首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Leaves from sugarcane were collected from Egyptian plantation fields and tested for phytoplasma (Sugarcane yellows phytoplasma, SCYP) and Sugarcane yellow leaf virus (SCYLV) using nested PCR (with different primers) and RT‐PCR, respectively. These results showed significant differences in the amplification of the PCR assays. The primer MLO‐X/MLO‐Y, which amplified the 16S‐23S rDNA spacer region, was the most precise to detect the phytoplasma in sugarcane plants. Sequencing and restriction fragment length polymorphism analysis revealed that all tested phytoplasmas belonged to the 16SrI (aster yellows phytoplasma) group, with the exception of cultivar G84‐47 belonged to the 16SrXI (Rice yellow dwarf phytoplasma) group. Three Egyptian sugarcane cultivars were phytoplasma free. Phylogenetic analyses of 34 screened accessions of 16S ribosomal DNA gene sequences of Candidatus phytoplasma including the ones collected from Egypt used in this study and those extracted from GenBank showed that they split into two distinct clusters. The phylogenetic analyses indicated that these phytoplasmas are closely related and share a common ancestor. All tested Egyptian sugarcane plants were infected by SCYLV with the exception of cultivar Phil‐8013 which was virus free.  相似文献   

2.
In 2012, yellowing of camellias was observed in Tai'an in Shandong province, China. Transmission electron microscopy (TEM) revealed phytoplasma in the phloem sieve tube elements of symptomatic plants. A specific fragment of phytoplasma 16S rRNA gene was amplified by polymerase chain reaction (PCR) using the universal phytoplasma primers P1/P7 followed by R16F2n/R16R2. Sequence and restriction fragment length polymorphism (RFLP) analyses allowed us to classify the detected phytoplasma into the elm yellows (EY) group (16SrV), subgroup 16SrV‐B. Sequence analyses of the ribosomal protein (rp) gene confirmed a close relationship with phytoplasmas belonging to the rpV‐C subgroup. Thus, the phytoplasma associated with yellows disease in camellia, designated as ‘CY’, is a member of the 16SrV‐B subgroup. This is the first report of phytoplasma associated with camellia.  相似文献   

3.
Phytoplasmas were detected in Sophora japonica cv. golden and Robinia pseudoacacia with diseased branches of witches'‐broom collected in Haidian district, Beijing, China. Phytoplasma cells were observed in phloem sieve elements of symptomatic S. japonica cv. golden by transmission electron microscopy. The presence of phytoplasmas was further confirmed by sequence determination of partial gene sequences of 16S rDNA, rp (ribosomal protein) and secY. Phylogenetic trees and virtual restriction fragment length polymorphism (RFLP) analyses indicated that the phytoplasmas causing S. japonica cv. golden witches'‐broom (SJGWB) and R. pseudoacacia witches'‐broom (RPWB) belong to the 16SrV (elm yellows) group, and they are most closely related to subgroup 16SrV‐B, rpV‐C and secYV‐C jujube witches'‐broom (JWB) phytoplasma. Comparative analyses indicated that the phytoplasma of RPWB was closer to the JWB and that R. pseudoacacia might serve as an alternative host plant of JWB phytoplasma.  相似文献   

4.
Symptoms of rapeseed phyllody were observed in rapeseed fields of Fars, Ghazvin, Isfahan, Kerman and Yazd provinces in Iran. Circulifer haematoceps leafhoppers testing positive for phytoplasma in polymerase chain reaction (PCR) successfully transmitted a rapeseed phyllody phytoplasma isolate from Zarghan (Fars province) to healthy rapeseed plants directly after collection in the field or after acquisition feeding on infected rapeseed in the greenhouse. The disease agent was transmitted by the same leafhopper from rape to periwinkle, sesame, stock, mustard, radish and rocket plants causing phytoplasma‐type symptoms in these plants. PCR assays using phytoplasma‐specific primer pair P1/P7 or nested PCR using primers P1/P7 followed by R16F2n/R2, amplified products of expected size (1.8 and 1.2 kbp, respectively) from symptomatic rapeseed plants and C. haematoceps specimens. Restriction fragment length polymorphism analysis of amplification products of nested PCR and putative restriction site analysis of 16S rRNA gene indicated the presence of aster yellows‐related phytoplasmas (16SrI‐B) in naturally and experimentally infected rapeseed plants and in samples of C. haematoceps collected in affected rapeseed fields. Sequence homology and phylogenetic analysis of 16S rRNA gene confirmed that the associated phytoplasma detected in Zarghan rapeseed plant is closer to the members of the subgroup 16SrI‐B than to other members of the AY group. This is the first report of natural occurrence and characterization of rapeseed phyllody phytoplasma, including its vector identification, in Iran.  相似文献   

5.
Shrubs of niger seed with phyllody and internode elongation symptoms suggestive of phytoplasma infections occurred in the central regions of Iran. Phytoplasma was detected by polymerase chain reaction (PCR) and nested PCR amplifications using phytoplasma universal primer pairs P1/P7 and R16F2n/R16R2. Using aster yellows group–specific primer pair rp(I)F1A/rp(I)R1A, a fragment of 1212 bp of the rp genes was amplified from DNA samples of infected plants. Random fragment length polymorphism (RFLP) analyses of R16F2n/R16R2‐amplified products using the CfoI restriction enzyme confirmed that Iranian niger seed phyllody phytoplasma is associated with aster yellows group phytoplasmas. Sequence analyses of the partial rp genes fragment indicated that the Iranian niger seed phyllody phytoplasma, which was collected from central regions of Iran, is related to ‘Candidatus Phytoplasma asteris’. This is the first report of a phytoplasma infecting the niger seed plant.  相似文献   

6.
Stone fruits are affected by several diseases associated with plant pathogenic phytoplasmas. Previous studies have been shown that phytoplasma agents of almond and GF‐677 witches'‐broom (AlmWB and GWB, respectively) diseases belong to pigeon pea witches'‐broom (16SrIX) phytoplasma group. In this study, partial biological and molecular characterization was used to compare and classify phytoplasma agents of Khafr AlmWB (KAlmWB) and Estahban GWB (EGWB) diseases. Production of different symptoms in periwinkle indicated that agents of KAlmWB and EGWB are differentiable. Expected fragments were amplified from diseased almond and GF‐677 trees in direct PCR using phytoplasma universal primer pairs P1/P7 and rpF1/rpR1 and nested PCR using P1/P7 followed by R16F2n/ R16R2 primer pair. 16S‐rDNA Restriction fragment length polymorphism (RFLP) as well as phylogenetic analysis of rplV‐rpsC and 16S–23S rRNA spacer region sequences classified KAlmWB and EGWB phytoplasmas within 16SrIX‐C (rpIX‐C) and 16SrIX‐B (rpIX‐B) subgroups, respectively.  相似文献   

7.
Apium graveolens L. plants showing stunting, purplish/whitening of new leaves, flower abnormalities and bushy tops were observed in South Bohemia (Czech Republic) during 2011 and 2012. Transmission electron microscopy observations showed phytoplasmas in phloem sieve tube elements of symptomatic but not healthy plants. Polymerase chain reactions with universal and group‐specific phytoplasma primers followed by restriction fragment length polymorphism analyses and sequencing of 16S rDNA enabled classification of the detected phytoplasmas into the aster yellows group, ribosomal subgroup 16SrI‐C. Identical analyses of the ribosomal protein genes rpl22 and rps3 were used for further classification and revealed affiliation of the phytoplasmas with the rpIC subgroups. This is the first report of naturally occurring clover phyllody phytoplasma in A. graveolens in both the Czech Republic and worldwide.  相似文献   

8.
During several surveys in extensive areas in central Iran, apple trees showing phytoplasma diseases symptoms were observed. PCR tests using phytoplasma universal primer pairs P1A/P7A followed by R16F2n/R16R2 confirmed the association of phytoplasmas with symptomatic apple trees. Nested PCR using 16SrX group‐specific primer pair R16(X)F1/R1 and aster yellows group‐specific primer pairs rp(I)F1A/rp(I)R1A and fTufAy/rTufAy indicated that apple phytoplasmas in these regions did not belong to the apple proliferation group, whereas aster yellows group‐related phytoplasmas caused disease on some trees. Restriction fragment length polymorphism (RFLP) analyses using four restriction enzymes (HhaI, HpaII, HaeIII and RsaI) and sequence analyses of partial 16S rRNA and rp genes demonstrated that apple phytoplasma isolates in the centre of Iran are related to ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma aurantifolia’. This is the first report of apples infected with ‘Ca. Phytoplasma asteris’ in Iran and the first record from association of ‘Ca. Phytoplasma aurantifolia’ with apples worldwide.  相似文献   

9.
Potato plants showing symptoms suggestive of potato witches’‐broom disease including witches’‐broom, little leaf, stunting, yellowing and swollen shoots formation in tubers were observed in the central Iran. For phytoplasma detection, Polymerase Chain Reaction (PCR) and nested PCR assays were performed using phytoplasma universal primer pair P1/P7, followed by primer pair R16F2n/R16R2. Random fragment length polymorphism analysis of potato phytoplasma isolates collected from different production areas using the CfoI restriction enzyme indicated that potato witches’‐broom phytoplasma isolate (PoWB) is genetically different from phytoplasmas associated with potato purple top disease in Iran. Sequence analysis of the partial 16S rRNA gene amplified by nested PCR indicated that ‘Candidatus Phytoplasma trifolii’ is associated with potato witches’‐broom disease in Iran. This is the first report of potato witches’‐broom disease in Iran.  相似文献   

10.
A survey was made to determine the incidence of phytoplasmas in 39 sweet and sour cherry, peach, nectarine, apricot and plum commercial and experimental orchards in seven growing regions of Poland. Nested polymerase chain reaction (PCR) using the phytoplasma‐universal primer pairs P1/P7 followed by R16F2n/R16R2 showed the presence of phytoplasmas in 29 of 435 tested stone fruit trees. The random fragment length polymorphism (RFLP) patterns obtained after digestion of the nested PCR products separately with RsaI, AluI and SspI endonucleases indicated that selected Prunus spp. trees were infected by phytoplasmas belonging to three different subgroups of the apple proliferation group (16SrX‐A, ‐B, ‐C). Nucleotide sequence analysis of 16S rDNA fragment amplified with primers R16F2n/R16R2 confirmed the PCR/Restriction Fragment Length Polymorphism (RFLP) results and revealed that phytoplasma infecting sweet cherry cv. Regina (Reg), sour cherry cv. Sokowka (Sok), apricots cv. Early Orange (EO) and AI/5, Japanese plum cv. Ozark Premier (OzPr) and peach cv. Redhaven (RedH) was closely related to isolate European stone fruit yellows‐G1 of the ‘Candidatus Phytoplasma prunorum’ (16SrX‐B). Sequence and phylogenetic analyses resulted in the highest similarity of the 16S rDNA fragment of phytoplasma from nectarine cv. Super Queen (SQ) with the parallel sequence of the strain AP15 of the ‘Candidatus Phytoplasma mali’ (16SrX‐A). The phytoplasma infecting sweet cherry cv. Kordia (Kord) was most similar to the PD1 strain of the ‘Candidatus Phytoplasma pyri’ (16SrX‐C). This is the first report of the occurrence of ‘Ca. P. prunorum’, ‘Ca. P. mali’ and ‘Ca. P. pyri’ in naturally infected stone fruit trees in Poland.  相似文献   

11.
Phytoplasmas were detected based on nested PCR of the F2nR2 region of the 16S rDNA from Neoaliturus haematoceps (Mulsant and Rey) (Family: Cicadellidae). A total of 65 insect samples collected from sesame fields in Antalya, Turkey, during 2012–2014 were tested for phytoplasma detection. Phytoplasmas detected in fifteen samples showed an amplicon approximately 1250 bp in size using the universal primers of P1/P7 and R16F2n/R16R2. Identification of the phytoplasmas by sequence analysis revealed three different 16S rDNA phytoplasma groups: the peanut witches’‐broom, group II; clover proliferation, group VI; and pigeon pea witches’‐broom, group IX. The molecular characterization of subgroups was determined by sequence analysis and PCR‐RFLP using the restriction enzymes RsaI and TaqI. Restriction profiles of the subgroups were also confirmed using the iPhyclassifier program. BLAST and PCR‐RFLP analyses classified the subgroups as II‐D, VI‐A and IX‐C. This is the first report of molecular detection of three 16S rDNA subgroups of phytoplasmas, II‐D, VI‐A and IX‐C, from Nhaematoceps in Turkey. This study also supports earlier studies of sesame phyllody phytoplasmas by Nhaematoceps.  相似文献   

12.
Symptoms suggestive of phytoplasma diseases were observed in infected sweet cherry trees growing in the central regions of Iran. Phytoplasmas were detected in symptomatic trees by the nested polymerase chain reaction (nested PCR) using phytoplasma universal primer pairs (P1/Tint, PA2F/R, R16F2/R2 and NPA2F/R). Restriction fragment length polymorphism analyses of 485 bp DNA fragments amplified in nested PCR revealed that different phytoplamas were associated with infected trees. Sequence analyses of phytoplasma 16S rRNA gene and 16S-23S intergenic spacer region indicated that the phytoplasmas related to ' Ca. Phytoplasma asteris ' and peanut WB group infect sweet cherry trees in these regions. This is the first report of the presence of phytoplasmas related to ' Ca. Phytoplasma asteris' and peanut WB group in sweet cherry trees.  相似文献   

13.
Arabian jasmine (Jasminum sambac L.) plants showing witches’ broom (WB) symptoms were found in two regions in the Sultanate of Oman. Polymerase chain reaction (PCR) amplification of the 16S rRNA gene and the 16S–23S spacer region utilizing phytoplasma‐specific universal and designed primer pairs, and transmission electron microscopy of phytoplasma‐like structures in phloem elements confirmed phytoplasma infection in the symptomatic plants. PCR products primed with the P1/P7 primer pair were 1804 bp for jasmine witches’ broom (JasWB) and 1805 bp for alfalfa (Medicago sativa L.) witches’ broom (AlfWB). Actual and putative restriction fragment length polymorphic analysis indicated that jasmine and AlfWB phytoplasmas were molecularly indistinguishable from each other and closely related to papaya yellow crinkle (PYC), as well as being distinct from lime WB (LWB) and Omani alfalfa WB (OmAlfWB) phytoplasmas. A sequence homology search of JasWB and AlfWB showed 99.8% similarity with PYC from New Zealand and 99.6% similarity with each other (JasWB/AlfWB). The jasmine and AlfWB phytoplasmas were also shown to be related to the peanut WB group (16SrII) of 16S rRNA groups based on a phylogenetic tree generated from phytoplasma strains primed with the P1/P7 primer pair and representing the 15 phytoplasma groups.  相似文献   

14.
Two phytoplasmas closely related to the X‐disease group were associated with China‐tree (Melia azedarach L.) and garlic (Allium sativum L.) decline diseases in Argentina. The present work was aimed at studying their phylogenetic relationship based on molecular characterization of the 16S ribosomal DNA sequences. Phytoplasma DNAs were obtained from naturally infected China‐tree and garlic plants from different geographical isolates. The results from analysis of restriction fragment length polymorphisms and nucleotide sequences of the 16S rDNA showed the affiliation of China‐tree and garlic decline phytoplasmas to the 16SrIII (X‐disease group), subgroups B and J, respectively. Both organisms had high sequence similarities in the 16SrDNA nucleotide sequence with the Chayote witches’ broom phytoplasma from Brazil. The phylogenetic tree, constructed by parsimony analysis, grouped the Garlic decline, China‐tree decline, Chayote witches’ broom and Clover yellow edge phytoplasmas into a cluster separated from the other phytoplasmas of the X‐disease group.  相似文献   

15.
A disease with symptoms similar to palm lethal yellowing was noticed in the early 2013 in Khuzestan Province (Iran) in date palm (Phoenix dactylifera). Infected trees displaying symptoms of streak yellows and varied in the incidence and severity of yellowing. A study was initiated to determine whether phytoplasma was the causal agent. Polymerase chain reaction–restriction fragment length polymorphism (PCR‐RFLP) methods using universal phytoplasma primers pairs R16mF1/mR1 and M1/M2 were employed to detect putative phytoplasma(s) associated with date palm trees. Nested PCR using universal primers revealed that 40 out of 53 trees were positive for phytoplasma while asymptomatic date palms from another location (controls) tested negative. RFLP analyses and DNA sequencing of 16S rDNA indicated that the presence of two different phytoplasmas most closely related to clover proliferation (CP) phytoplasma (group 16SrVI) and ash yellows (AY) phytoplasma (group 16SrVII). Sequence analysis confirmed that palm streak yellows phytoplasmas in each group were uniform and to be phylogenetically closest to “CandidatusP. fraxini” (MF374755) and “Ca. P. trifolii” isolate Rus‐CP361Fc1 (KX773529). Result of RFLP analysis of secA gene of positive samples using TruI and TaqI endonuclease is in agreement with rDNA analysis. On this basis, both strains were classified as members of subgroups 16SrVI‐A and 16SrVII‐A. This is the first report of a phytoplasma related to CP and AY phytoplasma causing date palm yellows disease symptoms.  相似文献   

16.
Recently, peach trees showing leaf rolling, little leaf, rosetting, yellowing, bronzing of foliage and tattered and shot‐holed leaves symptoms were observed in peach growing areas in the central and north‐western regions of Iran. Polymerase chain reaction (PCR) and nested PCR using phytoplasma universal primer pairs P1/Tint, R16F2/R2, PA2F/R and NPA2F/R were employed to detect phytoplasmas. The nested PCR assays detected phytoplasma infections in 51% of symptomatic peach trees in the major peach production areas in East Azerbaijan, Isfahan, ChaharMahal‐O‐Bakhtiari and Tehran provinces. Restriction fragment length polymorphism (RFLP) analyses of 485 bp fragments amplified using primer pair NPA2F/R in nested PCR revealed that the phytoplasmas associated with infected peaches were genetically different and they were distinct from phytoplasmas that have been associated with peach and almond witches’‐broom diseases in the south of Iran. Sequence analyses of partial 16S rDNA and 16S–23S rDNA intergenic spacer regions demonstrated that ‘Candidatus Phytoplasma aurantifolia’, ‘Ca. Phytoplasma solani’ and ‘Ca. Phytoplasma trifolii’ are prevalent in peach growing areas in the central and north‐western regions of Iran.  相似文献   

17.
White clover plants showing little leaf and leaf reddening symptoms were observed in Isfahan Province in central Iran. Restriction fragment length polymorphism analyses of nested PCR‐amplified fragments from Iranian clover little leaf phytoplasma isolates and representative phytoplasmas from other phytoplasma groups using AluI, CfoI, KpnI and RsaI restriction enzymes indicated that the clover phytoplasma isolates are related to the peanut WB group. Sequence analyses of partial 16S rRNA fragments showed that Iranian clover little leaf phytoplasma has 99% similarity with soybean witches'‐broom phytoplasma, a member of the peanut WB (16SrII) phytoplasma group. This is the first report of clover infection with a phytoplasma related to the 16SrII group.  相似文献   

18.
Reddening disease has recently been threatening Salvia miltiorrhiza in China, ranging from 30 to 50%. The main symptoms observed, such as plant stunting, inflorescence malformation, leaf reddening, fibrous roots browning, skin blackening and eventually root rot, are typically associated with phytoplasma infection. The presence of phytoplasmas was demonstrated through phytoplasma‐specific PCR, with the expected amplification (1.8 kb) from symptomatic S. miltiorrhiza plants from Shangluo, Shangzhou and Luonan fields in Shaanxi Province of China. The sequences of 16S rRNA, tuf, secY and vmp1 genes amplified from LN‐1 phytoplasma shared the closest homologies of 99%, 100%, 99% and 98% with those of the reference strain Candidatus Phytoplasma solani (subgroup 16SrXII‐A), respectively. The phylogenetic trees showed that LN‐1 phytoplasma clustered with the members of 16SrXII‐A group, including CaP. solani. Computer‐simulated restriction fragment length polymorphism analysis further supported this classification. Diversity analysis showed that all ‘Ca. P. solani’ strains identified from the three different regions examined shared 100% identical 16S rRNA, tuf, secY and vmp1 nucleotide sequences. To the best of our knowledge, this is the first report of phytoplasma infecting the medicinal plant of S. miltiorrhiza. The results demonstrate that ‘CaP. solani’ is the presumptive aetiological agent of S. miltiorrhiza reddening disease in China.  相似文献   

19.
In October 2013, a new disease affecting purple woodnettle, Oreocnide pedunculata, plants was found in Miaoli County, Taiwan. Diseased plants exhibited leaf yellowing and witches'‐broom symptoms. Molecular diagnostic tools and electron microscopic cell observation were used to investigate the possible cause of the disease with a specific focus on phytoplasmas. The result of polymerase chain reaction with universal primer pairs indicated that phytoplasmas were strongly associated with the symptomatic purple woodnettles. The virtual restriction fragment length polymorphism (RFLP) patterns and phylogenetic analysis based on 16S rDNA and ribosomal protein, rplV‐rpsC region revealed that purple woodnettle witches'‐broom phytoplasma (PWWB) belongs to a new subgroup of 16SrI and rpI group and was designated as 16SrI‐AH and rpI‐Q, respectively, herein. RFLP analysis based on tuf gene region revealed that the PWWB belongs to tufI‐B, but phylogenetic analysis suggested that PWWB should be delineated to a new subgroup under the tufI group. Taken together, our analyses based on 16S rRNA and rplV‐rpsC region gave a finer differentiation while classifying the subgroup of aster yellows group phytoplasmas. To our knowledge, this is the first report of a Candidatus Phytoplasma asteris‐related strain in 16SrI‐AH, rpI‐Q and tufI‐B subgroup affecting purple woodnettle, and of an official documentation of purple woodnettle as being a new host of phytoplasmas.  相似文献   

20.
Yellowing symptoms similar to coconut yellow decline phytoplasma disease were observed on lipstick palms (Cyrtostachys renda) in Selangor state, Malaysia. Typical symptoms were yellowing, light green fronds, gradual collapse of older fronds and decline in growth. Polymerase chain reaction assay was employed to detect phytoplasma in symptomatic lipstick palms. Extracted DNA was amplified from symptomatic lipstick palms by PCR using phytoplasma‐universal primer pair P1/P7 followed by R16F2n/R16R2. Phytoplasma presence was confirmed, and the 1250 bp products were cloned and sequenced. Sequence analysis indicated that the phytoplasmas associated with lipstick yellow frond disease were isolates of ‘Candidatus Phytoplasma asteris’ belonging to the 16SrI group. Virtual RFLP analysis of the resulting profiles revealed that these palm‐infecting phytoplasmas belong to subgroup 16SrI‐B and a possibly new 16SrI‐subgroup. This is the first report of lipstick palm as a new host of aster yellows phytoplasma (16SrI) in Malaysia and worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号