首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
FST outlier tests are a potentially powerful way to detect genetic loci under spatially divergent selection. Unfortunately, the extent to which these tests are robust to nonequilibrium demographic histories has been understudied. We developed a landscape genetics simulator to test the effects of isolation by distance (IBD) and range expansion on FST outlier methods. We evaluated the two most commonly used methods for the identification of FST outliers (FDIST2 and BayeScan, which assume samples are evolutionarily independent) and two recent methods (FLK and Bayenv2, which estimate and account for evolutionary nonindependence). Parameterization with a set of neutral loci (‘neutral parameterization’) always improved the performance of FLK and Bayenv2, while neutral parameterization caused FDIST2 to actually perform worse in the cases of IBD or range expansion. BayeScan was improved when the prior odds on neutrality was increased, regardless of the true odds in the data. On their best performance, however, the widely used methods had high false‐positive rates for IBD and range expansion and were outperformed by methods that accounted for evolutionary nonindependence. In addition, default settings in FDIST2 and BayeScan resulted in many false positives suggesting balancing selection. However, all methods did very well if a large set of neutral loci is available to create empirical P‐values. We conclude that in species that exhibit IBD or have undergone range expansion, many of the published FST outliers based on FDIST2 and BayeScan are probably false positives, but FLK and Bayenv2 show great promise for accurately identifying loci under spatially divergent selection.  相似文献   

2.
Genetic divergence between populations is shaped by a combination of drift, migration, and selection, yielding patterns of isolation‐by‐distance (IBD) and isolation‐by‐environment (IBE). Unfortunately, IBD and IBE may be confounded when comparing divergence across habitat boundaries. For instance, parapatric lake and stream threespine stickleback (Gasterosteus aculeatus) may have diverged due to selection against migrants (IBE), or mere spatial separation (IBD). To quantitatively partition the strength of IBE and IBD, we used recently developed population genetic software (BEDASSLE) to analyze partial genomic data from three lake‐stream clines on Vancouver Island. We find support for IBD within each of three outlet streams (unlike prior studies of lake‐stream stickleback). In addition, we find evidence for IBE (controlling for geographic distance): the genetic effect of habitat is equivalent to geographic separation of ~1.9 km of IBD. Remarkably, of our three lake‐stream pairs, IBE is strongest where migration between habitats is easiest. Such microgeographic genetic divergence would require exceptionally strong divergent selection, which multiple experiments have failed to detect. Instead, we propose that nonrandom dispersal (e.g., habitat choice) contributes to IBE. Supporting this conclusion, we show that the few migrants between habitats are a nonrandom subset of the phenotype distribution of the source population.  相似文献   

3.
4.
Parallel divergence and speciation provide evidence for the role of divergent selection in generating biological diversity. Recent studies indicate that parallel phenotypic divergence may not have the same genetic basis in different geographical locations – ‘outlier loci’ (loci potentially affected by divergent selection) are often not shared among parallel instances of phenotypic divergence. However, limited sharing may be due, in part, to technical issues if false‐positive outliers occur. Here, we test this idea in the marine snail Littorina saxatilis, which has evolved two partly isolated ecotypes (adapted to crab predation vs. wave action) in multiple locations independently. We argue that if the low extent of sharing observed in earlier studies in this system is due to sampling effects, we expect outliers not to show elevated FST when sequenced in new samples from the original locations and also not to follow predictable geographical patterns of elevated FST. Following a hierarchical sampling design (within vs. between country), we applied capture sequencing, targeting outliers from earlier studies and control loci. We found that outliers again showed elevated levels of FST in their original location, suggesting they were not generated by sampling effects. Outliers were also likely to show increased FST in geographically close locations, which may be explained by higher levels of gene flow or shared ancestral genetic variation compared with more distant locations. However, in contrast to earlier findings, we also found some outlier types to show elevated FST in geographically distant locations. We discuss possible explanations for this unexpected result.  相似文献   

5.
Understanding the drivers of population divergence, speciation and species persistence is of great interest to molecular ecology, especially for species‐rich radiations inhabiting the world's biodiversity hotspots. The toolbox of population genomics holds great promise for addressing these key issues, especially if genomic data are analysed within a spatially and ecologically explicit context. We have studied the earliest stages of the divergence continuum in the Restionaceae, a species‐rich and ecologically important plant family of the Cape Floristic Region (CFR) of South Africa, using the widespread CFR endemic Restio capensis (L.) H.P. Linder & C.R. Hardy as an example. We studied diverging populations of this morphotaxon for plastid DNA sequences and >14 400 nuclear DNA polymorphisms from Restriction site Associated DNA (RAD) sequencing and analysed the results jointly with spatial, climatic and phytogeographic data, using a Bayesian generalized linear mixed modelling (GLMM) approach. The results indicate that population divergence across the extreme environmental mosaic of the CFR is mostly driven by isolation by environment (IBE) rather than isolation by distance (IBD) for both neutral and non‐neutral markers, consistent with genome hitchhiking or coupling effects during early stages of divergence. Mixed modelling of plastid DNA and single divergent outlier loci from a Bayesian genome scan confirmed the predominant role of climate and pointed to additional drivers of divergence, such as drift and ecological agents of selection captured by phytogeographic zones. Our study demonstrates the usefulness of population genomics for disentangling the effects of IBD and IBE along the divergence continuum often found in species radiations across heterogeneous ecological landscapes.  相似文献   

6.
Understanding landscape processes driving patterns of population genetic differentiation and diversity has been a long‐standing focus of ecology and evolutionary biology. Gene flow may be reduced by historical, ecological or geographic factors, resulting in patterns of isolation by distance (IBD) or isolation by environment (IBE). Although IBE has been found in many natural systems, most studies investigating patterns of IBD and IBE in nature have used anonymous neutral genetic markers, precluding inference of selection mechanisms or identification of genes potentially under selection. Using landscape genomics, the simultaneous study of genomic and ecological landscapes, we investigated the processes driving population genetic patterns of White‐breasted Nuthatches (Sitta carolinensis) in sky islands (montane forest habitat islands) of the Madrean Archipelago. Using more than 4000 single nucleotide polymorphisms and multiple tests to investigate the relationship between genetic differentiation and geographic or ecological distance, we identified IBE, and a lack of IBD, among sky island populations of S. carolinensis. Using three tests to identify selection, we found 79 loci putatively under selection; of these, seven matched CDS regions in the Zebra Finch. The loci under selection were highly associated with climate extremes (maximum temperature of warmest month and minimum precipitation of driest month). These results provide evidence for IBE – disentangled from IBD – in sky island vertebrates and identify potential adaptive genetic variation.  相似文献   

7.
Accurately detecting signatures of local adaptation using genetic‐environment associations (GEAs) requires controlling for neutral patterns of population structure to reduce the risk of false positives. However, a high degree of collinearity between climatic gradients and neutral population structure can greatly reduce power, and the performance of GEA methods in such case is rarely evaluated in empirical studies. In this study, we attempted to disentangle the effects of local adaptation and isolation by environment (IBE) from those of isolation by distance (IBD) and isolation by colonization from glacial refugia (IBC) using range‐wide samples in two white pine species. For this, SNPs from 168 genes, including 52 candidate genes for growth and phenology, were genotyped in 133 and 61 populations of Pinus strobus and P. monticola, respectively. For P. strobus and using all 153 SNPs, climate (IBE) did not significantly explained among‐population variation when controlling for IBD and IBC in redundancy analyses (RDAs). However, 26 SNPs were significantly associated with climate in single‐locus GEA analyses (Bayenv2 and LFMM), suggesting that local adaptation took place in the presence of high gene flow. For P. monticola, we found no evidence of IBE using RDAs and weaker signatures of local adaptation using GEA and FST outlier tests, consistent with adaptation via phenotypic plasticity. In both species, the majority of the explained among‐population variation (69 to 96%) could not be partitioned between the effects of IBE, IBD, and IBC. GEA methods can account differently for this confounded variation, and this could explain the small overlap of SNPs detected between Bayenv2 and LFMM. Our study illustrates the inherent difficulty of taking into account neutral structure in natural populations and the importance of sampling designs that maximize climatic variation, while minimizing collinearity between climatic gradients and neutral structure.  相似文献   

8.
The evolution of locally adapted phenotypes among populations that experience divergent selective pressures is a central mechanism for generating and maintaining biodiversity. Recently, the advent of high‐throughput DNA sequencing technology has provided tools for investigating the genetic basis of this process in natural populations of nonmodel organisms. Kokanee, the freshwater form of sockeye salmon (Oncorhynchus nerka), occurs as two reproductive ecotypes, which differ in spawning habitat (tributaries vs. shorelines); however, outside of the spawning season the two ecotypes co‐occur in many lakes and lack diagnostic morphological characteristics. We used restriction site‐associated DNA (RAD) sequencing to identify 6145 SNPs and genotype kokanee from multiple spawning sites in Okanagan Lake (British Columbia, Canada). Outlier tests revealed 18 loci putatively under divergent selection between ecotypes, all of which exhibited temporally stable allele frequencies within ecotypes. Six outliers were annotated to sequences in the NCBI database, two of which matched genes associated with early development. There was no evidence for neutral genetic differentiation; however, outlier loci demonstrated significant structure with respect to ecotype and had high assignment accuracy in mixed composition simulations. The absence of neutral structure combined with a small number of highly divergent outlier loci is consistent with theoretical predictions for the early stages of ecological divergence. These outlier loci were then applied to a realistic fisheries scenario in which additional RAD sequencing was used to genotype kokanee collected by trawl in Okanagan Lake, providing preliminary evidence that this approach may be an effective tool for conservation and management.  相似文献   

9.
Genetic differentiation can be highly variable across the genome. For example, loci under divergent selection and those tightly linked to them may exhibit elevated differentiation compared to neutral regions. These represent "outlier loci" whose differentiation exceeds neutral expectations. Adaptive divergence can also increase genome-wide differentiation by promoting general barriers to neutral gene flow, thereby facilitating genomic divergence via genetic drift. This latter process can yield a positive correlation between adaptive phenotypic divergence and neutral genetic differentiation (described here as "isolation-by-adaptation"). Here, we examine both these processes by combining an AFLP genome scan of two host plant ecotypes of Timema cristinae walking-sticks with existing data on adaptive phenotypic divergence and ecological speciation in these insects. We found that about 8% of loci are outliers in multiple population comparisons. Replicated comparisons between population-pairs using the same versus different host species revealed that 1-2% of loci are subject to host-related selection specifically. Locus-specific analyses revealed that up to 10% of putatively neutral (nonoutlier) AFLP loci exhibit significant isolation-by-adaptation. Our results suggest that selection may affect differentiation directly, via linkage, or by facilitating genetic drift. They thus illustrate the varied and sometimes nonintuitive contributions of selection to heterogeneous genomic differentiation.  相似文献   

10.
Random amplified polymorphic DNA (RAPD) analysis was used to characterize genetic diversity and genetic distinctiveness of Andropogon gerardii from remnant Arkansas prairies. Six oligonucleotide primers, which generated 37 RAPD bands, were used to analyse 30-32 plants from six Grand Prairie populations, Baker Prairie (Arkansas Ozarks), two Illinois prairies and two cultivars. Genetic diversity of the Arkansas remnants ranged from 82.7 to 99.3%, with 89% of the total genetic variation within and 11% among populations. The partitioning of genetic variation was consistent with that reported for other outcrossing perennial grasses, using the more conservative allozyme markers. Principal component analysis indicated a northern and southern association within Arkansas' Grand Prairie. Although there was no genetic structuring at the landscape level, the Illinois prairies and cultivars were different from all Arkansas prairies tested. There was significant within-population structuring in four of the seven Arkansas remnants, with a negative relationship between genetic similarity and geographical distance. The three nonstructured populations were from a linear railroad remnant, suggesting different population-level dynamics from nonlinear prairies. The results of this study indicated that small isolated remnant big bluestem populations were not genetically depauperate and that genetic relationships among populations could not be predicted solely on geographical proximity.  相似文献   

11.
Low dispersal marine intertidal species facing strong divergent selective pressures associated with steep environmental gradients have a great potential to inform us about local adaptation and reproductive isolation. Among these, gastropods of the genus Littorina offer a unique system to study parallel phenotypic divergence resulting from adaptation to different habitats related with wave exposure. In this study, we focused on two Littorina fabalis ecotypes from Northern European shores and compared patterns of habitat‐related phenotypic and genetic divergence across three different geographic levels (local, regional and global). Geometric morphometric analyses revealed that individuals from habitats moderately exposed to waves usually present a larger shell size with a wider aperture than those from sheltered habitats. The phenotypic clustering of L. fabalis by habitat across most locations (mainly in terms of shell size) support an important role of ecology in morphological divergence. A genome scan based on amplified fragment length polymorphisms (AFLPs) revealed a heterogeneous pattern of differentiation across the genome between populations from the two different habitats, suggesting ecotype divergence in the presence of gene flow. The contrasting patterns of genetic structure between nonoutlier and outlier loci, and the decreased sharing of outlier loci with geographic distance among locations are compatible with parallel evolution of phenotypic divergence, with an important contribution of gene flow and/or ancestral variation. In the future, model‐based inference studies based on sequence data across the entire genome will help unravelling these evolutionary hypotheses, improving our knowledge about adaptation and its influence on diversification within the marine realm.  相似文献   

12.
Understanding the genetic mechanisms of adaptive population divergence is one of the most fundamental endeavours in evolutionary biology and is becoming increasingly important as it will allow predictions about how organisms will respond to global environmental crisis. This is particularly important for the honey bee, a species of unquestionable ecological and economical importance that has been exposed to increasing human‐mediated selection pressures. Here, we conducted a single nucleotide polymorphism (SNP)‐based genome scan in honey bees collected across an environmental gradient in Iberia and used four FST‐based outlier tests to identify genomic regions exhibiting signatures of selection. Additionally, we analysed associations between genetic and environmental data for the identification of factors that might be correlated or act as selective pressures. With these approaches, 4.4% (17 of 383) of outlier loci were cross‐validated by four FST‐based methods, and 8.9% (34 of 383) were cross‐validated by at least three methods. Of the 34 outliers, 15 were found to be strongly associated with one or more environmental variables. Further support for selection, provided by functional genomic information, was particularly compelling for SNP outliers mapped to different genes putatively involved in the same function such as vision, xenobiotic detoxification and innate immune response. This study enabled a more rigorous consideration of selection as the underlying cause of diversity patterns in Iberian honey bees, representing an important first step towards the identification of polymorphisms implicated in local adaptation and possibly in response to recent human‐mediated environmental changes.  相似文献   

13.
Gene flow between diverging populations experiencing dissimilar ecological conditions can theoretically constrain adaptive evolution. To minimize the effect of gene flow, alleles underlying traits essential for local adaptation are predicted to be located in linked genome regions with reduced recombination. Local reduction in gene flow caused by selection is expected to produce elevated divergence in these regions. The highly divergent crab‐adapted and wave‐adapted ecotypes of the marine snail Littorina saxatilis present a model system to test these predictions. We used genome‐wide association (GWA) analysis of geometric morphometric shell traits associated with microgeographic divergence between the two L. saxatilis ecotypes within three separate sampling sites. A total of 477 snails that had individual geometric morphometric data and individual genotypes at 4,066 single nucleotide polymorphisms (SNPs) were analyzed using GWA methods that corrected for population structure among the three sites. This approach allowed dissection of the genomic architecture of shell shape divergence between ecotypes across a wide geographic range, spanning two glacial lineages. GWA revealed 216 quantitative trait loci (QTL) with shell size or shape differences between ecotypes, with most loci explaining a small proportion of phenotypic variation. We found that QTL were evenly distributed across 17 linkage groups, and exhibited elevated interchromosomal linkage, suggesting a genome‐wide response to divergent selection on shell shape between the two ecotypes. Shell shape trait‐associated loci showed partial overlap with previously identified outlier loci under divergent selection between the two ecotypes, supporting the hypothesis of diversifying selection on these genomic regions. These results suggest that divergence in shell shape between the crab‐adapted and wave‐adapted ecotypes is produced predominantly by a polygenic genomic architecture with positive linkage disequilibrium among loci of small effect.  相似文献   

14.
The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman, Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades of S. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia.  相似文献   

15.
A fundamental issue in speciation research is to evaluate phenotypic variation and the genomics driving the evolution of reproductive isolation between sister taxa. Above all, hybrid zones are excellent study systems for researchers to examine the association of genetic differentiation, phenotypic variation and the strength of selection. We investigated two contact zones in the marine gastropod Littorina saxatilis and utilized landmark‐based geometric morphometric analysis together with amplified fragment length polymorphism (AFLP) markers to assess phenotypic and genomic divergence between ecotypes under divergent selection. From genetic markers, we calculated the cline width, linkage disequilibrium and the average effective selection on a locus. Additionally, we conducted an association analysis linking the outlier loci and phenotypic variation between ecotypes and show that a proportion of outlier loci are associated with key adaptive phenotypic traits.  相似文献   

16.
Restriction site‐associated DNA (RAD) sequencing was used to characterize neutral and adaptive genetic variation among geographic samples of red drum, Sciaenops ocellatus, an estuarine‐dependent fish found in coastal waters along the southeastern coast of the United States (Atlantic) and the northern Gulf of Mexico (Gulf). Analyses of neutral and outlier loci revealed three genetically distinct regional clusters: one in the Atlantic and two in the northern Gulf. Divergence in neutral loci indicated gradual genetic change and followed a linear pattern of isolation by distance. Divergence in outlier loci was at least an order of magnitude greater than divergence in neutral loci, and divergence between the regions in the Gulf was twice that of divergence between other regions. Discordance in patterns of genetic divergence between outlier and neutral loci is consistent with the hypothesis that the former reflects adaptive responses to environmental factors that vary on regional scales, while the latter largely reflects drift processes. Differences in basic habitat, initiated by glacial retreat and perpetuated by contemporary oceanic and atmospheric forces interacting with the geomorphology of the northern Gulf, followed by selection, appear to have led to reduced gene flow among red drum across the northern Gulf, reinforcing differences accrued during isolation and resulting in continued divergence across the genome. This same dynamic also may pertain to other coastal or nearshore fishes (18 species in 14 families) where genetically or morphologically defined sister taxa occur in the three regions.  相似文献   

17.
Local adaptation to contrasting biotic or abiotic environments is an important evolutionary step that presumably precedes floral diversification at the species level, yet few studies have demonstrated the adaptive nature of intraspecific floral divergence in wild plant populations. We combine a population‐genomic approach with phenotypic information on floral traits to examine whether the differentiation in metric floral traits exhibited by 14 populations of the southern Spanish hawk moth‐pollinated violet Viola cazorlensis reflects adaptive divergence. Screening of many amplified fragment length polymorphism (AFLP) loci using a multiple‐marker‐based neutrality test identified nine outlier loci (2.6% of the total) that departed from neutral expectations and were potentially under selection. Generalized analysis of molecular variance revealed significant relationships between genetic distance and population divergence in three floral traits when genetic distance was based on outlier loci, but not when it was based on neutral ones. Population means of floral traits were closely correlated with population scores on the first principal coordinate axis of the genetic distance matrix using outlier loci, and with the allelic frequencies of four of the outlier loci. Results strongly support the adaptive nature of intraspecific floral divergence exhibited by V. cazorlensis and illustrate the potential of genome scans to identify instances of adaptive divergence when used in combination with phenotypic information.  相似文献   

18.
Understanding the genetic mechanisms that facilitate adaptive radiation is an important component of evolutionary biology. Here, we genotyped 82 neutral SNPs, seven SNPs in islands of divergence identified in a previous study (island SNPs), and a region of the major histocompatibility complex (MHC) in 32 populations of sockeye salmon to investigate whether conserved genes and genomic regions are involved in adaptive radiation. Populations representing three ecotypes were sampled from seven drainages with differing habitats and colonization histories spanning a range of 2,000 km. We found strong signatures of parallel selection across drainages at the island SNPs and MHC, suggesting that the same loci undergo divergent selection during adaptive radiation. However, patterns of differentiation at most island SNPs and the MHC were not associated with ecotypes, suggesting that these loci are responding differently to a mosaic of selective pressures. Our study provides some of the first evidence that conserved genomic islands may be involved in adaptive divergence of salmon populations. Additionally, our data provide further support for the hypothesis that sockeye salmon inhabiting rivers unconnected to lakes harbour similar genetic diversity across large distances, are likely the ancestral form of the species, and have repeatedly recolonized lake systems as they have become available after glacial recession. Finally, our results highlight the value and importance of validating outlier loci by screening additional populations and regions, a practice that will hopefully become more common in the future.  相似文献   

19.
One common goal of habitat restoration and reconstruction is to reinstate the biodiversity found at intact reference sites. However, few researchers have examined whether these practices reinstate communities of flower‐visiting insects. This is unfortunate, as anthropogenically mediated declines in flower visitors, including bees (the primary pollinators for most terrestrial ecosystems), beetles, flies, and butterflies, have been reported worldwide. Biodiversity declines may be especially severe in North America's tallgrass prairie, a once‐vast grassland that has experienced severe destruction and degradation due to agricultural conversion. As such, we assessed the structure of forb and flower‐visiting insect communities as a whole and two subsets of the flower visitor community—bees and phytophagous beetles—across five tallgrass prairie remnants and five reconstructed prairies (former crop fields) in Kansas from 2013 to 2015. Remnant prairies had significantly higher forb diversity and differed significantly in forb composition, compared to reconstructed prairies. Despite the dissimilarities in forb community structure, there were no differences in flower visitor diversity or abundance between remnants and reconstructed prairies. However, when considered separately, bee communities exhibited significantly greater variability in composition on reconstructed prairies, likely due to the abundance of generalist bee species visiting non‐native legumes at two reconstructed prairies. Our work provides evidence that prairie habitat reconstruction is a valuable tool for reestablishing flower‐visiting insect communities and also emphasizes the considerable role that non‐native species may play in structuring grassland plant–bee interactions.  相似文献   

20.
Genomic studies of invasive species can reveal both invasive pathways and functional differences underpinning patterns of colonization success. The European green crab (Carcinus maenas) was initially introduced to eastern North America nearly 200 years ago where it expanded northwards to eastern Nova Scotia. A subsequent invasion to Nova Scotia from a northern European source allowed further range expansion, providing a unique opportunity to study the invasion genomics of a species with multiple invasions. Here, we use restriction‐site‐associated DNA sequencing‐derived SNPs to explore fine‐scale genomewide differentiation between these two invasions. We identified 9137 loci from green crab sampled from 11 locations along eastern North America and compared spatial variation to mitochondrial COI sequence variation used previously to characterize these invasions. Overall spatial divergence among invasions was high (pairwise FST ~0.001 to 0.15) and spread across many loci, with a mean FST ~0.052 and 52% of loci examined characterized by FST values >0.05. The majority of the most divergent loci (i.e., outliers, ~1.2%) displayed latitudinal clines in allele frequency highlighting extensive genomic divergence among the invasions. Discriminant analysis of principal components (both neutral and outlier loci) clearly resolved the two invasions spatially and was highly correlated with mitochondrial divergence. Our results reveal extensive cryptic intraspecific genomic diversity associated with differing patterns of colonization success and demonstrates clear utility for genomic approaches to delineating the distribution and colonization success of aquatic invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号