首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation of DNA methylation is thought to play an important role for rapid adjustments of plant populations to dynamic environmental conditions, thus compensating for the relatively slow response time of genetic adaptations. However, genetic and epigenetic variation of wild plant populations has not yet been directly compared in fast changing environments. Here, we surveyed populations of Viola elatior from two adjacent habitat types along a successional gradient characterized by strong differences in light availability. Using amplified fragment length polymorphisms (AFLP) and methylation‐sensitive amplification polymorphisms (MSAP) analyses, we found relatively low levels of genetic (Hgen = 0.19) and epigenetic (Hepi = 0.23) diversity and high genetic (?ST = 0.72) and epigenetic (?ST = 0.51) population differentiation. Diversity and differentiation were significantly correlated, suggesting that epigenetic variation partly depends on the same driving forces as genetic variation. Correlation‐based genome scans detected comparable levels of genetic (17.0%) and epigenetic (14.2%) outlier markers associated with site specific light availability. However, as revealed by separate differentiation‐based genome scans for AFLP, only few genetic markers seemed to be actually under positive selection (0–4.5%). Moreover, principal coordinates analyses and Mantel tests showed that overall epigenetic variation was more closely related to habitat conditions, indicating that environmentally induced methylation changes may lead to convergence of populations experiencing similar habitat conditions and thus may play a major role for the transient and/or heritable adjustment to changing environments. Additionally, using a new MSAP‐scoring approach, we found that mainly the unmethylated (?ST = 0.60) and CG‐methylated states (?ST = 0.46) of epiloci contributed to population differentiation and putative habitat‐related adaptation, whereas CHG‐hemimethylated states (?ST = 0.21) only played a marginal role.  相似文献   

2.
Methylation of DNA cytosines affects whether transposons are silenced and genes are expressed, and is a major epigenetic mechanism whereby plants respond to environmental change. Analyses of methylation‐sensitive amplification polymorphism (MS‐AFLP or MSAP) have been often used to assess methyl‐cytosine changes in response to stress treatments and, more recently, in ecological studies of wild plant populations. MSAP technique does not require a sequenced reference genome and provides many anonymous loci randomly distributed over the genome for which the methylation status can be ascertained. Scoring of MSAP data, however, is not straightforward, and efforts are still required to standardize this step to make use of the potential to distinguish between methylation at different nucleotide contexts. Furthermore, it is not known how accurately MSAP infers genome‐wide cytosine methylation levels in plants. Here, we analyse the relationship between MSAP results and the percentage of global cytosine methylation in genomic DNA obtained by HPLC analysis. A screening of literature revealed that methylation of cytosines at cleavage sites assayed by MSAP was greater than genome‐wide estimates obtained by HPLC, and percentages of methylation at different nucleotide contexts varied within and across species. Concurrent HPLC and MSAP analyses of DNA from 200 individuals of the perennial herb Helleborus foetidus confirmed that methyl‐cytosine was more frequent in CCGG contexts than in the genome as a whole. In this species, global methylation was unrelated to methylation at the inner CG site. We suggest that global HPLC and context‐specific MSAP methylation estimates provide complementary information whose combination can improve our current understanding of methylation‐based epigenetic processes in nonmodel plants.  相似文献   

3.
4.
The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome‐wide cytosine methylation in the sugar beet genome was studied in leaves and leaf‐derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome‐wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves.  相似文献   

5.
6.
Red maple (Acer rubum), a common deciduous tree species in Northern Ontario, has shown resistance to soil metal contamination. Previous reports have indicated that this plant does not accumulate metals in its tissue. However, low level of nickel and copper corresponding to the bioavailable levels in contaminated soils in Northern Ontario causes severe physiological damages. No differentiation between metal‐contaminated and uncontaminated populations has been reported based on genetic analyses. The main objective of this study was to assess whether DNA methylation is involved in A. rubrum adaptation to soil metal contamination. Global cytosine and methylation‐sensitive amplified polymorphism (MSAP) analyses were carried out in A. rubrum populations from metal‐contaminated and uncontaminated sites. The global modified cytosine ratios in genomic DNA revealed a significant decrease in cytosine methylation in genotypes from a metal‐contaminated site compared to uncontaminated populations. Other genotypes from a different metal‐contaminated site within the same region appear to be recalcitrant to metal‐induced DNA alterations even ≥30 years of tree life exposure to nickel and copper . MSAP analysis showed a high level of polymorphisms in both uncontaminated (77%) and metal‐contaminated (72%) populations. Overall, 205 CCGG loci were identified in which 127 were methylated in either outer or inner cytosine. No differentiation among populations was established based on several genetic parameters tested. The variations for nonmethylated and methylated loci were compared by analysis of molecular variance (AMOVA). For methylated loci, molecular variance among and within populations was 1.5% and 13.2%, respectively. These values were low (0.6% for among populations and 5.8% for within populations) for unmethylated loci. Metal contamination is seen to affect methylation of cytosine residues in CCGG motifs in the A. rubrum populations that were analyzed.  相似文献   

7.
The involvement of epigenetic alterations in the pathogenesis of melanoma is increasingly recognized. Here, we performed genome‐wide DNA methylation analysis of primary cutaneous melanoma and benign melanocytic nevus interrogating 14 495 genes using BeadChip technology. This genome‐wide view of promoter methylation in primary cutaneous melanoma revealed an array of recurrent DNA methylation alterations with potential diagnostic applications. Among 106 frequently hypermethylated genes, there were many novel methylation targets and tumor suppressor genes. Highly recurrent methylation of the HOXA9, MAPK13, CDH11, PLEKHG6, PPP1R3C, and CLDN11 genes was established. Promoter methylation of MAPK13, encoding p38δ, was present in 67% of primary and 85% of metastatic melanomas. Restoration of MAPK13 expression in melanoma cells exhibiting epigenetic silencing of this gene reduced proliferation, indicative of tumor suppressive functions. This study demonstrates that DNA methylation alterations are widespread in melanoma and suggests that epigenetic silencing of MAPK13 contributes to melanoma progression.  相似文献   

8.
Aim: To elucidate the possible mechanism of phytoplasma elimination from periwinkle shoots caused by indole‐3‐butyric acid (IBA) treatment. Methods and Results: It has been shown that a transfer of in vitro‐grown phytoplasma‐infected Catharanthus roseus (periwinkle) plantlets from medium supplemented with 6‐benzylaminopurine (BA) to one supplemented with IBA can induce remission of symptoms and even permanent elimination of ‘Candidatus Phytoplasma asteris’ reference strain HYDB. Endogenous auxin levels and general methylation levels in noninfected periwinkles, periwinkles infected with two ‘Candidatus Phytoplasma’ species and phytoplasma‐recovered periwinkles were measured and compared. After the transfer from cytokinin‐ to auxin‐containing media, healthy shoots maintained their phenotype, methylation levels and hormone concentrations. Phytoplasma infection caused a change in the endogenous indole‐3‐acetic acid to IBA ratio in periwinkle shoots infected with two ‘Candidatus Phytoplasma’ species, but general methylation was significantly changed only in shoots infected with ‘Ca. P. asteris’, which resulted in the only phytoplasma species eliminated from shoots after transfer to IBA‐containing medium. Both phytoplasma infection and treatment with plant growth regulators influenced callose deposition in phloem tissue, concentrations of photosynthetic pigments and soluble proteins, H2O2 levels and activities of catalase (CAT) and ascorbate peroxidase (APX). Conclusion: Lower level of host genome methylation in ‘Ca. P. asteris’‐infected periwinkles on medium supplemented with BA was significantly elevated after IBA treatment, while IBA treatment had no effect on cytosine methylation in periwinkles infected with ‘Candidatus Phytoplasma ulmi’ strain EY‐C. Significance and Impact of the Study: Hormone‐dependent recovery is a distinct phenomenon from natural recovery. As opposed to spontaneously recovered plants in which elevated peroxide levels and differential expression of peroxide‐related enzymes were observed, in hormone‐dependent recovery changes in global host genome, methylation coincide with the presence/absence of phytoplasma.  相似文献   

9.
10.
Epigenetic mechanisms play a major role in heterosis, partly as a result of the remodeling of epigenetic modifications in F1 hybrids. Based on chromatin immunoprecipitation‐sequencing (ChIP‐Seq) analyses, we show that at the allele level extensive histone methylation remodeling occurred for a subset of genomic loci in reciprocal F1 hybrids of Oryza sativa (rice) cultivars Nipponbare and 93‐11, representing the two subspecies japonica and indica. Globally, the allele modification‐altered loci in leaf or root of the reciprocal F1 hybrids involved ?12–43% or more of the genomic regions carrying either of two typical histone methylation markers, H3K4me3 (>21 000 genomic regions) and H3K27me3 (>11 000 genomic regions). Nevertheless, at the total modification level, the majority (from ?43 to >90%) of the modification‐altered alleles lay within the range of parental additivity in the hybrids because of concerted alteration in opposite directions, consistent with an overall attenuation of allelic differences in the modifications. Importantly, of the genomic regions that did show non‐additivity in total modification level by either marker in the two tissues of hybrids, >80% manifested transgressivity, which involved genes enriched in specific functional categories. Extensive allele‐level alteration of H3K4me3 alone was positively correlated with genome‐wide changes in allele‐level gene expression, whereas at the total level, both H3K4me3 and H3K27me3 remodeling, although affecting just a small number of genes, contributes to the overall non‐additive gene expression to variable extents, depending on tissue/marker combinations. Our results emphasize the importance of allele‐level analysis in hybrids to assess the remodeling of epigenetic modifications and their relation to changes in gene expression.  相似文献   

11.
12.
Interspecific hybridization is known for triggering genetic and epigenetic changes, such as modifications on DNA methylation patterns and impact on phenotypic plasticity and ecological adaptation. Wild potatoes (Solanum, section Petota) are adapted to multiple habitats along the Andes, and natural hybridizations have proven to be a common feature among species of this group. Solanum × rechei, a recently formed hybrid that grows sympatrically with the parental species S. kurtzianum and S. microdontum, represents an ideal model for studying the ecologically and evolutionary importance of hybridization in generating of epigenetic variability. Genetic and epigenetic variability and their correlation with morphological variation were investigated in wild and ex situ conserved populations of these three wild potato species using amplified fragment length polymorphism (AFLP) and methylation‐sensitive amplified polymorphism (MSAP) techniques. We observed that novel methylation patterns doubled the number of novel genetic patterns in the hybrid and that the morphological variability measured on 30 characters had a higher correlation with the epigenetic than with the genetic variability. Statistical comparison of methylation levels suggested that the interspecific hybridization induces genome demethylation in the hybrids. A Bayesian analysis of the genetic data reveled the hybrid nature of S. × rechei, with genotypes displaying high levels of admixture with the parental species, while the epigenetic information assigned S. × rechei to its own cluster with low admixture. These findings suggested that after the hybridization event, a novel epigenetic pattern was rapidly established, which might influence the phenotypic plasticity and adaptation of the hybrid to new environments.  相似文献   

13.
14.
DNA methylation is an epigenetic mechanism that has the potential to affect plant phenotypes and that is responsive to environmental and genomic stresses such as hybridization and polyploidization. We explored de novo methylation variation that arises during the formation of triploid asexual dandelions from diploid sexual mother plants using methylation‐sensitive amplified fragment length polymorphism (MS‐AFLP) analysis. In dandelions, triploid apomictic asexuals are produced from diploid sexual mothers that are fertilized by polyploid pollen donors. We asked whether the ploidy level change that accompanies the formation of new asexual lineages triggers methylation changes that contribute to heritable epigenetic variation within novel asexual lineages. Comparison of MS‐AFLP and AFLP fragment inheritance in a diploid × triploid cross revealed de novo methylation variation between triploid F1 individuals. Genetically identical offspring of asexual F1 plants showed modest levels of methylation variation, comparable to background levels as observed among sibs in a long‐established asexual lineage. Thus, the cross between ploidy levels triggered de novo methylation variation between asexual lineages, whereas it did not seem to contribute directly to variation within new asexual lineages. The observed background level of methylation variation suggests that considerable autonomous methylation variation could build up within asexual lineages under natural conditions.  相似文献   

15.
The two‐spotted spider mite, Tetranychus urticae Koch has two forms: green form and red form. Understanding the molecular basis of how these two forms established without divergent genetic background is an intriguing area. As a well‐known epigenetic process, DNA methylation has particularly important roles in gene regulation and developmental variation across diverse organisms that do not alter genetic background. Here, to investigate whether DNA methylation could be associated with different phenotypic consequences in the two forms of T. urticae, we surveyed the genome‐wide cytosine methylation status and expression level of DNA methyltransferase 3 (Tudnmt3) throughout their entire life cycle. Methylation‐sensitive amplification polymorphism (MSAP) analyses of 585 loci revealed variable methylation patterns in the different developmental stages. In particular, principal coordinates analysis (PCoA) indicates a significant epigenetic differentiation between female adults of the two forms. The gene expression of Tudnmt3 was detected in all examined developmental stages, which was significantly different in the adult stage of the two forms. Together, our results reveal the epigenetic distance between the two forms of T. urticae, suggesting that DNA methylation might be implicated in different developmental demands, and contribute to different phenotypes in the adult stage of these two forms.  相似文献   

16.
17.
Invasive species frequently differentiate phenotypically in novel environments within a few generations, often even with limited genetic variation. For the invasive plants Solidago canadensis and S. gigantea, we tested whether such differentiation might have occurred through heritable epigenetic changes in cytosine methylation. In a 2‐year common‐garden experiment, we grew plants from seeds collected along a latitudinal gradient in their non‐native Central European range to test for trait differentiation and whether differentiation disappeared when seeds were treated with the demethylation agent zebularine. Microsatellite markers revealed no population structure along the latitudinal gradient in S. canadensis, but three genetic clusters in S. gigantea. Solidago canadensis showed latitudinal clines in flowering phenology and growth. In S. gigantea, the number of clonal offspring decreased with latitude. Although zebularine had a significant effect on early growth, probably through effects on cytosine methylation, latitudinal clines remained (or even got stronger) in plants raised from seeds treated with zebularine. Thus, our experiment provides no evidence that epigenetic mechanisms by selective cytosine methylation contribute to the observed phenotypic differentiation in invasive goldenrods in Central Europe.  相似文献   

18.
Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next‐generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome‐wide fluorescent in situ hybridization complemented with immunostaining and super‐resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44–52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes.  相似文献   

19.
Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well‐recognized Darwinian evolution has well‐explained long‐term adaptation scenarios; however, “rapid” processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation‐sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole‐genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high‐temperature exposure or after 3 hr of low‐salinity challenge. In addition, we detected time‐dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress‐induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole‐genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation.  相似文献   

20.
Sogatella furcifera is a major rice pest with wing dimorphism . DNA methylation is an important epigenetic modification that plays a role in gene regulation and phenotype variation in most organisms. The objective of the current research was to survey the frequencies and variation of cytosine methylation at CCGG sequences in macropterous female adults (MFA) and brachypterous female adults (BFA) of S. furcifera, and to determine the occurrence of methylation changes associated with wing phenotypes by using methylation‐sensitive amplification polymorphism (MSAP). No differences were found in the average proportions of methylated CCGG sites between MFA and BFA, but there were significant differences for methylation patterns between MFA and BFA. The fully methylated ratio was 5.81% in BFA, much higher than 2.40% in MFA; while the hemi‐methylated ratio was 4.35% in BFA, much lower than 8.35% in MFA. These results provide circumstantial evidence that DNA methylation might be related to wing phenotype variation in S. furcifera. We also cloned and got 14 satisfactory sequences, which displayed variable cytosine methylation patterns between MFA and BFA. All these data will facilitate the researches on the epigenetic mechanisms of insect wing polymorphism. genesis 51:819–826. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号