首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Mosquitoes are insects of interest because several species vector disease‐causing pathogens to humans and other vertebrates. We previously reported that mosquitoes from long‐term laboratory cultures require living bacteria in their gut to develop, but development does not depend on particular species of bacteria. Here, we focused on three distinct but interrelated areas of study to better understand the role of bacteria in mosquito development by studying field and laboratory populations of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from the southeastern United States. Sequence analysis of bacterial 16S rRNA gene amplicons showed that bacterial community composition differed substantially in larvae from different collection sites, whereas larvae from the same site shared similarities. Although previously unknown to be infected by Wolbachia, results also indicated that Ae. aegypti from one field site hosted a dual infection. Regardless of collection site or factors like Wolbachia infection, however, each mosquito species required living bacteria in their digestive tract to develop. Results also identified several concerns in using antibiotics to eliminate the bacterial community in larvae in order to study its developmental consequences. Altogether, our results indicate that several mosquito species require living bacteria for development. We also hypothesize these species do not rely on particular bacteria because larvae do not reliably encounter the same bacteria in the aquatic habitats they develop in.  相似文献   

2.
Insect–symbiont interactions are known to play key roles in host functions and fitness. The common insect endosymbiont Wolbachia can reduce the ability of several human pathogens, including arboviruses and the malaria parasite, to replicate in insect hosts. Wolbachia does not naturally infect Aedes aegypti, the primary vector of dengue virus, but transinfected Ae. aegypti have antidengue virus properties and are currently being trialled as a dengue biocontrol strategy. Here, we assess the impact of Wolbachia infection of Ae. aegypti on the microbiome of wild mosquito populations (adults and larvae) collected from release sites in Cairns, Australia, by profiling the 16S rRNA gene using next‐generation sequencing. Our data indicate that Wolbachia reduces the relative abundance of a large proportion of bacterial taxa in Ae. aegypti adults, that is in accordance with the known pathogen‐blocking effects of Wolbachia on a variety of bacteria and viruses. In adults, several of the most abundant bacterial genera were found to undergo significant shifts in relative abundance. However, the genera showing the greatest changes in relative abundance in Wolbachia‐infected adults represented a low proportion of the total microbiome. In addition, there was little effect of Wolbachia infection on the relative abundance of bacterial taxa in larvae, or on species diversity (accounting for species richness and evenness together) detected in adults or larvae. These results offer insight into the effects of Wolbachia on the Ae. aegypti microbiome in a native setting, an important consideration for field releases of Wolbachia into the population.  相似文献   

3.
Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae) are highly anthropophilic mosquito species and potential vectors of dengue and yellow fever. The location of suitable sites for oviposition requires a set of visual, tactile, and olfactory cues that influence females before they lay their eggs. In this study, the effect of n‐heneicosane, a recognized oviposition pheromone of Ae. aegypti, on the olfactory receptors of the antennae of Ae. aegypti and Ae. albopictus was studied using electroantennographic detection coupled to gas chromatography (GC‐EAD). A significant electroantennographic response to n‐heneicosane in adult females of both mosquito species was observed. In addition, gravid Ae. albopictus females laid more eggs in substrate treated with n‐heneicosane at 0.1, 1, or 10 p.p.m. than in the control, denoting oviposition attractancy. Conversely, at 30, 50, 100, and 200 p.p.m., more eggs were laid in the control substrate, indicating oviposition repellency. Analysis of the larval cuticle by GC and mass spectrometry confirmed the presence of n‐heneicosane in the cuticles of Ae. albopictus larvae. The species‐specific role of n‐heneicosane as an oviposition pheromone in Ae. aegypti and its significance as a behaviour modifier of Ae. albopictus in breeding sites is discussed.  相似文献   

4.
Host seeking by the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is mainly guided by volatile chemicals present in human odours. The skin microbiota plays an important role in the production of these volatiles, and skin bacteria grown on agar plates attract An. gambiae s.s. in the laboratory. In this study, the attractiveness of volatiles produced by human skin bacteria to An. gambiae s.s. was tested in laboratory, semi‐field, and field experiments to assess these effects in increasing environmental complexity. A synthetic blend of 10 compounds identified in the headspace of skin bacteria was also tested for its attractiveness. Carbon dioxide significantly increased mosquito catches of traps baited with microbial volatiles in the semi‐field experiments and was therefore added to the field traps. Traps baited with skin bacteria caught significantly more An. gambiae s.s. than control traps, both in the laboratory and semi‐field experiments. Traps baited with the synthetic blend caught more mosquitoes than control traps in the laboratory experiments, but not in the semi‐field experiments. Although bacterial volatiles increased mosquito catches in the field study, trapping several mosquito vector species, these effects were not significant for An. gambiae s.l. It is concluded that volatiles from skin bacteria affect mosquito behaviour under laboratory and semi‐field conditions and, after fine tuning, have the potential to be developed as odour baits for mosquitoes.  相似文献   

5.
Many of the generalizations made about mosquito behavior and physiology are based on the extensive research on the yellow fever mosquito, Aedes aegypti (L.). However, sufficient differences exist among the numerous species of mosquitoes that make many of these generalizations unwarranted. Some of the specific differences between Ae. aegypti and other mosquito species, particularly the important malaria vector Anopheles gambiae, are discussed.  相似文献   

6.
During the dry season in February, 2010 and the wet season in September, 2011 we sampled mosquito larvae and eggs from treeholes of seven native hardwood species and the husks of Saba senegalensis in 18 sites in the PK‐10 forest in southeastern Senegal. Larvae were reared to adults for species identification. In the dry season, we recovered 408 Aedes mosquitoes belonging to seven species. Aedes aegypti s.l. comprised 42.4% of the collection, followed by Ae. unilineatus (39%). In contrast to reports from East Africa, both Ae. aegypti aegypti and Ae. aegypti formosus were recovered, suggesting that both subspecies survive the dry season in natural larval habitats in West Africa. In the wet season, 455 mosquitoes were collected but 310 (68.1%) were the facultatively predaceous mosquito Eretmapodites chrysogaster. The remaining 145 mosquitoes consisted of ten Aedes species. Aedes aegypti s.l. comprised 55.1% of these, followed by Ae. apicoargenteus (15.2%) and Ae. cozi (11.7%). Similar to East Africa, most (90%) of Ae. aegypti s.l. in the wet season were subspecies formosus.  相似文献   

7.
The host preferences of the anthropophilic mosquito species in the Anopheles gambiae complex (Diptera: Culicidae) are mediated by skin bacterial volatiles. However, it is not known whether these mosquitoes respond differentially to skin bacterial volatiles from non‐human host species. In this study, the responses of two malaria mosquito species in the An. gambiae complex, Anopheles gambiae s.s. (hereafter, An. gambiae) and Anopheles arabiensis, with different host preferences, to volatiles released from skin bacteria were tested. Skin bacteria collected from human, cow and chicken skin significantly increased trap catches; traps containing bacteria collected from human skin caught the highest proportions of An. gambiae and An. arabiensis. Traps with bacteria of human origin caught a significantly higher proportion of An. gambiae than of An. arabiensis, whereas bacterial volatiles from the chicken attracted significantly higher numbers of An. arabiensis than of An. gambiae. Additionally, An. gambiae showed a specialized response to volatiles from four specific bacteria, whereas An. arabiensis responded equally to all species of bacteria tested. Skin bacterial volatiles may therefore play important roles in guiding mosquitoes with different host preferences. The identification of these bacterial volatiles can contribute to the development of an odour blend that attracts mosquitoes with different host preferences.  相似文献   

8.
Dengue viruses are transmitted to humans through the bites of infected female aedine mosquitoes. Differences in the composition and structure of bacterial communities in the midguts of mosquitoes may affect the vector's ability to transmit the disease. To investigate and analyse the role of midgut bacterial communities in viral transmission, midgut bacteria from three species, namely Stegomyia aegypti (= Aedes aegypti), Fredwardsius vittatus (= Aedes vittatus) and Stegomyia albopicta (= Aedes albopictus) (all: Diptera: Culicidae), from dengue‐endemic and non‐endemic areas of Rajasthan, India were compared. Construction and analyses of six 16S rRNA gene libraries indicated that Serratia spp.‐related phylotypes dominated all clone libraries of the three mosquito species from areas in which dengue is not endemic. In dengue‐endemic areas, phylotypes related to Aeromonas, Enhydrobacter spp. and uncultivated bacterium dominated the clone libraries of S. aegypti, F. vittatus and S. albopicta, respectively. Diversity indices analysis and real‐time TaqMan polymerase chain reaction assays showed bacterial diversity and abundance in the midguts of S. aegypti to be higher than in the other two species. Significant differences observed among midgut bacterial communities of the three mosquito species from areas in which dengue is and is not endemic, respectively, may be related to the vectorial capacity of mosquitoes to carry dengue viruses and, hence, to the prevalence of disease in some areas.  相似文献   

9.
The native rock pool mosquito, Aedes atropalpus (Coquillett), and the invasive Aedes japonicus (Theobald) have been found in many types of artificial and natural containers throughout North America. Little is known about the ecology of these two species in habitats where they co‐occur, although multiple investigators have reported the decline of the native species concurrent with the introduction and spread of the invasive species. Here we report the results of riverine rock pool collections (n=503) in the southern Appalachian Mountains between 2009‐2015. Surface water temperatures strongly predicted the presence of each species across a broad range of observed temperatures (11‐39.8° C). For every unit of increase in temperature (°C) the odds of collecting Ae. atropalpus larvae increased by 0.34 while the odds of collecting Ae. japonicus larvae decreased by 0.28. No Ae. japonicus larvae or pupae were collected at temperatures greater than 36° C; however, immature Ae. atropalpus were found in rock pools with temperatures up to 39.8° C. In contrast, Ae. japonicus were highly abundant in cooler rock pools (<17° C) where Ae. atropalpus were infrequent or absent. Our findings suggest that in spite of the successful invasion by Ae. japonicus, Ae. atropalpus remains well established in the southern Appalachian Mountains. Given the strong correlation of temperature with the presence of the two species and the contrasting absence of each species at observed temperature extremes, the role of thermal conditions should be carefully explored in the context of other ecological factors likely influencing the range and abundance of these mosquitoes.  相似文献   

10.
Although mosquitoes are well‐known vectors of human and animal diseases, pathogens are only minor components of their total endogenous microbial communities. The midguts of many insects, including mosquitoes, contain diverse microbial communities. In this study, we used denaturing gradient gel electrophoresis to identify the diversity of bacteria in field‐collected adult female Culiseta melanura (Diptera: Culicidae) (Coquillett) and Coquillettidia perturbans (Diptera: Culicidae) (Walker). Few significant differences in bacterial fauna between the two mosquito species were found, but the results suggest that host life history may be a determinant of the endogenous bacterial communities in mosquitoes. In the present study, the dominant bacteria are frequently identified as major components of other mosquito species' microbial flora, suggesting the establishment of a stable association between the mosquitoes and the microbes after initial acquisition from the environment.  相似文献   

11.
《Biological Control》2007,40(3):465-473
The effects of Aedes Densovirus (AeDNV) infections on survival, fertility, fecundity and vertical transmission in Aedes aegypti (Diptera: Culicidae) were measured in laboratories in Kiev, Ukraine and Colorado, USA and incorporated into a predictive model of the effects of AeDNV on vector capacity. Adult lifespan and daily survival were reduced in AeDNV infected mosquitoes. This effect was dependent on the dose of the virus. Infected females had decreased fecundity. The oviposition rate was less in infected females and the hatch rate declined in eggs laid by infected females. The amounts of AeDNV in infected females and the infection rate of their offspring were measured with real-time PCR. The average filial transmission rate was ∼70% and larval infection rates from infected females varied between 42 and 62%. Vertically infected larvae, and individual eggs contained ∼1 × 105 AeDNV genome equivalents (geq). Modeling the effects of AeDNV infection on Ae. aegypti populations suggested a large decrease in the numbers of eggs, larvae, pupae, and adults arising from infected mothers and suggested that AeDNV treatment of larvae could cause up to a 76% reduction of infectious mosquito days.  相似文献   

12.
The effects of structure, concentration and composition of host‐odour plumes on catch of female Anopheles gambiae Giles sensu stricto and Aedes aegypti (L.) (Diptera: Culicidae) were investigated in a dual‐choice olfactometer. We demonstrate that the fine‐scale structure of host‐odour plumes modulates capture of An. gambiae and Ae. aegypti. In both species homogeneous skin‐odour plumes result in trap entry, whereas homogeneous CO2 plumes reduce trap catch. Reduced trap catch also result from combining skin odour with a homogeneous CO2 plume. Trap capture rates in homogeneous CO2 plumes were concentration‐dependent and differed between the two species. Electric nets placed in front of the trap entrances intercepted mosquitoes before they could enter the traps. This showed that An. gambiae flew along CO2 plumes, but did not enter the traps. Survivorship analysis of the trap‐entry times of Ae. aegypti indicated interactions between the time until capture and treatment. The assay's duration therefore can alter the distribution in a dual‐choice olfactometer.  相似文献   

13.
The reproductive success of Aedes aegypti (L.) (Diptera: Culicidae) is strongly dependent on the availability of carbohydrates in the environment and the ability of the mosquitoes to locate them. The most significant source of carbohydrates for mosquitoes is nectar from flowering plants, which mosquitoes locate by their volatile compounds. The aim of our work was to identify plant volatile compounds that elicit a behavioral response in Ae. aegypti, which may be included in a mosquito trap for surveillance and/or control purposes. Landing‐preference bioassays were performed with plants of three species—Plectranthus neochilus Schltr. (Lamiaceae), Tagetes patula L. (Asteraceae), and Lobularia maritima (L.) Desv. (Brassicaceae)—as lures and toxic sugar baits as landing markers. Mosquitoes landed only on L. maritima. Freshly cut inflorescences of L. maritima elicited a positive flight response in both sexes of mosquitoes. The analysis of the compounds in the static head space of L. maritima was performed by solid phase microextraction (SPME). Of the single volatile compounds tested, acetophenone was attractive and 1‐octanol caused a flight aversive response. These findings are relevant as there are no reported plant‐derived compounds attractive to A. aegypti. As both the male and female mosquitoes sugar feed, traps baited with plant odors are able to lure the whole adult population, making it an interesting option for including in future mosquito surveillance traps.  相似文献   

14.
Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long‐range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human‐aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.  相似文献   

15.
Vector‐borne diseases are a major health burden, yet factors affecting their spread are only partially understood. For example, microbial symbionts can impact mosquito reproduction, survival, and vectorial capacity, and hence affect disease transmission. Nonetheless, current knowledge of mosquito‐associated microbial communities is limited. To characterize the bacterial and eukaryotic microbial communities of multiple vector species collected from different habitat types in disease endemic areas, we employed next‐generation 454 pyrosequencing of 16S and 18S rRNA amplicon libraries, also known as metabarcoding. We investigated pooled whole adult mosquitoes of three medically important vectors, Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus, collected from different habitats across central Thailand where we previously characterized mosquito diversity. Our results indicate that diversity within the mosquito microbiota is low, with the majority of microbes assigned to one or a few taxa. Two of the most common eukaryotic and bacterial genera recovered (Ascogregarina and Wolbachia, respectively) are known mosquito endosymbionts with potentially parasitic and long evolutionary relationships with their hosts. Patterns of microbial composition and diversity appeared to differ by both vector species and habitat for a given species, although high variability between samples suggests a strong stochastic element to microbiota assembly. In general, our findings suggest that multiple factors, such as habitat condition and mosquito species identity, may influence overall microbial community composition, and thus provide a basis for further investigations into the interactions between vectors, their microbial communities, and human‐impacted landscapes that may ultimately affect vector‐borne disease risk.  相似文献   

16.
The impact of the presence of larval mosquito pathogens with potential for biological control on oviposition choice was evaluated for three mosquito species/pathogen pairs present in Florida. These included Aedes aegypti infected with Edhazardia aedis, Aedes albopictus infected with Vavraia culicis, and Culex quinquefasciatus infected with Culex nigripalpus nucleopolyhedrovirus (CuniNPV). Two‐choice oviposition bioassays were performed on each host and pathogen species with one oviposition cup containing infected larvae and the other cup containing uninfected larvae (control). Both uninfected and E. aedis‐infected female Ae. aegypti laid significantly fewer eggs in oviposition cups containing infected larvae. Uninfected gravid female Ae. albopictus and Cx. quinquefasciatus oviposited equally in cups containing uninfected larvae or containing larvae infected with V. culicis or CuniNPV, respectively. Gravid female Ae. albopictus infected with V. culicis did not display ovarian development and did not lay eggs. The decreased oviposition by gravid Ae. aegypti in containers containing E. aedis‐infected larvae may indicate that the infected larvae produce chemicals deterring oviposition.  相似文献   

17.
Mosquito‐borne diseases resulting from the expansion of two key vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), continue to challenge whole regions and continents around the globe. In recent years there have been human cases of disease associated with Chikungunya, dengue and Zika viruses. In Europe, the expansion of Ae. albopictus has resulted in local transmission of Chikungunya and dengue viruses. This paper considers the risk that Ae. aegypti and Ae. albopictus represent for the U.K. and details the results of mosquito surveillance activities. Surveillance was conducted at 34 points of entry, 12 sites serving vehicular traffic and two sites of used tyre importers. The most common native mosquito recorded was Culex pipiens s.l. (Diptera: Culicidae). The invasive mosquito Ae. albopictus was detected on three occasions in southern England (September 2016, July 2017 and July 2018) and subsequent control strategies were conducted. These latest surveillance results demonstrate ongoing incursions of Ae. albopictus into the U.K. via ground vehicular traffic, which can be expected to continue and increase as populations in nearby countries expand, particularly in France, which is the main source of ex‐continental traffic.  相似文献   

18.
The effects of Aedes Densovirus (AeDNV) infections on survival, fertility, fecundity and vertical transmission in Aedes aegypti (Diptera: Culicidae) were measured in laboratories in Kiev, Ukraine and Colorado, USA and incorporated into a predictive model of the effects of AeDNV on vector capacity. Adult lifespan and daily survival were reduced in AeDNV infected mosquitoes. This effect was dependent on the dose of the virus. Infected females had decreased fecundity. The oviposition rate was less in infected females and the hatch rate declined in eggs laid by infected females. The amounts of AeDNV in infected females and the infection rate of their offspring were measured with real-time PCR. The average filial transmission rate was 70% and larval infection rates from infected females varied between 42 and 62%. Vertically infected larvae, and individual eggs contained 1 × 105 AeDNV genome equivalents (geq). Modeling the effects of AeDNV infection on Ae. aegypti populations suggested a large decrease in the numbers of eggs, larvae, pupae, and adults arising from infected mothers and suggested that AeDNV treatment of larvae could cause up to a 76% reduction of infectious mosquito days.  相似文献   

19.
Invasion by mosquito vectors of disease may impact the distribution of resident mosquitoes, resulting in novel patterns of vectors and concomitant risk for disease. One example of such an impact is the invasion by Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] (Diptera: Culicidae) of North America and this species' interaction with Aedes aegypti L. (Stegomyia aegypti L). We hypothesized that Ae. aegypti would be found in urban, coastal areas that experience hotter and drier conditions, whereas Ae. albopictus would be more commonly found in suburban and rural areas that are cooler and wetter. In addition, we hypothesized that Ae. aegypti would be more abundant early in the wet season, whereas Ae. albopictus would be more abundant later in the wet season. Urban areas were drier, hotter and contained more Ae. aegypti than suburban or rural areas. Aedes aegypti was relatively more abundant early in the wet season, whereas Ae. albopictus was more abundant in both the late wet season and the dry season. The spatial patterns of inter‐ and intraspecific encounters between these species were also described. The distribution of these mosquitoes is correlated with abiotic conditions, and with temperature, humidity and the relative availability of rain‐filled containers. Understanding the ecological determinants of species distribution can provide insight into the biology of these vectors and important information for their appropriate control.  相似文献   

20.
Aedes albopictus (Diptera: Culicidae) distribution is bounded to a subtropical area in Argentina, while Aedes aegypti (Diptera: Culicidae) covers both temperate and subtropical regions. We assessed thermal and photoperiod conditions on dormancy status, development time and mortality for these species from subtropical Argentina. Short days (8 light : 16 dark) significantly increased larval development time for both species, an effect previously linked to diapause incidence. Aedes albopictus showed higher mortality than Ae. aegypti at 16 °C under long day treatments (16 light : 8 dark), which could indicate a lower tolerance to a sudden temperature decrease during the summer season. Aedes albopictus showed a slightly higher percentage of dormant eggs from females exposed to a short day, relative to previous research in Brazilian populations. Since we employed more hours of darkness, this could suggest a relationship between day‐length and dormancy intensity. Interestingly, local Ae. aegypti presented dormancy similar to Ae. albopictus, in accordance with temperate populations. The minimum dormancy in Ae. albopictus would not be sufficient to extend its bounded distribution. We believe that these findings represent a novel contribution to current knowledge about the ecophysiology of Ae. albopictus and Ae. aegypti, two species with great epidemiological relevance in this subtropical region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号