using morphological characters and allozymes, there is no evidence for the distinctiveness of N. megalocephala. Therefore, N. megalocephala is synonymized with N. natrix.  相似文献   

14.
《Systematic Entomology》2018,43(1):200-217
Cold‐adapted species are expected to have reached their largest distribution range during a part of the Ice Ages whereas postglacial warming has led to their range contracting toward high‐latitude and high‐altitude areas. This has resulted in an extant allopatric distribution of populations and possibly to trait differentiations (selected or not) or even speciation. Assessing inter‐refugium differentiation or speciation remains challenging for such organisms because of sampling difficulties (several allopatric populations) and disagreements on species concept. In the present study, we assessed postglacial inter‐refugia differentiation and potential speciation among populations of one of the most common arcto‐alpine bumblebee species in European mountains, Bombus monticola Smith, 1849. Based on mitochondrial DNA/nuclear DNA markers and eco‐chemical traits, we performed integrative taxonomic analysis to evaluate alternative species delimitation hypotheses and to assess geographical differentiation between interglacial refugia and speciation in arcto‐alpine species. Our results show that trait differentiations occurred between most Southern European mountains (i.e. Alps, Balkan, Pyrenees, and Apennines) and Arctic regions. We suggest that the monticola complex actually includes three species: B. konradini   stat.n. status distributed in Italy (Central Apennine mountains), B. monticola with five subspecies, including B. monticola mathildis   ssp.n. distributed in the North Apennine mountains ; and B. lapponicus . Our results support the hypothesis that post‐Ice Age periods can lead to speciation in cold‐adapted species through distribution range contraction. We underline the importance of an integrative taxonomic approach for rigorous species delimitation, and for evolutionary study and conservation of taxonomically challenging taxa.  相似文献   

15.
The alpine sedge Carex curvula ssp. curvula is a clonal, dominant graminoid found in the European Alps, the Carpathians, the Pyrenees and in some of the Balkan Mountains. It is a late-successional species of acidophilous alpine meadows that occurs on sites that were covered by ice during the last glacial maximum (LGM). By applying the amplified fragment length polymorphism (AFLP) fingerprinting and chloroplast DNA (cpDNA) sequencing, we attempted to identify the recolonization routes followed by the species after the last ice retreat. We relied on the genetic diversity of 37 populations covering the entire distributional range of the species. As a wind-pollinated species, C. curvula is characterized by a low level of population genetic differentiation. Nuclear and chloroplast data both support the hypothesis of a long-term separation of Eastern (Balkans and Carpathians) and Western (Alps and Pyrenees) lineages. In the Alps, a continuum of genetic depauperation from the east to the west may be related to a recolonization wave originating in the eastern-most parts of the chain, where the main glacial refugium was likely located. The Pyrenean populations are nested within the western Alps group and show a low level of genetic diversity, probably due to recent long-distance colonization. In contrast to the Alps, we found no phylogeographical structure in the Carpathians. The combination of reduced ice extension during the Würm period and the presence of large areas of siliceous substrate at suitable elevation suggest that in contrast to populations in the Alps, the species in the Carpathians underwent a local vertical migration rather than extinction and recolonization over long distance.  相似文献   

16.
Contemporary inhabitants of the Balkan Peninsula belong to several ethnic groups of diverse cultural background. In this study, three ethnic groups from Bosnia and Herzegovina - Bosniacs, Bosnian Croats and Bosnian Serbs - as well as the populations of Serbians, Croatians, Macedonians from the former Yugoslav Republic of Macedonia, Montenegrins and Kosovars have been characterized for the genetic variation of 660 000 genome-wide autosomal single nucleotide polymorphisms and for haploid markers. New autosomal data of the 70 individuals together with previously published data of 20 individuals from the populations of the Western Balkan region in a context of 695 samples of global range have been analysed. Comparison of the variation data of autosomal and haploid lineages of the studied Western Balkan populations reveals a concordance of the data in both sets and the genetic uniformity of the studied populations, especially of Western South-Slavic speakers. The genetic variation of Western Balkan populations reveals the continuity between the Middle East and Europe via the Balkan region and supports the scenario that one of the major routes of ancient gene flows and admixture went through the Balkan Peninsula.  相似文献   

17.
Isolation of Mediterranean species in the southern European peninsulas during the cold glacial phases often resulted in differentiation of several genetic lineages confined to the respective peninsulas. However, whilst there is good genetic evidence for multiple refugia in Iberia, there are only limited data available for the Balkans. Therefore, we wish to examine the hypothesis of a strong genetic structuring within southeastern Europe for the existence of multiple Balkan differentiation centres and/or several leading edges. As a model we use the marbled white butterfly, Melanargia galathea. We studied 18 allozyme loci of 564 individuals from 16 populations distributed over a large part of southeastern Europe. The single populations showed moderately high genetic diversity and no northward decline of genetic diversity was detected. The overall genetic differentiation between populations was considerable (F(ST) 7.0%). Cluster analysis discriminated three genetic groups: (i) a western flank in the former Yugoslavia, parts of eastern Austria and Hungary; (ii) an eastern flank with populations from Bulgaria and Romania (south of the southern Carpathians and eastern Carpathians); and (iii) the eastern Carpathian Basin. Hierarchical variance analysis distributed 53% of the variance among populations between these three groups. One sample from the Greek-Bulgarian border clustered within the eastern flank, but showed some tendency towards the eastern Carpathian Basin populations. Two populations from Carinthia clustered together with the eastern Carpathian Basin ones and a population from Styria showed an intermediate genetic composition between the three groups. Most probably, the eastern and the western flank groups are due to postglacial range expansion from the northeastern and the northwestern edges of the glacial differentiation centre (so-called leading edges). The eastern Carpathian Basin group may have resulted from postglacial expansion from northern Greece through valley systems of the central Balkan peninsula, maybe even expanding westwards north of the Balkan mountains reaching some parts of eastern Austria (e.g. Carinthia). Therefore, the Balkanic refugium of M. galathea may or may not have been continuous along the coastal areas of the Mediterranean, but must have been strongly genetically structured.  相似文献   

18.
The present study explores the utility of mitochondrial COI gene sequences to reveal phylogenetic and phylogeographic relationships for the entire European freshwater crayfish genus Austropotamobius. The two traditional taxa, Austropotamobius pallipes and Austropotamobius torrentium, were monophyletic, showing similar genetic diversity, with 28 and 25 haplotypes, respectively, and an uncorrected average pairwise divergence of 0.059 and 0.041. A third distinct haplotype clade, in sister relation to A. torrentium, was discovered at the Upper Kolpa drainage in the northern Dinaric area. All populations north and west of the Alps are genetically impoverished (nucleotide diversity (pi)=0.000-0.001), while southern populations are more diverse (pi=0.001-0.034). A. pallipes reaches the highest diversity in the region of Istra, probably its primary center of radiation. The genetic diversity center for A. torrentium is the southern Balkan peninsula. Other potential glacial refugia were identified in Southern France, Northwestern Italy, the Apennine Peninsula, and in the northern Dinaric area. The Iberian Peninsula has been stocked artificially from Northern Italy. Three main periods of radiation were tentatively identified: late Miocene/early Pliocene for the divergence of species and main lineages, the Pleistocene for the divergence within populations south from Alps, and a postPleistocene expansion north and west from Alps.  相似文献   

19.
Investigating macro-geographical genetic structures of animal populations is crucial to reconstruct population histories and to identify significant units for conservation. This approach may also provide information about the intraspecific flexibility of social systems. We investigated the history and current structure of a large number of populations in the communally breeding Bechstein's bat ( Myotis bechsteinii ). Our aim was to understand which factors shape the species' social system over a large ecological and geographical range. Using sequence data from one coding and one noncoding mitochondrial DNA region, we identified the Balkan Peninsula as the main and probably only glacial refugium of the species in Europe. Sequence data also suggest the presence of a cryptic taxon in the Caucasus and Anatolia. In a second step, we used seven autosomal and two mitochondrial microsatellite loci to compare population structures inside and outside of the Balkan glacial refugium. Central European and Balkan populations both were more strongly differentiated for mitochondrial DNA than for nuclear DNA, had higher genetic diversities and lower levels of relatedness at swarming (mating) sites than in maternity (breeding) colonies, and showed more differentiation between colonies than between swarming sites. All these suggest that populations are shaped by strong female philopatry, male dispersal, and outbreeding throughout their European range. We conclude that Bechstein's bats have a stable social system that is independent from the postglacial history and location of the populations. Our findings have implications for the understanding of the benefits of sociality in female Bechstein's bats and for the conservation of this endangered species.  相似文献   

20.
Southeastern Europe and, particularly, the Balkan Peninsula are especially useful when studying the mechanisms responsible for generating the current distribution of Paleolithic and Neolithic genetic signals observed throughout Europe. In this study, 404 individuals from Montenegro and 179 individuals from Serbia were typed for 17 Y‐STR loci and compared across 9 Y‐STR loci to geographically targeted previously published collections to ascertain the phylogenetic relationships of populations within the Balkan Peninsula and beyond. We aim to provide information on whether groups in the region represent an amalgamation of Paleolithic and Neolithic genetic substrata, or whether acculturation has played a critical role in the spread of agriculture. We have found genetic markers of Middle Eastern, south Asian and European descent in the area, however, admixture analyses indicate that over 80% of the Balkan gene pool is of European descent. Altogether, our data support the view that the diffusion of agriculture into the Balkan region was mostly a cultural phenomenon although some genetic infiltration from Africa, the Levant, the Caucasus, and the Near East has occurred. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号