首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
c‐di‐GMP is a bacterial second messenger that is enzymatically synthesized and degraded in response to environmental signals. Cellular processes are affected when c‐di‐GMP binds to receptors which include proteins that contain the PilZ domain. Although each c‐di‐GMP synthesis or degradation enzyme metabolizes the same molecule, many of these enzymes can be linked to specific downstream processes. Here we present evidence that c‐di‐GMP signalling specificity is achieved through differences in affinities of receptor macromolecules. We show that the PilZ domain proteins of Salmonella Typhimurium, YcgR and BcsA, demonstrate a 43‐fold difference in their affinity for c‐di‐GMP. Modulation of the affinities of these proteins altered their activities in a predictable manner in vivo. Inactivation of yhjH, which encodes a predicted c‐di‐GMP degrading enzyme, increased the fraction of the cellular population that demonstrated c‐di‐GMP levels high enough to bind to the higher‐affinity YcgR protein and inhibit motility, but not high enough to bind to the lower‐affinity BcsA protein and stimulate cellulose production. Finally, PilZ domain proteins of Pseudomonas aeruginosa demonstrated a 145‐fold difference in binding affinities, suggesting that regulation by binding affinity may be a conserved mechanism that allows organisms with many c‐di‐GMP binding macromolecules to rapidly integrate multiple environmental signals into one output.  相似文献   

2.
The crystal structure of XC1028 from Xanthomonas campestris has been determined to a resolution of 2.15 Å using the multiple anomalous dispersion approach. It bears significant sequence identity and similarity values of 64.10% and 70.09%, respectively, with PA2960, a protein indispensable for type IV pilus‐mediated twitching motility, after which the PilZ motif was first named. However, both XC1028 and PA2960 lack detectable c‐di‐GMP binding capability. Although XC1028 adopts a structure comprising a five‐stranded β‐barrel core similar to other canonical PilZ domains with robust c‐di‐GMP binding ability, considerable differences are observed in the N‐terminal motif; XC1028 assumes a compact five‐stranded β‐barrel without an extra long N‐terminal motif, whereas other canonical PilZ domains contain a long N‐terminal sequence embedded with an essential “c‐di‐GMP switch” motif. In addition, a β‐strand (β1) in the N‐terminal motif, running in exactly opposite polarity to that of XC1028, is found inserted into the parallel β3/β1′ strands, forming a completely antiparallel β4↓β3↑β1↓β1′↑ sheet in the canonical PilZ domains. Such dramatic structural differences at the N‐terminus may account for the diminished c‐di‐GMP binding capability of XC1028, and suggest that interactions with additional proteins are necessary to bind c‐di‐GMP for type IV fimbriae assembly. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
The major sessility‐motility lifestyle change and additional fundamental aspects of bacterial physiology, behaviour and morphology are regulated by the secondary messenger cyclic di‐GMP (c‐di‐GMP). Although the c‐di‐GMP metabolizing enzymes and many receptors have been readily characterized upon discovery, the HD‐GYP domain c‐di‐GMP phosphodiesterase family remained underinvestigated. In this issue of Molecular Microbiology, Bellini et al. provide an important step towards functional and structural characterization of the previously neglected HD‐GYP domain family by resolving the crystal structure of PmGH, a catalytically active family member from the thermophilic bacterium Persephonella marina. The crystal structure revealed a novel tri‐nuclear catalytic iron centre involved in c‐di‐GMP binding and catalysis and provides the structural basis to subsequently characterize in detail the catalytic mechanism of hydrolysis of c‐di‐GMP to GMP by HD‐GYP domains.  相似文献   

4.
Elevated levels of the second messenger cyclic dimeric GMP, c‐di‐GMP, promote transition of bacteria from single motile cells to surface‐attached multicellular communities. Here we describe a post‐translational mechanism by which c‐di‐GMP initiates this transition in enteric bacteria. High levels of c‐di‐GMP induce the counterclockwise bias in Escherichia coli flagellar rotation, which results in smooth swimming. Based on co‐immunoprecipitation, two‐hybrid and mutational analyses, the E. coli c‐di‐GMP receptor YcgR binds to the FliG subunit of the flagellum switch complex, and the YcgR–FliG interaction is strengthened by c‐di‐GMP. The central fragment of FliG binds to YcgR as well as to FliM, suggesting that YcgR–c‐di‐GMP biases flagellum rotation by altering FliG‐FliM interactions. The c‐di‐GMP‐induced smooth swimming promotes trapping of motile bacteria in semi‐solid media and attachment of liquid‐grown bacteria to solid surfaces, whereas c‐di‐GMP‐dependent mechanisms not involving YcgR further facilitate surface attachment. The YcgR–FliG interaction is conserved in the enteric bacteria, and the N‐terminal YcgR/PilZN domain of YcgR is required for this interaction. YcgR joins a growing list of proteins that regulate motility via the FliG subunit of the flagellum switch complex, which suggests that FliG is a common regulatory entryway that operates in parallel with the chemotaxis that utilizes the FliM‐entryway.  相似文献   

5.
Production of cellulose, a stress response‐mediated process in enterobacteria, is modulated in Escherichia coli by the activity of the two pyrimidine nucleotide biosynthetic pathways, namely, the de novo biosynthetic pathway and the salvage pathway, which relies on the environmental availability of pyrimidine nitrogenous bases. We had previously reported that prevalence of the salvage over the de novo pathway triggers cellulose production via synthesis of the second messenger c‐di‐GMP by the DgcQ (YedQ) diguanylate cyclase. In this work, we show that DgcQ enzymatic activity is enhanced by UTP, whilst being inhibited by N‐carbamoyl‐aspartate, an intermediate of the de novo pathway. Thus, direct allosteric control by these ligands allows full DgcQ activity exclusively in cells actively synthesizing pyrimidine nucleotides via the salvage pathway. Inhibition of DgcQ activity by N‐carbamoyl‐aspartate appears to be favoured by protein‐protein interaction between DgcQ and PyrB, a subunit of aspartate transcarbamylase, which synthesizes N‐carbamoyl‐aspartate. Our results suggest that availability of pyrimidine bases might be sensed, somehow paradoxically, as an environmental stress by E. coli. We hypothesize that this link might have evolved since stress events, leading to extensive DNA/RNA degradation or lysis of neighbouring cells, can result in increased pyrimidine concentrations and activation of the salvage pathway.  相似文献   

6.
Bis‐(3′,5′) cyclic di‐guanylate (c‐di‐GMP) is a key bacterial second messenger that is implicated in the regulation of many crucial processes that include biofilm formation, motility and virulence. Cellular levels of c‐di‐GMP are controlled through synthesis by GGDEF domain diguanylate cyclases and degradation by two classes of phosphodiesterase with EAL or HD‐GYP domains. Here, we have determined the structure of an enzymatically active HD‐GYP domain protein from Persephonella marina (PmGH) alone, in complex with substrate (c‐di‐GMP) and final reaction product (GMP). The structures reveal a novel trinuclear iron binding site, which is implicated in catalysis and identify residues involved in recognition of c‐di‐GMP. This structure completes the picture of all domains involved in c‐di‐GMP metabolism and reveals that the HD‐GYP family splits into two distinct subgroups containing bi‐ and trinuclear metal centres.  相似文献   

7.
In many bacterial pathogens, the second messenger c‐di‐GMP stimulates the production of an exopolysaccharide (EPS) matrix to shield bacteria from assaults of the immune system. How c‐di‐GMP induces EPS biogenesis is largely unknown. Here, we show that c‐di‐GMP allosterically activates the synthesis of poly‐β‐1,6‐N‐acetylglucosamine (poly‐GlcNAc), a major extracellular matrix component of Escherichia coli biofilms. C‐di‐GMP binds directly to both PgaC and PgaD, the two inner membrane components of the poly‐GlcNAc synthesis machinery to stimulate their glycosyltransferase activity. We demonstrate that the PgaCD machinery is a novel type c‐di‐GMP receptor, where ligand binding to two proteins stabilizes their interaction and promotes enzyme activity. This is the first example of a c‐di‐GMP‐mediated process that relies on protein–protein interaction. At low c‐di‐GMP concentrations, PgaD fails to interact with PgaC and is rapidly degraded. Thus, when cells experience a c‐di‐GMP trough, PgaD turnover facilitates the irreversible inactivation of the Pga machinery, thereby temporarily uncoupling it from c‐di‐GMP signalling. These data uncover a mechanism of c‐di‐GMP‐mediated EPS control and provide a frame for c‐di‐GMP signalling specificity in pathogenic bacteria.  相似文献   

8.
The nucleotide second messenger c‐di‐GMP nearly ubiquitously promotes bacterial biofilm formation, with enzymes that synthesize and degrade c‐di‐GMP being controlled by diverse N‐terminal sensor domains. Here, we describe a novel class of widely occurring c‐di‐GMP phosphodiesterases (PDE) that feature a periplasmic “CSS domain” with two highly conserved cysteines that is flanked by two transmembrane regions (TM1 and TM2) and followed by a cytoplasmic EAL domain with PDE activity. Using PdeC, one of the five CSS domain PDEs of Escherichia coli K‐12, we show that DsbA/DsbB‐promoted disulfide bond formation in the CSS domain reduces PDE activity. By contrast, the free thiol form is enzymatically highly active, with the TM2 region promoting dimerization. Moreover, this form is processed by periplasmic proteases DegP and DegQ, yielding a highly active TM2 + EAL fragment that is slowly removed by further proteolysis. Similar redox control and proteolysis was also observed for a second CSS domain PDE, PdeB. At the physiological level, CSS domain PDEs modulate production and supracellular architecture of extracellular matrix polymers in the deeper layers of mature E. coli biofilms.  相似文献   

9.
10.
Cyclic di‐GMP [(bis‐(3′–5′)‐cyclic di‐guanosine monophosphate)] is an almost ubiquitous second messenger in bacteria that is implicated in the regulation of a range of functions that include developmental transitions, aggregative behaviour, adhesion, biofilm formation and virulence. Comparatively little is known about the mechanism(s) by which cyclic di‐GMP exerts these various regulatory effects. PilZ has been identified as a cyclic di‐GMP binding protein domain; proteins with this domain are involved in regulation of specific cellular processes, including the virulence of animal pathogens. Here we have examined the role of PilZ domain proteins in virulence and the regulation of virulence factor synthesis in Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot of crucifers. The Xcc genome encodes four proteins (XC0965, XC2249, XC2317 and XC3221) that have a PilZ domain. Mutation of XC0965, XC2249 and XC3221 led to a significant reduction of virulence in Chinese radish. Mutation of XC2249 and XC3221 led to a reduction in motility whereas mutation of XC2249 and XC0965 affected extracellular enzyme production. All mutant strains were unaffected in biofilm formation in vitro. The reduction of virulence following mutation of XC3221 could not be wholly attributed to an effect on motility as mutation of pilA, which abolishes motility, has a lesser effect on virulence.  相似文献   

11.
Aims: The primary goal of this study was to characterize the existence of a functional c‐di‐GMP pathway in the bioleaching bacterium Acidithiobacillus ferrooxidans. Methods and Results: A bioinformatic search revealed that the genome sequence of At. ferrooxidans ATCC 23270 codes for several proteins involved in the c‐di‐GMP pathway, including diguanylate cyclases (DGC), phosphodiesterases and PilZ effector proteins. Overexpression in Escherichia coli demonstrated that four At. ferrooxidans genes code for proteins containing GGDEF/EAL domains with functional DGC activity. MS/MS analysis allowed the identification of c‐di‐GMP in nucleotide preparations obtained from At. ferrooxidans cells. In addition, c‐di‐GMP levels in cells grown on the surface of solid energetic substrates such as sulfur prills or pyrite were higher than those measured in ferrous iron planktonic cells. Conclusions: At. ferrooxidans possesses a functional c‐di‐GMP pathway that could play a key role in At. ferrooxidans biofilm formation during bioleaching processes. Significance and Impact of the Study: This is the first global study about the c‐di‐GMP pathway in an acidophilic bacterium of great interest for the biomining industry. It opens a new way to explore the regulation of biofilm formation by biomining micro‐organisms during the bioleaching process.  相似文献   

12.
13.
Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c‐di‐GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three‐dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c‐di‐GMP‐dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c‐di‐GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen.  相似文献   

14.
In Vibrio cholerae, the second messenger bis‐(3′?5′)‐cyclic dimeric guanosine monophosphate (c‐di‐GMP) increases exopolysaccharides production and biofilm formation and decreases virulence and motility. As such, c‐di‐GMP is considered an important player in the transition from the host to persistence in the environment. c‐di‐GMP level is regulated through a complex network of more than 60 chromosomal genes encoding predicted diguanylate cyclases (DGCs) and phosphodiesterases. Herein we report the characterization of two additional DGCs, DgcK and DgcL, encoded by integrating conjugative elements (ICEs) belonging to the SXT/R391 family. SXT/R391 ICEs are self‐transmissible mobile elements that are widespread among vibrios and several species of enterobacteria. We found that deletion of dgcL increases the motility of V. cholerae, that overexpression of DgcK or DgcL modulates gene expression, biofilm formation and bacterial motility, and that a single amino acid change in the active site of either enzyme abolishes these phenotypes. We also show that DgcK and DgcL are able to synthesize c‐di‐GMP in vitro from GTP. DgcK was found to co‐purify with non‐covalently bound flavin mononucleotide (FMN). DgcL's enzymatic activity was augmented upon phosphorylation of its phosphorylatable response‐regulator domain suggesting that DgcL is part of a two‐component signal transduction system. Interestingly, we found orthologues of dgcK and dgcL in several SXT/R391 ICEs from two species of Vibrio originating from Asia, Africa and Central America. We propose that besides conferring usual antibiotic resistances, dgcKL‐bearing SXT/R391 ICEs could enhance the survival of vibrios in aquatic environments by increasing c‐di‐GMP level.  相似文献   

15.
16.
17.
Many bacteria colonize surfaces and transition to a sessile mode of growth. The plant pathogen Agrobacterium tumefaciens produces a u nip olar p olysaccharide (UPP) adhesin at single cell poles that contact surfaces. Here we report that elevated levels of the intracellular signal cyclic diguanosine monophosphate (c‐di‐GMP) lead to surface‐contact‐independent UPP production and a red colony phenotype due to production of UPP and the exopolysaccharide cellulose, when A. tumefaciens is incubated with the polysaccharide stain Congo Red. Transposon mutations with elevated Congo Red staining identified presumptive UPP‐negative regulators, mutants for which were hyperadherent, producing UPP irrespective of surface contact. Multiple independent mutations were obtained in visN and visR, activators of flagellar motility in A. tumefaciens, now found to inhibit UPP and cellulose production. Expression analysis in a visR mutant and isolation of suppressor mutations, identified three diguanylate cyclases inhibited by VisR. Null mutations for two of these genes decrease attachment and UPP production, but do not alter cellular c‐di‐GMP levels. However, analysis of catalytic site mutants revealed their GGDEF motifs are required to increase UPP production and surface attachment. Mutations in a specific presumptive c‐di‐GMP phosphodiesterase also elevate UPP production and attachment, consistent with c‐di‐GMP activation of surface‐dependent adhesin deployment.  相似文献   

18.
19.
20.
When Caulobacter crescentus enters S‐phase the replication initiation inhibitor CtrA dynamically positions to the old cell pole to be degraded by the polar ClpXP protease. Polar delivery of CtrA requires PopA and the diguanylate cyclase PleD that positions to the same pole. Here we present evidence that PopA originated through gene duplication from its paralogue response regulator PleD and subsequent co‐option as c‐di‐GMP effector protein. While the C‐terminal catalytic domain (GGDEF) of PleD is activated by phosphorylation of the N‐terminal receiver domain, functional adaptation has reversed signal transduction in PopA with the GGDEF domain adopting input function and the receiver domain serving as regulatory output. We show that the N‐terminal receiver domain of PopA specifically interacts with RcdA, a component required for CtrA degradation. In contrast, the GGDEF domain serves to target PopA to the cell pole in response to c‐di‐GMP binding. In agreement with the divergent activation and targeting mechanisms, distinct markers sequester PleD and PopA to the old cell pole upon S‐phase entry. Together these data indicate that PopA adopted a novel role as topology specificity factor to help recruit components of the CtrA degradation pathway to the protease specific old cell pole of C. crescentus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号