首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood parasites of the sub-genus Haemoproteus have been reported in seabirds, in particular in species in the Suliformes order. These parasites are transmitted by hippoboscid flies of the genus Olfersia; strong specificity has been suggested between the vector and its vertebrate host. We investigated the prevalence of Haemoproteus infection in Suliformes and hippoboscid flies in two oceanic islands of the Western Indian Ocean: Europa and Tromelin. In total, 209 blood samples were collected from great frigatebirds (Fregata minor), masked boobies (Sula dactylatra) and red-footed boobies (Sula sula). Forty-one hippoboscid flies were also collected from birds. Seventeen frigatebirds and one fly collected on Europa tested positive for the presence of Haemoproteus parasites by polymerase chain reaction. Phylogenetic analyses based on partial sequences of the Cytochrome b gene showed that parasites were closely related to Haemoproteus iwa reported from frigatebirds in the Pacific Ocean and in the Caribbean. Plasmodium was also detected in a frigatebird on Europa; however, its placement on the phylogenetic tree could not be resolved. We provide strong support for transmission of blood parasites in seabirds in the Western Indian Ocean and suggest that migrations between the Pacific and the Indian oceans could favor the large-scale distribution of Haemoproteus iwa in frigatebird populations.  相似文献   

2.
Tropical herbivorous insects are astonishingly diverse, and many are highly host‐specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host‐specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent‐wide analyses reveal – in all but one instance – that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use.  相似文献   

3.
Parasite host range can be influenced by physiological, behavioral, and ecological factors. Combining data sets on host–parasite associations with phylogenetic information of the hosts and the parasites involved can generate evolutionary hypotheses about the selective forces shaping host range. Here, we analyzed associations between the nest‐parasitic flies in the genus Philornis and their host birds on Trinidad. Four of ten Philornis species were only reared from one species of bird. Of the parasite species with more than one host bird species, P. falsificus was the least specific and P. deceptivus the most specific attacking only Passeriformes. Philornis flies in Trinidad thus include both specialists and generalists, with varying degrees of specificity within the generalists. We used three quantities to more formally compare the host range of Philornis flies: the number of bird species attacked by each species of Philornis, a phylogenetically informed host specificity index (Poulin and Mouillot's STD), and a branch length‐based STD. We then assessed the phylogenetic signal of these measures of host range for 29 bird species. None of these measures showed significant phylogenetic signal, suggesting that clades of Philornis did not differ significantly in their ability to exploit hosts. We also calculated two quantities of parasite species load for the birds – the parasite species richness, and a variant of the STD index based on nodes rather than on taxonomic levels – and assessed the signal of these measures on the bird phylogeny. We did not find significant phylogenetic signal for the parasite species load or the node‐based STD index. Finally, we calculated the parasite associations for all bird pairs using the Jaccard index and regressed these similarity values against the number of nodes in the phylogeny separating bird pairs. This analysis showed that Philornis on Trinidad tend to feed on closely related bird species more often than expected by chance.  相似文献   

4.
Laboratory and field experiments have demonstrated in many cases that malaria vectors do not feed randomly, but show important preferences either for infected or non‐infected hosts. These preferences are likely in part shaped by the costs imposed by the parasites on both their vertebrate and dipteran hosts. However, the effect of changes in vector behaviour on actual parasite transmission remains a debated issue. We used the natural associations between a malaria‐like parasite Polychromophilus murinus, the bat fly Nycteribia kolenatii and a vertebrate host the Daubenton's bat Myotis daubentonii to test the vector's feeding preference based on the host's infection status using two different approaches: 1) controlled behavioural assays in the laboratory where bat flies could choose between a pair of hosts; 2) natural bat fly abundance data from wild‐caught bats, serving as an approximation of realised feeding preference of the bat flies. Hosts with the fewest infectious stages of the parasite were most attractive to the bat flies that did switch in the behavioural assay. In line with the hypothesis of costs imposed by parasites on their vectors, bat flies carrying parasites had higher mortality. However, in wild populations, bat flies were found feeding more based on the bat's body condition, rather than its infection level. Though the absolute frequency of host switches performed by the bat flies during the assays was low, in the context of potential parasite transmission they were extremely high. The decreased survival of infected bat flies suggests that the preference for less infected hosts is an adaptive trait. Nonetheless, other ecological processes ultimately determine the vector's biting rate and thus transmission. Inherent vector preferences therefore play only a marginal role in parasite transmission in the field. The ecological processes rather than preferences per se need to be identified for successful epidemiological predictions.  相似文献   

5.
Vertebrate hosts differ in their level of parasite susceptibility and infestation. In avian broods, variation in susceptibility of nestlings to ectoparasites may be associated with non‐uniform distributions of parasites among brood mates, with parasites concentrating feeding on the most vulnerable hosts. The presence of a highly susceptible nestling in a brood can benefit the remaining young by reducing the parasite pressure they experience; however, from a parasite’s perspective, broods with fewer susceptible hosts may provide effectively fewer resources than broods of the same size containing a greater abundance of susceptible hosts, and this could limit the number of parasites that a host brood can sustain. To test whether variation in number of susceptible hosts affects the number of parasites in bird nests, we first examined the role of host sex and induced immunity (via methionine supplementation) on susceptibility of mountain bluebirds Sialia currucoides to parasitism by blow flies Protocalliphora spp. We then assessed the effect of variation in number of susceptible hosts on the number of parasites inhabiting the nest. Only females showed a benefit of methionine supplementation, gaining mass more rapidly following supplementation compared to males. This suggests that females are more susceptible to parasites in this system; this was further supported by parasite feeding trials, in which parasites extracted larger blood meals from female than male hosts. Finally, the abundance of parasites in nests was predicted by brood sex ratio: broods containing more female young harboured more parasites. Hence, within‐brood variation in host susceptibility to parasites can not only influence the costs of parasitism for individual nestlings, but may also have consequences for the size of parasite populations within nests. If patterns of maternal investment affect the abundance of nest‐dwelling parasites, these interactions may be important for understanding fitness consequences of maternal resource allocation in many vertebrate hosts.  相似文献   

6.
The parasitic relationship between a black fly, Simulium annulus, and the common loon (Gavia immer) has been considered one of the most exclusive relationships between any host species and a black fly species. To test the host specificity of this blood‐feeding insect, we made a series of bird decoy presentations to black flies on loon‐inhabited lakes in northern Wisconsin, U.S.A. To examine the importance of chemical and visual cues for black fly detection of and attraction to hosts, we made decoy presentations with and without chemical cues. Flies attracted to the decoys were collected, identified to species, and quantified. Results showed that S. annulus had a strong preference for common loon visual and chemical cues, although visual cues from Canada geese (Branta canadensis) and mallards (Anas platyrynchos) did attract some flies in significantly smaller numbers.  相似文献   

7.
Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasite‐induced immune response in a wild bird population. The recently introduced ectoparasitic nest fly Philornis downsi severely impacts the fitness of Darwin's finches and other land birds in the Galápagos Islands. An earlier study showed that female medium ground finches (Geospiza fortis) had P. downsi‐binding antibodies correlating with presumed variation in fly exposure over time. In the current study, we experimentally manipulated fly abundance to test whether the fly does, in fact, cause changes in antibody levels. We manipulated P. downsi abundance in nests and quantified P. downsi‐binding antibody levels of medium ground finch mothers, fathers, and nestlings. We also quantified host behaviors, such as preening, which can integrate with antibody‐mediated defenses against ectoparasites. Philornis downsi‐binding antibody levels were significantly higher among mothers at parasitized nests, compared to mothers at (fumigated) nonparasitized nests. Mothers with higher antibody levels tended to have fewer parasites in their nests, suggesting that antibodies play a role in defense against parasites. Mothers showed no behavioral changes that would enhance the effectiveness of the immune response. Neither adult males, nor nestlings, had P. downsi‐induced immunological or behavioral responses that would enhance defense against flies. None of the parasitized nests fledged any offspring, despite the immune response by mothers. Thus, this study shows that, while the immune response of mothers appeared to be defensive, it was not sufficient to rescue current reproductive fitness. This study further shows the importance of testing the fitness consequences of immune defenses, rather than assuming that such responses increase host fitness.  相似文献   

8.
Parasites exert numerous effects upon their hosts, including physiological and metabolic changes that can in turn influence various aspects of host life history. Using flow‐through respirometry, we investigated how infection intensity of an ectoparasitic mite (Macrocheles subbadius) affects the respiratory rate (CO2 production) of its host Drosophila nigrospiracula. Mean fly respiratory rate increased with infection intensity with the strongest effect, a 40% increase relative to uninfected controls, occurring with three mites attached. We also verified the causal relationship between elevated respiration rate and mite attachment by examining changes in host respiration before and after mite exposure. We found that the rate of CO2 production increased by 11% for individual flies following parasite attachment. Fly locomotor activity was not significantly different between infected and uninfected individuals. Metabolic rate of hosts increased as a result of infection in an intensity dependent manner and was not simply due to changes in host activity. These results demonstrate that parasites can have a significant influence on the energy requirements of their host, which may account for the parasite‐mediated loss in host fitness.  相似文献   

9.
Understanding the factors that determine the realized and potential distribution of a species requires knowledge of abiotic, physiological, limitations as well as ecological interactions. Fungi of the order Laboulbeniales specialize on arthropods and are typically thought to be highly specialized on a single species or closely related group of species. Because infections are almost exclusively transmitted through direct contact between the hosts, the host ecology, to a large extent, determines the distribution and occurrence of the fungus. We examined ~20,000 fruit flies (Diptera: Dacinae) collected in Malaysia, Sulawesi, Australia, and the Solomon Islands between 2017 and 2019 for fungal infections and found 197 infected flies across eight different Bactrocera species. Morphology and 1,363 bps of small subunit (18S) DNA sequences both support that the infections are from a single polyphagous fungal species Stigmatomyces dacinus—a known ectoparasite of these fruit flies. This leads to the question: why is S. dacinus rare, when its hosts are widespread and abundant? In addition, the hosts are all Bactrocera, a genus with ~480 species, but 37 Bactrocera species found sympatric with the hosts were never infected. Host‐selection does not appear to be phylogenetically correlated. These results suggest a hidden complexity in how different, but closely related, host species vary in their susceptibility, which somehow limits the abundance and dispersal capability of the fungus.  相似文献   

10.
Behavioural adaptations of hosts to their parasites form an important component of the evolutionary dynamics of host–parasite interactions. As mushroom‐feeding Drosophila can tolerate deadly mycotoxins, but their Howardula nematode parasites cannot, we asked how consuming the potent mycotoxin α‐amanitin has affected this host–parasite interaction. We used the fly D. putrida and its parasite H. aoronymphium, which is both highly virulent and at high prevalence in some populations, and investigated whether adult flies utilize food with toxin to prevent infection in the next generation or consume the toxin to reduce the virulence of an already established infection. First, we found that uninfected females did not prefer to eat or lay their eggs on toxic food, indicating that selection has not acted on the flies to alter their behaviour towards α‐amanitin to prevent their offspring from becoming infected by Howardula. However, we cannot rule out that flies use an alternate cue that is associated with toxin presence in the wild. Second, we found that infected females did not prefer to eat food with α‐amanitin and that consuming α‐amanitin did not cure or reduce the virulence of the parasite in adults that were already infected. In sum, our results indicate there are no direct effects of eating α‐amanitin on this host–parasite interaction, and we suggest that toxin tolerance is more likely maintained by selection due to competition for resources than as a mechanism to avoid parasite infection or to reduce the virulence of infection.  相似文献   

11.
Coevolution between hosts and parasites may promote the maintenance of genetic variation in both antagonists by negative frequency‐dependence if the host–parasite interaction is genotype‐specific. Here we tested for specificity in the interaction between parasitoids (Lysiphlebus fabarum) and aphid hosts (Aphis fabae) that are protected by a heritable defensive endosymbiont, the γ‐proteobacterium Hamiltonella defensa. Previous studies reported a lack of genotype specificity between unprotected aphids and parasitoids, but suggested that symbiont‐conferred resistance might exhibit a higher degree of specificity. Indeed, in addition to ample variation in host resistance as well as parasitoid infectivity, we found a strong aphid clone‐by‐parasitoid line interaction on the rates of successful parasitism. This genotype specificity appears to be mediated by H. defensa, highlighting the important role that endosymbionts can play in host–parasite coevolution.  相似文献   

12.
Host shifts by specialist insects can lead to reproductive isolation between insect populations that use different hosts, promoting diversification. When both a phytophagous insect and its ancestrally associated parasitoid shift to the same novel host plant, they may cospeciate. However, because adult parasitoids are free living, they can also colonize novel host insects and diversify independent of their ancestral host insect. Although shifts of parasitoids to new insect hosts have been documented in ecological time, the long‐term importance of such shifts to parasitoid diversity has not been evaluated. We used a genus of flies with a history of speciation via host shifting (Rhagoletis [Diptera: Tephritidae]) and three associated hymenopteran parasitoid genera (Diachasma, Coptera and Utetes) to examine cophylogenetic relationships between parasitoids and their host insects. We inferred phylogenies of Rhagoletis, Diachasma, Coptera and Utetes and used distance‐based cophylogenetic methods (ParaFit and PACo) to assess congruence between fly and parasitoid trees. We used an event‐based method with a free‐living parasitoid cost model to reconstruct cophylogenetic histories of each parasitoid genus and Rhagoletis. We found that the current species diversity and host–parasitoid associations between the Rhagoletis flies and parasitoids are the primary result of ancient cospeciation events. Parasitoid shifts to ancestrally unrelated hosts primarily occur near the branch tips, suggesting that host shifts contribute to recent parasitoid species diversity but that these lineages may not persist over longer time periods. Our analyses also stress the importance of biologically informed cost models when investigating the coevolutionary histories of hosts and free‐living parasitoids.  相似文献   

13.
Strong selection on parasites, as well as on hosts, is crucial for fueling coevolutionary dynamics. Selection will be especially strong if parasites that encounter resistant hosts are destroyed and diluted from the local environment. We tested whether spores of the bacterial parasite Pasteuria ramosa were passed through the gut (the route of infection) of their host, Daphnia magna, and whether passaged spores remained viable for a “second chance” at infecting a new host. In particular, we tested if this viability (estimated via infectivity) depended on host genotype, whether or not the genotype was susceptible, and on initial parasite dose. Our results show that Pasteuria spores generally remain viable after passage through both susceptible and resistant Daphnia. Furthermore, these spores remained infectious even after being frozen for several weeks. If parasites can get a second chance at infecting hosts in the wild, selection for infection success in the first instance will be reduced. This could also weaken reciprocal selection on hosts and slow the coevolutionary process.  相似文献   

14.
Background

Tsetse fly-borne trypanosomiasis remains a significant problem in Africa despite years of interventions and research. The need for new strategies to control and possibly eliminate trypanosomiasis cannot be over-emphasized. Entomopathogenic fungi (EPF) infect their hosts through the cuticle and proliferate within the body of the host causing death in about 3–14 days depending on the concentration. During the infection process, EPF can reduce blood feeding abilities in hematophagous arthropods such as mosquitoes, tsetse flies and ticks, which may subsequently impact the development and transmission of parasites. Here, we report on the effects of infection of tsetse fly (Glossina fuscipes fuscipes) by the EPF, Metarhizium anisopliae ICIPE 30 wild-type strain (WT) and green fluorescent protein-transformed strain (GZP-1) on the ability of the flies to harbor and transmit the parasite, Trypanosoma congolense.

Results

Teneral flies were fed T. congolense-infected blood for 2 h and then infected using velvet carpet fabric impregnated with conidia covered inside a cylindrical plastic tube for 12 h. Control flies were fed with T. congolense-infected blood but not exposed to the fungal treatment via the carpet fabric inside a cylindrical plastic tube. Insects were dissected at 2, 3, 5 and 7 days post-fungal exposure and the density of parasites quantified. Parasite load decreased from 8.7 × 107 at day 2 to between 8.3 × 104 and 1.3 × 105 T. congolense ml− 1 at day 3 post-fungal exposure in fungus-treated (WT and GZP-1) fly groups. When T. congolense-infected flies were exposed to either fungal strain, they did not transmit the parasite to mice whereas control treatment flies remained capable of parasite transmission. Furthermore, M. anisopliae-inoculated flies which fed on T. congolense-infected mice were not able to acquire the parasites at 4 days post-fungal exposure while parasite acquisition was observed in the control treatment during the same period.

Conclusions

Infection of the vector G. f. fuscipes by the entomopathogenic fungus M. anisopliae negatively affected the multiplication of the parasite T. congolense in the fly and reduced the vectorial capacity to acquire or transmit the parasite.

  相似文献   

15.
Host–parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing‐mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing‐mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing‐mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits.  相似文献   

16.
The process responsible for the formation of genetically distinct populations associated with different host species is known as host-associated differentiation (HAD). Many insect parasites of plants have been shown to exhibit HAD but there have been fewer studies of HAD in parasites of vertebrate animals. Previous to this study, HAD has been documented in at least three species of ticks. The American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae) was chosen as the focal species for this study due to its importance as the vector of tularemia and Rocky Mountain spotted fever. Previous population genetic studies of this tick found the existence of various haplotypes but the tick’s host origins were unknown. In this study, ticks were collected from 15 vertebrate host species to test for HAD using single nuclear polymorphisms (SNPs). In total, 136 individual D. variabilis ticks were sequenced using ddRADseq. Genomic evidence was found to point to D. variabilis exhibiting HAD on eight different hosts. A STRUCTURE analysis showed that the highest posterior probability was obtained with a population size of eight and these populations correlated with host species. Pairwise FST values were as high as 0.622 and indicated a range of genetic distinction between host groups. In addition, ticks collected from the vegetation appeared as one homogenous distinct genotype suggesting the existence of nidicolous (nest dwelling) and non-nidicolous genotypes. The identification of host race formation occurring in this animal parasite has implications for the understanding of D. variabilis pathogen transmission and targeted control efforts because genetically distinct populations can differ in traits relevant to these applications.  相似文献   

17.
Streblidae and Nycteribiidae are families of bloodsucking flies that parasitize bats exclusively. We studied the community of these flies in a Cerrado area in the Central-West Brazil. We captured 708 bats over 17 nights from October 2012 to March 2013. Forty-five per cent of the hosts were parasitized by 836 specimens of bat flies of 22 species. The most abundant flies were Trichobius joblingi on Carollia perspicillata, followed by Megistopoda aranea on Artibeus planirostris, and Strebla guajiro on C. perspicillata. All bat flies showed a high level of specificity for their hosts. Trichobius joblingi was the bat fly with the highest prevalence (80%) and mean intensity of infestation (3.5) on hosts with a representative sample size (n > 20). This result is likely related to the type of roosting (cavity) used by C. perspicillata, primary host of this fly species. Anoura caudifer hosted the largest infracommunities (n = 7). However, most bats were parasitized by a single fly species, suggesting a pattern in infestations. The aggregation index was high, indicating an unequal occurrence in parasite infestations. The majority of hosts were infested by few or no flies and few hosts were highly infested, showing a negative binomial distribution.  相似文献   

18.
The dynamics and consequences of host–parasite coevolution depend on the nature of host genotype‐by‐parasite genotype interactions (G × G) for host and parasite fitness. G × G with crossing reaction norms can yield cyclic dynamics of allele frequencies (“Red Queen” dynamics) while G × G where the variance among host genotypes differs between parasite genotypes results in selective sweeps (“arms race” dynamics). Here, we investigate the relative potential for arms race and Red Queen coevolution in a protist host–parasite system, the dinoflagellate Alexandrium minutum and its parasite Parvilucifera sinerae. We challenged nine different clones of A. minutum with 10 clones of P. sinerae in a fully factorial design and measured infection success and host and parasite fitness. Each host genotype was successfully infected by four to ten of the parasite genotypes. There were strong G × Gs for infection success, as well as both host and parasite fitness. About three quarters of the G × G variance components for host and parasite fitness were due to crossing reaction norms. There were no general costs of resistance or infectivity. We conclude that there is high potential for Red Queen dynamics in this host–parasite system.  相似文献   

19.
Organisms are locally adapted when members of a population have a fitness advantage in one location relative to conspecifics in other geographies. For example, across latitudinal gradients, some organisms may trade off between traits that maximize fitness components in one, but not both, of somatic maintenance or reproductive output. Latitudinal gradients in life history strategies are traditionally attributed to environmental selection on an animal's genotype, without any consideration of the possible impact of associated microorganisms (“microbiota”) on life history traits. Here, we show in Drosophila melanogaster, a key model for studying local adaptation and life history strategy, that excluding the microbiota from definitions of local adaptation is a major shortfall. First, we reveal that an isogenic fly line reared with different bacteria varies the investment in early reproduction versus somatic maintenance. Next, we show that in wild fruit flies, the abundance of these same bacteria was correlated with the latitude and life history strategy of the flies, suggesting geographic specificity of the microbiota composition. Variation in microbiota composition of locally adapted D. melanogaster could be attributed to both the wild environment and host genetic selection. Finally, by eliminating or manipulating the microbiota of fly lines collected across a latitudinal gradient, we reveal that host genotype contributes to latitude‐specific life history traits independent of the microbiota and that variation in the microbiota can suppress or reverse the differences between locally adapted fly lines. Together, these findings establish the microbiota composition of a model animal as an essential consideration in local adaptation.  相似文献   

20.
Parasites rely on resources from a host and are selected to achieve an optimal combination of transmission and virulence. Human‐induced changes in parasite ecology, such as intensive farming of hosts, might not only favour increased parasite abundances, but also alter the selection acting on parasites and lead to life‐history evolution. The trade‐off between transmission and virulence could be affected by intensive farming practices such as high host density and the use of antiparasitic drugs, which might lead to increased virulence in some host–parasite systems. To test this, we therefore infected Atlantic salmon (Salmo salar) smolts with salmon lice (Lepeophtheirus salmonis) sampled either from wild or farmed hosts in a laboratory experiment. We compared growth and skin damage (i.e. proxies for virulence) of hosts infected with either wild or farmed lice and found that, compared to lice sampled from wild hosts in unfarmed areas, those originating from farmed fish were more harmful; they inflicted more skin damage to their hosts and reduced relative host weight gain to a greater extent. We advocate that more evolutionary studies should be carried out using farmed animals as study species, given the current increase in intensive food production practices that might be compared to a global experiment in parasite evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号