首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shrubs of niger seed with phyllody and internode elongation symptoms suggestive of phytoplasma infections occurred in the central regions of Iran. Phytoplasma was detected by polymerase chain reaction (PCR) and nested PCR amplifications using phytoplasma universal primer pairs P1/P7 and R16F2n/R16R2. Using aster yellows group–specific primer pair rp(I)F1A/rp(I)R1A, a fragment of 1212 bp of the rp genes was amplified from DNA samples of infected plants. Random fragment length polymorphism (RFLP) analyses of R16F2n/R16R2‐amplified products using the CfoI restriction enzyme confirmed that Iranian niger seed phyllody phytoplasma is associated with aster yellows group phytoplasmas. Sequence analyses of the partial rp genes fragment indicated that the Iranian niger seed phyllody phytoplasma, which was collected from central regions of Iran, is related to ‘Candidatus Phytoplasma asteris’. This is the first report of a phytoplasma infecting the niger seed plant.  相似文献   

2.
Pear trees showing pear decline disease symptoms were observed in pear orchards in the centre and north of Iran. Detection of phytoplasmas using universal primer pair P1A/P7A followed by primer pair R16F2n/R16R2 in nested PCR confirmed association of phytoplasmas with diseased pear trees. However, PCR using group‐specific primer pairs R16(X)F1/R16(X)R1 and rp(I)F1A/rp(I)R1A showed that Iranian pear phytoplasmas are related to apple proliferation and aster yellows groups. Moreover, PCR results using primer pair ESFYf/ESFYr specific to 16SrX‐B subgroup indicated that ‘Ca. Phytoplasma prunorum’ is associated with pear decline disease in the north of Iran. RFLP analyses using HaeIII, HhaI, HinfI, HpaII and RsaI restriction enzymes confirmed the PCR results. Partial 16S rRNA, imp, rp and secY genes sequence analyses approved that ‘Ca. Phytoplasma pyri’ and ‘Ca. Phytoplasma asteris’ cause pear decline disease in the centre of Iran, whereas ‘Ca. Phytoplasma prunorum’ causes disease in the north of Iran. This is the first report of the association of ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma prunorum’ with pear decline disease worldwide.  相似文献   

3.
A survey was made to determine the incidence of phytoplasmas in 39 sweet and sour cherry, peach, nectarine, apricot and plum commercial and experimental orchards in seven growing regions of Poland. Nested polymerase chain reaction (PCR) using the phytoplasma‐universal primer pairs P1/P7 followed by R16F2n/R16R2 showed the presence of phytoplasmas in 29 of 435 tested stone fruit trees. The random fragment length polymorphism (RFLP) patterns obtained after digestion of the nested PCR products separately with RsaI, AluI and SspI endonucleases indicated that selected Prunus spp. trees were infected by phytoplasmas belonging to three different subgroups of the apple proliferation group (16SrX‐A, ‐B, ‐C). Nucleotide sequence analysis of 16S rDNA fragment amplified with primers R16F2n/R16R2 confirmed the PCR/Restriction Fragment Length Polymorphism (RFLP) results and revealed that phytoplasma infecting sweet cherry cv. Regina (Reg), sour cherry cv. Sokowka (Sok), apricots cv. Early Orange (EO) and AI/5, Japanese plum cv. Ozark Premier (OzPr) and peach cv. Redhaven (RedH) was closely related to isolate European stone fruit yellows‐G1 of the ‘Candidatus Phytoplasma prunorum’ (16SrX‐B). Sequence and phylogenetic analyses resulted in the highest similarity of the 16S rDNA fragment of phytoplasma from nectarine cv. Super Queen (SQ) with the parallel sequence of the strain AP15 of the ‘Candidatus Phytoplasma mali’ (16SrX‐A). The phytoplasma infecting sweet cherry cv. Kordia (Kord) was most similar to the PD1 strain of the ‘Candidatus Phytoplasma pyri’ (16SrX‐C). This is the first report of the occurrence of ‘Ca. P. prunorum’, ‘Ca. P. mali’ and ‘Ca. P. pyri’ in naturally infected stone fruit trees in Poland.  相似文献   

4.
Asparagus officinalis plants with severe fasciation of some spears were observed in southern Bohemia between 1998 and 2007. Nucleic acids extracted from these and asymptomatic plants were assayed with nested polymerase chain reaction (PCR) using the phytoplasma‐specific universal ribosomal primers P1/P7 and R16F2n/R2. The restriction profiles obtained from digestion of the PCR products with five endonucleases (AluI, HhaI, KpnI, MseI and RsaI) were identical in all phytoplasmas infecting asparagus in the Czech Republic and indistinguishable from those of phytoplasmas in the aster yellows group (subgroup 16SrI‐B). Sequence analysis of 1754 bp of the ribosomal operon indicated that the closest related phytoplasmas were those associated with epilobium phyllody and onion yellows. This is the first report of the natural occurrence of ‘Candidatus Phytoplasma asteris’ in A. officinalis.  相似文献   

5.
Tree peony (Paeonia suffruticosais) plants with yellowing symptoms suggestive of a phytoplasma disease were observed in Shandong Peninsula, China. Typical phytoplasma bodies were detected in the phloem tissue using transmission electron microscopy. The association of a phytoplasma with the disease was confirmed by polymerase chain reaction (PCR) using phytoplasma universal primer pair R16mF2/R16mR1 followed by R16F2n/R16R2 as nested PCR primer pair. The sequence analysis indicated that the phytoplasma associated with tree peony yellows (TPY) was an isolate of ‘Ca. Phytoplasma solani’ belonging to the stolbur (16SrXII) group. This is the first report of a phytoplasma associated with tree peony.  相似文献   

6.
Recently, peach trees showing leaf rolling, little leaf, rosetting, yellowing, bronzing of foliage and tattered and shot‐holed leaves symptoms were observed in peach growing areas in the central and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR using phytoplasma universal primer pairs P1/Tint, R16F2/R2, PA2F/R and NPA2F/R were employed to detect phytoplasmas. The nested PCR assays detected phytoplasma infections in 51% of symptomatic peach trees in the major peach production areas in East Azerbaijan, Isfahan, ChaharMahal‐O‐Bakhtiari and Tehran provinces. Restriction fragment length polymorphism (RFLP) analyses of 485 bp fragments amplified using primer pair NPA2F/R in nested PCR revealed that the phytoplasmas associated with infected peaches were genetically different and they were distinct from phytoplasmas that have been associated with peach and almond witches’‐broom diseases in the south of Iran. Sequence analyses of partial 16S rDNA and 16S–23S rDNA intergenic spacer regions demonstrated that ‘Candidatus Phytoplasma aurantifolia’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ are prevalent in peach growing areas in the central and north‐western regions of Iran.  相似文献   

7.
Potato plants with symptoms suggestive of potato purple top disease (PPTD) occurred in the central, western and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1/P7 followed by primer pairs R16F2n/R16R2 and fU5/rU3 for phytoplasma detection. Using primer pairs R16F2n/R16R2 and fU5/rU3 in nested PCR, the expected fragments were amplified from 53% of symptomatic potatoes. Restriction fragment length polymorphism (RFLP) analysis using AluI, CfoI, EcoRI, KpnI, HindIII, MseI, RsaI and TaqI restriction enzymes confirmed that different phytoplasma isolates caused PPTD in several Iranian potato‐growing areas. Sequences analysis of partial 16S rRNA gene amplified by nested PCR indicated that ‘Candidatus Phytoplasma solani’, ‘Ca. Phytoplasma astris’ and ‘Ca. Phytoplasma trifolii’ are prevalent in potato plants showing PPTD symptoms in the production areas of central, western and north‐western regions of Iran, although ‘Ca. Phytoplasma solani’ is more prevalent than other phytoplasmas. This is the first report of phytoplasmas related to ‘Ca. Phytoplasma astris’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ causing PPTD in Iran.  相似文献   

8.
Grapevine (Vitis vinifera) is one of the most important fruits in Iran where the provinces of Qazvin, Lorestan and Markazi are main producers. During 2013–2015, vineyards located in these provinces were surveyed to verify the presence of phytoplasma. The sample collection was based on symptomatology including decline, leaf yellowing and shortening of internodes. Total DNA was extracted from symptomatic and symptomless grapevine samples and used in nested‐polymerase chain reaction (PCR) assays with phytoplasma ribosomal primers (P1/Tint followed by R16F2n/R2, R16mF1/mR1, R16(I)F1/R1 or 6R758f/16R1232r). Nested‐PCR products were obtained only for symptomatic samples while samples from symptomless plants yielded no PCR products. Restriction fragment length polymorphism (RFLP) analyses with Tru1I, TaqI and Tsp509I and direct sequencing of amplicons followed by phylogenetic analyses indicated the presence of ‘Candidatus Phytoplasma fraxini’, ‘Ca. P. aurantifolia’, ‘Ca. P. solani’ and ‘Ca. P. phoenicium’‐related strains. In Marzaki province, there ‘Ca. P. aurantifolia’ strains were mainly detected, while in the other two provinces, all the four ‘Candidatus species’ were identified with the prevalence of ‘Ca. P. solani’‐related strains. In both provinces in one case, mixed phytoplasma infection was also detected by RFLP analyses. The presence of different phytoplasmas in positive samples indicates great phytosanitary significance due to grapevine economic importance for country. Grapevine phytoplasma infection represents a threat for other crops suggesting grapevine as alternative host species for the phytoplasmas already reported in Iran, while the ‘Ca. P. fraxini’ is for the first time identified in Iran.  相似文献   

9.
Potato plants showing symptoms suggestive of potato witches’‐broom disease including witches’‐broom, little leaf, stunting, yellowing and swollen shoots formation in tubers were observed in the central Iran. For phytoplasma detection, Polymerase Chain Reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1/P7, followed by primer pair R16F2n/R16R2. Random fragment length polymorphism analysis of potato phytoplasma isolates collected from different production areas using the CfoI restriction enzyme indicated that potato witches’‐broom phytoplasma isolate (PoWB) is genetically different from phytoplasmas associated with potato purple top disease in Iran. Sequence analysis of the partial 16S rRNA gene amplified by nested PCR indicated that ‘Candidatus Phytoplasma trifolii’ is associated with potato witches’‐broom disease in Iran. This is the first report of potato witches’‐broom disease in Iran.  相似文献   

10.
Yellowing symptoms similar to coconut yellow decline phytoplasma disease were observed on lipstick palms (Cyrtostachys renda) in Selangor state, Malaysia. Typical symptoms were yellowing, light green fronds, gradual collapse of older fronds and decline in growth. Polymerase chain reaction assay was employed to detect phytoplasma in symptomatic lipstick palms. Extracted DNA was amplified from symptomatic lipstick palms by PCR using phytoplasma‐universal primer pair P1/P7 followed by R16F2n/R16R2. Phytoplasma presence was confirmed, and the 1250 bp products were cloned and sequenced. Sequence analysis indicated that the phytoplasmas associated with lipstick yellow frond disease were isolates of ‘Candidatus Phytoplasma asteris’ belonging to the 16SrI group. Virtual RFLP analysis of the resulting profiles revealed that these palm‐infecting phytoplasmas belong to subgroup 16SrI‐B and a possibly new 16SrI‐subgroup. This is the first report of lipstick palm as a new host of aster yellows phytoplasma (16SrI) in Malaysia and worldwide.  相似文献   

11.
Royal Palms (Roystonea regia) with symptoms such as severe chlorosis, stunting, collapse of older fronds and general decline were observed in the state of Selangor, Malaysia. Using polymerase chain reaction (PCR) amplification with phytoplasma universal primer pair P1/P7 followed by R16F2N/R16R2 and fU5/rU3 as nested PCR primer pairs, all symptomatic plants tested positively for phytoplasma. Results of phylogenetic and virtual RFLP analysis of the 16S rRNA gene sequences revealed that the phytoplasma associated with Royal Palm yellow decline (RYD) was an isolate of ‘Candidatus Phytoplasma asteris’ belonging to a new 16SrI‐subgroup. These results show that Roystonea regia is a new host for the aster yellows phytoplasma (16SrI). This is the first report on the presence of 16SrI phytoplasma on Royal Palm trees in Malaysia.  相似文献   

12.
Symptoms suggestive of phytoplasma diseases were observed in infected sweet cherry trees growing in the central regions of Iran. Phytoplasmas were detected in symptomatic trees by the nested polymerase chain reaction (nested PCR) using phytoplasma universal primer pairs (P1/Tint, PA2F/R, R16F2/R2 and NPA2F/R). Restriction fragment length polymorphism analyses of 485 bp DNA fragments amplified in nested PCR revealed that different phytoplamas were associated with infected trees. Sequence analyses of phytoplasma 16S rRNA gene and 16S-23S intergenic spacer region indicated that the phytoplasmas related to ' Ca. Phytoplasma asteris ' and peanut WB group infect sweet cherry trees in these regions. This is the first report of the presence of phytoplasmas related to ' Ca. Phytoplasma asteris' and peanut WB group in sweet cherry trees.  相似文献   

13.
Severe growth abnormalities, including leaf yellowing, sprout proliferation and flower virescence and phyllody, were found on Brassica rapa subsp. pekinensis plants in Poland. The presence of phytoplasma in naturally infected plants was demonstrated by polymerase chain reaction assay employing phytoplasma universal P1/P7 followed by R16F2n/R16R2 primer pairs. The detected phytoplasma was identified using restriction fragment length polymorphism analysis (RFLP) of the 16S rRNA gene fragment with AluI, HhaI, MseI and RsaI endonucleases. After enzymatic digestion, all tested samples showed restriction pattern similar to that of ‘Candidatus phytoplasma asteris’. Nested PCR‐amplified products, obtained with primers R16F2n/R16R2, were sequenced. Sequences of the 16S rDNA gene fragment of analysed phytoplasma isolates were nearly identical. They revealed high nucleotide sequence identity (>98%) with corresponding sequences of other phytoplasma isolates from subgroup 16SrI‐B, and they were classified as members of ‘Candidatus phytoplasma asteris’. This is the first report of the natural occurrence of phytoplasma‐associated disease in plants of Chinese cabbage.  相似文献   

14.
During field surveys conducted in northern Jordan from June to November 2020, phytoplasma-like symptoms, including leaf yellowing/reddening and rolling, little leaf and witches' broom were observed in pomegranate. Disease incidence in 22 surveyed orchards ranged from 30% to 65%. Nested PCR-based amplification of 16S rRNA gene detected phytoplasmas in 17% of collected symptomatic pomegranate trees. Amplicon nucleotide sequence analyses allowed attributing the detected phytoplasmas to ‘Candidatus Phytoplasma solani’, ‘Ca. P. aurantifolia’, ‘Ca. P. asteris’ and ‘Ca. P. ulmi’. These phytoplasmas were found in plants showing specific symptoms and differentially distributed in the considered locations. Additionally, three cicadellids (Macrosteles sexnotatus, Cicadulina bipunctata and Psammotettix striatus) and two non-crop plants (Plantago major and Capsicum annuum) resulted hosting ‘Ca. P. asteris’ strains, and one cicadellid (Balclutha incisa) was carrying a ‘Ca. P. solani’ strain. A new pomegranate disease complex associated with multiple phytoplasmas, including ‘Ca. P. aurantifolia’ and ‘Ca. P. ulmi’, never reported before in this host plant, is described here. Moreover, preliminary indications are provided on its possible epidemiology in Jordan, involving two putative insect vectors (M. sexnotatus, B. incisa) first reported in the Country.  相似文献   

15.
Stunted European hazel (Corylus avellana L.) plants showing leaf yellowing were observed in south‐eastern Poland. Phytoplasma‐specific primers P1/P7 and R16F2n/R16R2, as well as primers specific for aster yellows (16SrI), X‐disease (16SrIII) and apple proliferation (16SrX) groups were singly used in nested polymerase chain reaction (PCR) to amplify the 16S rDNA from 22 symptomatic and asymptomatic hazel plants. Restriction fragment length polymorphism with MseI, HhaI, RsaI and BfaI enzymes of the 16S rRNA gene fragments amplified with the primers R16F2n/R16R2 from three symptomatic hazel plants of cvs Katalonski, Webba and Halle revealed patterns identical to those from the AY1 strain related to ‘Candidatus Phytoplasma asteris’. The nucleotide sequence analysis confirmed this result. This is the first report of the natural occurrence of ‘Ca. P. asteris’ in European hazel in Poland.  相似文献   

16.
Suspected phytoplasma and virus‐like symptoms of little leaf, yellow mosaic and witches’ broom were recorded on soya bean and two weed species (Digitaria sanguinalis and Parthenium hysterophorus), at experimental fields of Indian Agricultural Research Institute, New Delhi, India, in August–September 2013. The phytoplasma aetiology was confirmed in symptomatic soya bean and both the weed species by direct and nested PCR assays with phytoplasma‐specific universal primer pairs (P1/P6 and R16F2n/R16R2n). One major leafhopper species viz. Empoasca motti Pruthi feeding on symptomatic soya bean plants was also found phytoplasma positive in nested PCR assays. Sequencing BLASTn search analysis and phylogenetic analysis revealed that 16Sr DNA sequences of phytoplasma isolates of soya bean, weeds and leafhoppers had 99% sequence identity among themselves and were related to strains of ‘Candidatus Phytoplasma asteris’. PCR assays with Mungbean yellow mosaic India virus (MYMIV) coat‐protein‐specific primers yielded an amplicon of approximately 770 bp both from symptomatic soya bean and from whiteflies (Bemisia tabaci) feeding on soya bean, confirmed the presence of MYMIV in soya bean and whitefly. Hence, this study suggested the mixed infection of MYMIV and ‘Ca. P. asteris’ with soya bean yellow leaf and witches’ broom syndrome. The two weed species (D. sanguinalis and P. hysterophorus) were recorded as putative alternative hosts for ‘Ca. P. asteris’ soya bean Indian strain. However, the leafhopper E. motti was recorded as putative vector for the identified soya bean phytoplasma isolate, and the whitefly (B. tabaci) was identified as vector of MYMIV which belonged to Asia‐II‐1 genotype.  相似文献   

17.
Grindelia robusta, a perennial herb, contains an essential oil that is used as an antitussive, sedative, and analgesic agent. During the spring of 2007, ‘Candidatus Phytoplasma asteris’‐related phytoplasmas were identified in plants showing virescence and phyllody symptoms. The qualitative and quantitative composition of the oil of healthy and infected plants was compared by gas chromatography/mass spectrometry. Samples from six symptomatic and five asymptomatic plants tested by nested PCR followed by RFLP analyses confirmed the presence of ‘Ca. P. asteris’ in all symptomatic samples. The oils from healthy and infected plants, obtained by steam distillation, contained 42 components; that of healthy plants contained a higher concentration of monoterpenes, especially limonene and bornyl acetate, which were nearly 50% higher.  相似文献   

18.
Phytoplasma classification established using 16S ribosomal groups and ‘Candidatus Phytoplasma’ taxon are mainly based on the 16S rDNA properties and do not always provide molecular distinction of the closely related strains such as those in the aster yellows group (16SrI or ‘Candidatus Phytoplasma asteris'‐related strains). Moreover, because of the highly conserved nature of the 16S rRNA gene, and of the not uncommon presence of 16S rDNA interoperon sequence heterogeneity, more variable single copy genes, such as ribosomal protein (rp), secY and tuf, were shown to be suitable for differentiation of closely related phytoplasma strains. Specific amplification of fragments containing phytoplasma groEL allowed studying its variability in 27 ‘Candidatus Phytoplasma asteris'‐related strains belonging to different 16SrI subgroups, of which 11 strains were not studied before and 8 more were not studied on other genes than 16S rDNA. The restriction fragment length polymorphism (RFLP) analyses of the amplified fragments confirmed differentiation among 16SrI‐A, I‐B, I‐C, I‐F and I‐P subgroups, and showed further differentiation in strains assigned to 16SrI‐A, 16SrI‐B and 16SrI‐C subgroups. However, analyses of groEL gene failed to discriminate strains in subgroups 16SrI‐L and 16SrI‐M (described on the basis of 16S rDNA interoperon sequence heterogeneity) from strains in subgroup 16SrI‐B. On the contrary, the 16SrI unclassified strain ca2006/5 from carrot (showing interoperon sequence heterogeneity) was differentiable on both rp and groEL genes from the strains in subgroup 16SrI‐B. These results indicate that interoperon sequence heterogeneity of strains AY2192, PRIVA (16SrI‐L), AVUT (16SrI‐M) and ca2006/5 resulted in multigenic changes – one evolutionary step further – only in the latter case. Phylogenetic analyses carried out on groEL are in agreement with 16Sr, rp and secY based phylogenies, and confirmed the differentiation obtained by RFLP analyses on groEL amplicons.  相似文献   

19.
Apple proliferation (AP) is an important disease and is prevalent in several European countries. The causal agent of AP is ‘Candidatus Phytoplasma mali’ (‘Ca. Phytoplasma mali’). In this work, isolates of ‘Ca. Phytoplasma mali’ were detected and characterized through polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analyses of 16S rRNA gene and non‐ribosomal DNA fragment. The presence of three AP subtypes (AT‐1, AT‐2 and AP‐15) was identified in 31 symptomatic apple trees and two samples each constituted by a pool of five insects, collected in north‐western Italy, where AT‐1 is a dominant subtype. Subsequent nucleotide sequence analysis of the PCR‐amplified 1.8 kb (P1/P7) fragment, containing the 16S rDNA, the 16S–23S intergenic ribosomal region and the 5′‐end of the 23S rDNA, revealed the presence of at least two phytoplasmal genetic lineages within the AT‐1 subtype, designed AT‐1a and AT‐1b. Moreover, in silico single nucleotide polymorphism (SNP) analysis based on 16S rDNA sequence can differentiate AT‐1 subtype from AT‐2 and AP‐15 subtypes. Our data showed a high degree of genetic diversity among ‘Ca. Phytoplasma mali’ population in north‐western Italy and underlined the possible use of the 16S rDNA analysis for the identification and the geographical origin assignation of isolates of AP phytoplasma. Molecular markers on 16S rDNA, here identified, could be useful for studying the epidemiology of AP disease.  相似文献   

20.
During a survey in a limited area of the Shanxi province in China, phytoplasma symptoms were observed on woody plants such as Chinese scholar tree, apple, grapevine and apricot. The polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analyses on the phytoplasma 16S ribosomal gene confirmed that symptomatic samples from all these species were infected by phytoplasmas. The molecular characterization of the pathogen, performed also with sequencing of polymerase chain reaction amplified 16S rDNA, showed that the phytoplasmas detected in all plant species tested are closely related with stolbur, but two samples from a Chinese scholar tree were infected with phytoplasmas related to ‘Candidatus Phytoplasma japonicum’. The presence of RFLP polymorphism was found in the 16S rDNA amplicons with three of the six enzymes employed in the majority of phytoplasma strains studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号