首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Clustered regularly interspaced short palindromic repeats (CRISPR) confer immunity against mobile genetic elements (MGEs) in prokaryotes. Streptococcus agalactiae, a leading cause of neonatal infections contains in its genome two CRISPR/Cas systems. We show that type 1‐C CRISPR2 is present in few strains but type 2‐A CRISPR1 is ubiquitous. Comparative sequence analysis of the CRISPR1 spacer content of 351 S. agalactiae strains revealed that it is extremely diverse due to the acquisition of new spacers, spacer duplications and spacer deletions that witness the dynamics of this system. The spacer content profile mirrors the S. agalactiae population structure. Transfer of a conjugative transposon targeted by CRISPR1 selected for spacer rearrangements, suggesting that deletions and duplications pre‐exist in the population. The comparison of protospacers located within MGE or the core genome and protospacer‐associated motif‐shuffling demonstrated that the GG motif is sufficient to discriminate self and non‐self and for spacer selection and integration. Strikingly more than 40% of the 949 different CRISPR1 spacers identified target MGEs found in S. agalactiae genomes. We thus propose that the S. agalactiae type II‐A CRISPR1/Cas system modulates the cohabitation of the species with its mobilome, as such contributing to the diversity of MGEs in the population.  相似文献   

3.
CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR–Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR–Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR–Cas systems.  相似文献   

4.
5.
Aims: An efficient approach for generation of bacteriophage‐insensitive mutants (BIMs) of Streptococcus thermophilus starters was described in our laboratory [Mills et al. (2007) J Microbiol Methods 70 , 159–164]. The aim of this study was to analyse the phage resistance mechanism responsible for BIM formation. Methods and Results: Three clustered regularly interspaced short palindromic repeat (CRISPR) regions have been identified in Strep. thermophilus, and Strep. thermophilus can integrate novel spacers into these loci in response to phage attack. Characterization of three sets of BIMs indicated that two sets had altered CRISPR1 and/or CRISPR3 loci. A range of BIMs of yoghurt starter CSK938 were generated with the same phage in different phage challenge experiments, and each acquired unique spacer regions ranging between one and four new spacers in CRISPR1. In addition, the BIM that acquired only one new spacer in CRISPR1 also acquired an additional spacer in CRISPR3. A fourth BIM, generated with a different phage, had two spacers deleted from CRISPR1 but acquired two spacers in CRISPR3. Analysis of the Mozzarella starter CSK939 and its associated BIMs indicated that formation of second generation BIMs does not lead to increases in spacer number but to alterations in spacer regions. BIMs of an exopolysaccharide (EPS)‐producing strain that lost the ability to produce EPS did not harbour an altered CRISPR, suggesting that phage sensitivity may be related to the EPS‐producing phenotype. Conclusions: Acquisition/deletion of new spacers in CRISPR loci in response to phage attack generates distinctly individual variants. It also demonstrates that other modifications may be responsible for the phage resistance of Strep. thermophilus BIMs. Significance and Impact of the Study: Isolation of individual BIMs that have unique spacers towards the leader region of the CRISPR locus may be a very useful approach for rotation strategies with the same starter backbone. Upon phage infection, BIMs ‘in reserve’ can be slotted into the rotation scheme.  相似文献   

6.
CRISPR interference occurs when a protospacer recognized by the CRISPR RNA is destroyed by Cas effectors. In Type I CRISPR‐Cas systems, protospacer recognition can lead to «primed adaptation» – acquisition of new spacers from in cis located sequences. Type I CRISPR‐Cas systems require the presence of a trinucleotide protospacer adjacent motif (PAM) for efficient interference. Here, we investigated the ability of each of 64 possible trinucleotides located at the PAM position to induce CRISPR interference and primed adaptation by the Escherichia coli Type I‐E CRISPR‐Cas system. We observed clear separation of PAM variants into three groups: those unable to cause interference, those that support rapid interference and those that lead to reduced interference that occurs over extended periods of time. PAM variants unable to support interference also did not support primed adaptation; those that supported rapid interference led to no or low levels of adaptation, while those that caused attenuated levels of interference consistently led to highest levels of adaptation. The results suggest that primed adaptation is fueled by the products of CRISPR interference. Extended over time interference with targets containing «attenuated» PAM variants provides a continuous source of new spacers leading to high overall level of spacer acquisition.  相似文献   

7.
CRISPR‐Cas systems constitute an adaptive immune system that provides acquired resistance against phages and plasmids in prokaryotes. Upon invasion of foreign nucleic acids, some cells integrate short fragments of foreign DNA as spacers into the CRISPR locus to memorize the invaders and acquire resistance in the subsequent round of infection. This immunization step called adaptation is the least understood part of the CRISPR‐Cas immunity. We have focused here on the adaptation stage of Streptococcus thermophilus DGCC7710 type I‐E CRISPR4‐Cas (St4) system. Cas1 and Cas2 proteins conserved in nearly all CRISPR‐Cas systems are required for spacer acquisition. The St4 CRISPR‐Cas system is unique because the Cas2 protein is fused to an additional DnaQ exonuclease domain. Here, we demonstrate that St4 Cas1 and Cas2‐DnaQ form a multimeric complex, which is capable of integrating DNA duplexes with 3′‐overhangs (protospacers) in vitro. We further show that the DnaQ domain of Cas2 functions as a 3′–5′‐exonuclease that processes 3′‐overhangs of the protospacer to promote integration.  相似文献   

8.
The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system mediates adaptive immunity against foreign nucleic acids in prokaryotes. However, efficient adaptation of a native CRISPR to purified viruses has only been observed for the type II-A system from a Streptococcus thermophilus industry strain, and rarely reported for laboratory strains. Here, we provide a second native system showing efficient adaptation. Infected by a newly isolated virus HHPV-2, Haloarcula hispanica type I-B CRISPR system acquired spacers discriminatively from viral sequences. Unexpectedly, in addition to Cas1, Cas2 and Cas4, this process also requires Cas3 and at least partial Cascade proteins, which are involved in interference and/or CRISPR RNA maturation. Intriguingly, a preexisting spacer partially matching a viral sequence is also required, and spacer acquisition from upstream and downstream sequences of its target sequence (i.e. priming protospacer) shows different strand bias. These evidences strongly indicate that adaptation in this system strictly requires a priming process. This requirement, if validated also true for other CRISPR systems as implied by our bioinformatic analysis, may help to explain failures to observe efficient adaptation to purified viruses in many laboratory strains, and the discrimination mechanism at the adaptation level that has confused scientists for years.  相似文献   

9.
Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in prokaryotes that provide acquired immunity against foreign genetic elements. Here, we characterize a novel Streptococcus thermophilus locus, CRISPR3, and experimentally demonstrate its ability to integrate novel spacers in response to bacteriophage. Also, we analyze CRISPR diversity and activity across three distinct CRISPR loci in several S. thermophilus strains. We show that both CRISPR repeats and cas genes are locus specific and functionally coupled. A total of 124 strains were studied, and 109 unique spacer arrangements were observed across the three CRISPR loci. Overall, 3,626 spacers were analyzed, including 2,829 for CRISPR1 (782 unique), 173 for CRISPR2 (16 unique), and 624 for CRISPR3 (154 unique). Sequence analysis of the spacers revealed homology and identity to phage sequences (77%), plasmid sequences (16%), and S. thermophilus chromosomal sequences (7%). Polymorphisms were observed for the CRISPR repeats, CRISPR spacers, cas genes, CRISPR motif, locus architecture, and specific sequence content. Interestingly, CRISPR loci evolved both via polarized addition of novel spacers after exposure to foreign genetic elements and via internal deletion of spacers. We hypothesize that the level of diversity is correlated with relative CRISPR activity and propose that the activity is highest for CRISPR1, followed by CRISPR3, while CRISPR2 may be degenerate. Globally, the dynamic nature of CRISPR loci might prove valuable for typing and comparative analyses of strains and microbial populations. Also, CRISPRs provide critical insights into the relationships between prokaryotes and their environments, notably the coevolution of host and viral genomes.  相似文献   

10.
11.
12.
Clustered regularly interspaced short palindromic repeats with CRISPR‐associated gene (CRISPR‐Cas) systems are widely recognized as critical genome defense systems that protect microbes from external threats such as bacteriophage infection. Several isolates of the intracellular pathogen Legionella pneumophila possess multiple CRISPR‐Cas systems (type I‐C, type I‐F and type II‐B), yet the targets of these systems remain unknown. With the recent observation that at least one of these systems (II‐B) plays a non‐canonical role in supporting intracellular replication, the possibility remained that these systems are vestigial genome defense systems co‐opted for other purposes. Our data indicate that this is not the case. Using an established plasmid transformation assay, we demonstrate that type I‐C, I‐F and II‐B CRISPR‐Cas provide protection against spacer targets. We observe efficient laboratory acquisition of new spacers under ‘priming’ conditions, in which initially incomplete target elimination leads to the generation of new spacers and ultimate loss of the invasive DNA. Critically, we identify the first known target of L. pneumophila CRISPR‐Cas: a 30 kb episome of unknown function whose interbacterial transfer is guarded against by CRISPR‐Cas. We provide evidence that the element can subvert CRISPR‐Cas by mutating its targeted sequences – but that primed spacer acquisition may limit this mechanism of escape. Rather than generally impinging on bacterial fitness, this element drives a host specialization event – with improved fitness in Acanthamoeba but a reduced ability to replicate in other hosts and conditions. These observations add to a growing body of evidence that host range restriction can serve as an existential threat to L. pneumophila in the wild.  相似文献   

13.
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus   总被引:4,自引:0,他引:4  
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated genes are linked to a mechanism of acquired resistance against bacteriophages. Bacteria can integrate short stretches of phage-derived sequences (spacers) within CRISPR loci to become phage resistant. In this study, we further characterized the efficiency of CRISPR1 as a phage resistance mechanism in Streptococcus thermophilus. First, we show that CRISPR1 is distinct from previously known phage defense systems and is effective against the two main groups of S. thermophilus phages. Analyses of 30 bacteriophage-insensitive mutants of S. thermophilus indicate that the addition of one new spacer in CRISPR1 is the most frequent outcome of a phage challenge and that the iterative addition of spacers increases the overall phage resistance of the host. The added new spacers have a size of between 29 to 31 nucleotides, with 30 being by far the most frequent. Comparative analysis of 39 newly acquired spacers with the complete genomic sequences of the wild-type phages 2972, 858, and DT1 demonstrated that the newly added spacer must be identical to a region (named proto-spacer) in the phage genome to confer a phage resistance phenotype. Moreover, we found a CRISPR1-specific sequence (NNAGAAW) located downstream of the proto-spacer region that is important for the phage resistance phenotype. Finally, we show through the analyses of 20 mutant phages that virulent phages are rapidly evolving through single nucleotide mutations as well as deletions, in response to CRISPR1.  相似文献   

14.
15.
Clustered regularly interspaced short palindromic repeats (CRISPR) are inheritable genetic elements of a variety of archaea and bacteria and indicative of the bacterial ecological adaptation, conferring acquired immunity against invading foreign nucleic acids. Shigella is an important pathogen for anthroponosis. This study aimed to analyze the features of Shigella CRISPR structure and classify the spacers through bioinformatics approach. Among 107 Shigella, 434 CRISPR structure loci were identified with two to seven loci in different strains. CRISPR-Q1, CRISPR-Q4 and CRISPR-Q5 were widely distributed in Shigella strains. Comparison of the first and last repeats of CRISPR1, CRISPR2 and CRISPR3 revealed several base variants and different stem-loop structures. A total of 259 cas genes were found among these 107 Shigella strains. The cas gene deletions were discovered in 88 strains. However, there is one strain that does not contain cas gene. Intact clusters of cas genes were found in 19 strains. From comprehensive analysis of sequence signature and BLAST and CRISPRTarget score, the 708 spacers were classified into three subtypes: Type I, Type II and Type III. Of them, Type I spacer referred to those linked with one gene segment, Type II spacer linked with two or more different gene segments, and Type III spacer undefined. This study examined the diversity of CRISPR/cas system in Shigella strains, demonstrated the main features of CRISPR structure and spacer classification, which provided critical information for elucidation of the mechanisms of spacer formation and exploration of the role the spacers play in the function of the CRISPR/cas system.  相似文献   

16.
Clustered regularly interspaced short palindromic repeats (CRISPRs) are a genetic locus of prokaryotes and contain highly conserved direct repeats, spacers, and CRISPR-associated genes. Spacers in CRISPRs are known as adaptive immune markers and reveal what types of phage or foreign DNA have been introduced in the past. The primary objective of this study was to analyze spacer sequences in CRISPR arrays of 15 Salmonella enterica subspecies and to determine if Salmonella CRISPRs are indeed involved in resistance to foreign DNAs. Using a bioinformatics algorithm, the CRISPR arrays of 15 subspecies of S. enterica were predicted. The transformation efficiencies of the wild-type and mutant strains lacking a space were determined using the plasmid harboring the same sequences with the space. Analysis of the CRISPR arrays indicated that S. Typhimurium encoded three possible CRISPR regions in the genome. Notably, 48 or 55 spacers were predicted in the genomes of S. Typhimurium 14028 and LT2 strains, respectively, and 39 were precisely identical. To confirm this prediction, the predicted CRISPR regions of S. Typhimurium 14028 were sequenced using the specific primers. Interestingly, a homology search of individual spacers found that the 2nd spacer of CRISPR 2 was nearly identical to a partial genome region of phage FSL SP-016. The mutant strain showed two to threefold increased transformation efficiency compared to that of the wild-type strain. These results demonstrate that the spacer sequence is dependent on genetic relations, especially for adaptive immunity against phage or foreign DNAs.  相似文献   

17.
Yang  Jing  Li  Jiazhi  Wang  Jiuyu  Sheng  Gang  Wang  Min  Zhao  Hongtu  Yang  Yanhua  Wang  Yanli 《中国科学:生命科学英文版》2020,63(4):516-528
Cas1 is a key component of the CRISPR adaptation complex, which captures and integrates foreign DNA into the CRISPR array,resulting in the generation of new spacers. We have determined crystal structures of Thermus thermophilus Cas1 involved in new spacer acquisition both in complex with branched DNA and in the free state. Cas1 forms an asymmetric dimer without DNA.Conversely, two asymmetrical dimers bound to two branched DNAs result in the formation of a DNA-mediated tetramer, dimer of structurally asymmetrical dimers, in which the two subunits markedly present different conformations. In the DNA binding complex, the N-terminal domain adopts different orientations with respect to the C-terminal domain in the two monomers that form the dimer. Substrate binding triggers a conformational change in the loop 164–177 segment. This loop is also involved in the 3′ fork arm and 5′ fork arm strand recognition in monomer A and B, respectively. This study provides important insights into the molecular mechanism of new spacer adaptation.  相似文献   

18.
19.
The adaptation against foreign nucleic acids by the CRISPR–Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) depends on the insertion of foreign nucleic acid-derived sequences into the CRISPR array as novel spacers by still unknown mechanism. We identified and characterized in Escherichia coli intermediate states of spacer integration and mapped the integration site at the chromosomal CRISPR array in vivo. The results show that the insertion of new spacers occurs by site-specific nicking at both strands of the leader proximal repeat in a staggered way and is accompanied by joining of the resulting 5′-ends of the repeat strands with the 3′-ends of the incoming spacer. This concerted cleavage-ligation reaction depends on the metal-binding center of Cas1 protein and requires the presence of Cas2. By acquisition assays using plasmid-located CRISPR array with mutated repeat sequences, we demonstrate that the primary sequence of the first repeat is crucial for cleavage of the CRISPR array and the ligation of new spacer DNA.  相似文献   

20.
为了建立适用于嗜热链球菌菌株资源多样性调查的菌株分型方法,尝试将1型CRISPR位点间区序列分析用于嗜热链球菌的菌株分型,并与常用ERIC-PCR指纹图谱方法进行了比较。结果表明,1型CRISPR位点间区序列分析可以把30株从三个不同样品中分离的嗜热链球菌分成三种差异明显的类型:不同类型菌株之间没有相同的间区序列;而同一类型菌株之间,间区序列的组成和排列则基本一致,并且上述分型的结果与用ERIC-PCR指纹图谱技术获得的结果完全一致。因此,1型CRISPR位点间区序列分析是嗜热链球菌分型鉴定的可靠方法,并适用于大量菌株的分型鉴定和多样性调查。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号