首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Mouse L cells (clone 1D) were fused with polyethylene glycol (PEG). The fusion sequence was determined by using sequential light microscopy of the same group of cells, scanning electron microscopy (SEM), transmission electron microscopy, and freeze-etching. The cells were found to fuse only 1 min after PEG had been washed off at small localized areas. Larger fusion images were found after 3 min. Intramembrane particles were observed to have a tendency to aggregate after PEG treatment, but a direct correlation of this activity with the fusion process could not be made. No pathological changes were noted at longer times after PEG removal, except for the extensive widening of the rough-surface endoplasmic reticulum (RER) in some cells. It is proposed that fusion does not occur if apposing cells have many microvilli at the area of apparent contact. Presented in the formal symposium on Somatic Cell Genetics at the 27th Annual Meeting of the Tissue Culture Association, Philadelphia, Pennsylvania, June 7–10, 1976. This work was supported by U.S. Public Health Service research grants CA 10815 from the National Cancer Institute and GM 21615 from the Institute of General Medical Sciences.  相似文献   

2.
The mechanism by which polyethylene glycol (PEG) mediates cell fusion has been studied by examining the movements of membrane lipids and proteins, as well as cytoplasmic markers, from erythrocytes to monolayers of cultured cells to which they have been fused. Fluorescence and freeze-fracture electron microscopy and fluorescence recovery after photobleaching have yielded the following results: (a) In the presence of both fusogenic and nonfusogenic PEG membranes are brought together at closely apposed contact regions. (b) Fluorescent lipid probes quickly spread from the membranes of erythrocytes to cultured cells in the presence of both fusogenic and nonfusogenic PEG. (c) Proteins of the erythrocyte membranes were never observed to diffuse into the cultured cell membrane. (d) Water-soluble proteins did not diffuse from the erythrocyte interior into the target cell cytoplasm until the PEG was removed. These data suggest that the coordinate action of two distinct components is necessary for fusion as mediated by PEG. Presumably, the polymer itself promotes close apposition of the adjacent cell membranes but the fusion stimulus is provided by the additives contained in commercial PEG.  相似文献   

3.
Action of polyethylene glycol on the fusion of human erythrocyte membranes   总被引:5,自引:0,他引:5  
Summary Factors affecting the polyethylene glycol (PEG)-induced membrane fusion were examined. Human erythrocyte membrane ghosts, cytoskeleton-free vesicles budded from erythrocytes, mechanically disrupted erythrocyte vesicles, and recombinant vesicles from glycophorin and egg phosphatidylcholine were used as models. Fusion was monitored by darkfield light microscopy and by freeze-fracture electron microscopy. Osmotic swelling was found necessary for fusion between membrane ghosts following PEG treatment. The sample with the highest fusion percentage was sealed ghosts incubated in hypotonic media after at least 5 min of treatment in <25% PEG. At similar osmolarity, glycerol, dextran and PEG produced progressively more pronounced intramembranous particle (IMP) patching, correlating with their increasing fusion percentages. The patching of IMP preceded cell-cell contact, and occurred without direct PEG-protein interaction. The presence of cytoskeletal elements in small vesicles had no significant effect on fusion, nor on the aggregation of intramembranous particle (IMP) upon PEG treatment. Disrupting the membrane by lysolecithin, dimethylsulfoxide, retinol or mild sonication resulted in the fragmentation of ghosts without an increase in fusion percentage. The purity of the commercial PEG used had no apparent effect on fusion. We concluded that the key steps in PEG-induced fusion of cell membrane are the creation of IMP-free zones, and the osmotic swelling of cells after the formation of bilayer contacts during the PEG treatment. Cell cytoskeleton affects PEG-induced fusion only to the extent of affecting IMP patching.  相似文献   

4.
The yield of hybrid colonies after fusion of mammalian cells with polyethylene glycol (PEG) is increased if the cells are fused in Ca2+-free medium, and kept in Ca2+-free medium for at least 15 min after fusion. The protective effect of Ca2+-free medium is much more obvious when Baker PEG is used than when fusion is carried out with Koch-Light PEG. The increased yield of hybrid colonies is shown to be due to a reduced toxicity rather than to an increased efficiency of cell fusion. These improvements have been found to apply to a variety of cell lines, and also when cell fusion is carried out in suspension. This technique should be particularly useful in studies on mammalian cell hybridization using cell lines that are particularly sensitive to the toxic effect of PEG.  相似文献   

5.
A fluorescence-microscopical study is made of cultured murine fibroblasts (L-cells) in early periods after the treatment with polyethylene glycol (PEG). Optimal conditions of fusion procedure were found under which the effectiveness of fusion was the highest and the toxical effect of PEG the lowest. The number of dead cells after the treatment with PEG did not exceed 10%. No significant changes in chromatin cytochemical properties (Acridine Orange and Olivomycin binding) were observed in the early periods of PEG treatment, that allows to use PEG for studying chromatin properties in hybrid cells obtained by PEG fusion. By means of PEG fusion, the hybrid cells with prematurely condensed chromosomes and also hybrids between animal and yeast cells have been obtained.  相似文献   

6.
The kinetics of poly(ethylene glycol) (PEG)-induced fusion between intact human erythrocytes was continuously monitored by a fluorescence lipid mixing method, utilizing the dequenching of the fluorescence probe, 1-oleoyl-2-[12-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]dodecanoyl ] phosphatidylcholine (C12-NBD-PC). The steady-state fluorescence intensity was detected from the surface of cells in a monolayer on an alcian blue-coated glass coverslip. The relief of fluorescence self-quenching after fusion between C12-NBD-PC labeled and unlabeled intact erythrocytes was measured. The extent of fluorescence dequenching was normalized based on the measured concentration of probes in membranes, the projected partial dequenching due both to dilution by intercellular fusion, and the dilution between the inner and outer leaflets of membranes (flip-flop). There was no significant increase in fluorescence intensity during PEG treatment of 5 min, at 4 degrees C. Intensity increased immediately after the dilution of PEG, and reached saturation in 30 min. The efficiency of fusion increased with the increasing of PEG concentrations. Only 4% enhancement of saturated relative fluorescence intensity was detected in 25 wt% PEG-induced cell fusion; 23% enhancement in 30 wt%; and 66% enhancement in 35 wt%. The transfer of fluorescent probes between membrane bilayer leaflets (flip-flop) was also monitored during the fusion process. Flip-flop was monitored in confluent monolayers as well as in isolated cells. There was no significant spontaneous flip-flop within 30 min of dilution. The relative fluorescence intensity enhancement contributed by the dilution of probes between fused labeled and unlabeled cells (at a 1:1 ratio) was found to account for only 39% of the observed final dequenching, whereas the contribution by flip-flop associated with cell fusion was found to account for 9%, and flip-flop without fusion contributed approximately 18%. A portion of the flip-flop is a consequence of hemolysis. Therefore, fluorescence dequenching measurements of fusion of whole cells must be interpreted with caution.  相似文献   

7.
Summary Avian erythrocytes and protoplasts isolated from mesophyll cells of tobacco plants were suspended in 1% protease, agglutinated with polyethylene glycol (PEG) and subsequently fused upon elution of the PEG. The fusion reaction was monitored by scanning (SEM) and transmission (TEM) electron microscopy. SEM studies showed a marked difference in the topography of agglutinated cells. During, and subsequent to fusion, the markedly different surfaces of the two cell types became homogeneous and lines of demarcation between the cells were no longer visible. TEM revealed that adhesion occurred over the entire membrane area between agglutinated cells. Incipient fusion was evidenced by the appearance of vacuoles at the intermembrane surfaces. During initial elution of the PEG, cytoplasmic channels between erythrocytes and protoplasts were evident. With continued elution of the PEG, starch-containing plant chloroplasts and starch grains were seen within erythrocytes and homogenous erythrocyte cytoplasm was present inside plant protoplasts. Cytoplasmic mixing between the two cell types occurred within 3 hours of elution. The frequency of interkingdom fusion was estimated to be 0.5–1%.  相似文献   

8.
Polyethylene glycol (PEG) has been utilized to induce homokaryocyte formation in avian and mammalian erythrocytes previously treated with proteolytic enzymes. PEG of molecular weight 6,000-7,5000 was found superior to 1,500 and 20,000 MW PEG. Cells exposed to protease alone, prior to PEG treatment, fused to a high degree (60-95% multinucleated cells), whereas trypsin or pepsin treatment alone allowed very little fusion (2.5%). Trypsin lowered the effectiveness of protease when used in combination. Cells which were not treated with proteolytic enzymes agglutinated in the presence of PEG but did not fuse to a significant extent (0.01%). Fusion was also markedly dependent upon the rate at which PEG was eluted during the fusion process. Electron microscopy indicated that fusion began during the elution of PEG from the agglutinated cells.  相似文献   

9.
Several chemical co-treatments were used to lower the threshold concentrations of poly(ethylene glycol) (PEG) required to induce fusion between turkey erythrocytes and between human erythrocytes. Concanavalin A was used in conjunction with 25% (w/w) PEG to induce turkey erythrocyte fusion. The fusion percentage increased with increasing concentrations of concanavalin A and the duration of concanavalin A treatment. In samples with high percentages of fusion, numerous hemispherical intramembrane particle-free zones (bubbles) in the plasma membrane were revealed by freeze-fracture electron microscopy. However, concanavalin A treatment did not facilitate fusion between human erythrocytes even at 35% PEG, although slight intramembrane particle patching was observed under this condition. Spermidine (0.05% w/v), trichloroacetic acid (100 mM) and ethanol (4% v/v) were found to promote fusion of human erythrocytes in 25% PEG. In all of these cases, intramembrane particle patching was observed by freeze-fracture electron microscopy in the presence of PEG. When applied alone, only ethanol caused a slight intramembrane particle patching. Neither dimethylsulfoxide (2% v/v), lysophosphatidylcholine (lysoPC, 0.15 mM), nor polylysine (mol. wt. 1000-4000, 0.05% w/v) promoted fusion of human erythrocyte in 25% PEG. None of these chemical treatments, alone, or in combination with PEG, caused intramembrane particle patching. We conclude that the positive effect of chemical treatments on PEG-induced cell fusion is closely related to the formation of intramembrane particle-free zones on the plasma membrane.  相似文献   

10.
The distribution of intramembrane particles (IMP) as revealed by freeze- fracture electron microscopy has been analyzed following treatment of mouse L cells and fusion-deficient L cell derivatives with several concentrations of polyethylene glycol (PEG). In cell cultures treated with concentrations of PEG below the critical level for fusion, no aggregation of IMP was observed. When confluent cultures of the parental cells are treated with 50% PEG, greater than 90% of the cells fuse, and cold-induced IMP aggregation is extensive. In contrast, identical treatment of fusion-deficient cell lines shows neither extensive fusion nor IMP redistribution. At higher concentrations of PEG, however, the PEG-resistant cells fuse extensively and IMP aggregation is evident. Thus the decreased ability of the fusion- deficient cells to fuse after treatment with PEG is correlated with the failure of IMP aggregation to occur. A technique for quantifying particle distribution was developed that is practical for the accurate analysis of a large number of micrographs. The variance from the mean number of particles in randomly chosen areas of fixed size was calculated for each cell line at each concentration of PEG. Statistical analysis confirms visual observation of highly aggregated IMP, and allows detection of low levels of aggregation in parental cells that were less extensively fused by exposure to lower concentrations of PEG. When low levels of fusion were induced in fusion-deficient cells, however, no IMP aggregation could be detected.  相似文献   

11.
Chinese Hamster Ovary (CHO) cells were fused by subjecting cell suspensions to an exponentially decaying electric pulse in the presence of polyethylene glycol (PEG), Dextran or Ficoll. PEG (MW 1,000, 3,350, 8,000, 10,000 and 18,500), Dextran (MW 71,200) and Ficoll (MW 400,000) were added to the pulsing medium. A single exponential electric pulse with peak field strength of 4 kV/cm, and a half-time of 0.72 msec was used. The combination of two techniques, PEG-induced fusion and electrofusion, resulted in highly efficient fusion of CHO cells. Fusion yields (FY) at different concentrations of these polymers were measured using phase-contrast microscopy. FY was highly dependent on the concentration of PEG in media, while the presence of Dextran and Ficoll had no influence on fusion yield. PEG with MW 8,000 was found to be the most effective in causing cell aggregation, and to give the highest FY (40%). An optimal concentration for fusion was found for PEG of each molecular weight. Diluting cells suspended in higher concentrations of PEG to these optimal concentrations after the pulse application regained the optimal FY. It was concluded that PEG-induced prepulse aggregation and moderate cell swelling immediately after the pulse were important factors in achieving high fusion yields.This work is supported by a grant GM-30969 from the National Institutes of Health. Traveling fellowship to N.G.S. was supported from Foundation Cyrill and Methodius and grant N-189 from MCES of Bulgaria.  相似文献   

12.
Protoplasts from pea (Pisum sativum L.) leaves and cultured soybean (Glycine max L.) cells were fused by means of polyethylene glycol and subsequently cultured for one week. Both agglutinated protoplasts and cultured fusion products were examined by electron microscopy. Agglutination occurred over large areas of the plasma membranes. The membrane contanct was discontinuous and irregularly spaced. Many cultured fusion products regenerated cell walls and divided to form cell clusters. Fusion of pea and soybean interphase nuclei occurred in some cells. The detection of heterochromatin typical of pea in the synkaryon, even after division, suggests the cells were hybrids. The cytoplasm of the cells from the fusion products contained both soybean leucoplasts and pea chloroplasts. The chloroplasts had apparently ceased dividing and some showed signs of degenerating. Large multinucleate fusion products developed cell walls but failed to divide.Abbreviations PEG polyethylene glycol - SEM scanning electron microscopy - TEM transmission electron microscopy Supported by National Research Council of Canada, Grant A6304  相似文献   

13.
Degranulation of IgE-sensitized rat mast cells by antigen was studied quantitatively in vitro and in vivo by electron microscopy. The inhibition of this degranulation by an anti-allergic drug, N-(3,4-dimethoxycinnamoyl)anthranilic acid (Tranilast), was also examined both in vitro and in vivo. In the in vitro study using peritoneal mast cells, alteration of the granules, cavity formation by fusion of the perigranular membrane and granule discharge due to fusion of the cavity membrane with the cell membrane were observed and were accompanied by histamine release. Scanning electron microscopy disclosed the extrusion of smooth, round bodies from pores formed on the cell surface. In the in vivo study of passive cutaneous anaphylaxis (PCA), the characteristic features of mast cell degranulation were obvious 5 min after the injection of antigen; leakage of dye increased progressively from 5 to 30 min but was not found at 6 h. From quantitative analysis of the substructure of mast cells, it was demonstrated that degranulation of IgE-sensitized mast cell induced by antigen was achieved by sequential exocytosis both in vitro and in vivo. Tranilast inhibited these changes to a remarkable extent and it was concluded that the inhibition of mast cell degranulation by this drug might play an important role in anti-allergic treatment.  相似文献   

14.
L H Li  S W Hui 《Biophysical journal》1994,67(6):2361-2366
Polyethylene glycol (PEG) and electrofusion were applied together in a simple and highly efficient cell fusion method. PEG (8000 M(r)) was used to bring human erythrocytes into contact, and a single 4.4 kV/cm, 80 microseconds duration pulse was applied to cell suspensions. The fusion yield (FY) is PEG concentration-dependent. A maximum FY (50%) was found at about 10% PEG. Higher PEG concentrations (> 10%) suppressed FY caused by colloid osmotic shrinkage. Morphological changes, such as colloidal osmotic swelling and shrinking, and the expanding and contraction of fusion lumen, when suspension media were changed from PBS to isotonic 15% dextran solutions, was examined by microscopy. FY was found to depend on both simple osmotic and colloidal-osmotic swelling. From the swelling behavior, we propose two types of electropores: the pre-fusion sites between cell pairs, and electropores on each individual cell connecting intracellular and extracellular space. The latter type is responsible for the colloidal osmotic swelling and shrinking of cell which, together with simple osmotic swelling, is responsible for expanding the pre-fusion sites into fusion lumens. Resealing of electropores resulted in reducing FY, but the FY can be restored by simple osmotic shock. Apparently, PEG plays two opposite roles in this fusion method; one is to promote pre-pulse and post-pulse cell-cell contact, protecting pre-fusion sites, and the other suppresses FY by colloid osmotic shrinkage of cells after pulsing, especially when high PEG concentration is used. 10% PEG 8000 represents the optimal combination of these properties.  相似文献   

15.
Plasma membrane vesicles (R4-PM) prepared from mouse lymphoma cells (RDM4,H2k) were employed to investigate requirements for recognition of target cell membranes by allogeneic cytotoxic T lymphocytes (CTL). Using immunofluorescent staining and fluorescence microscopy, the R4-PM were tested for binding to CTL and were found to bind to these effector cells in a specific manner. However, this binding was very inefficient compared to the binding of whole RDM4 cells to CTL. The R4-PM were then attached to P388D1 cells (H-2d) in the presence of wheat germ agglutinin and polyethylene glycol (PEG), both under conditions which promote membrane fusion (40% PEG) and under conditions which do not (10% PEG). About 1 cell equivalent R4-PM becomes associated per P388D1 cell in both situations. In the cytotoxicity assays that were carried out, the P388D1 cells which had R4-PM attached under fusion conditions were lysed by CTL directed against H2k in a specific manner, while the P388D1 cells which had R4-PM attached under nonfusion conditions were not lysed above background levels by these CTL. These results suggest that recognition of target cells by allogeneic CTL such that lysis occurs requires more than presentation of the alloantigens as they are expressed in plasma membrane vesicles. However, fusion of these vesicles back into living cells apparently enhances the ability of the alloantigens to be recognized.  相似文献   

16.
Summary Fusion between unilamellar vesicles of both egg phosphatidylcholine and bovine phosphatidylserine was induced by polyethylene glycol. Aggregation and fusion events were monitored by electron microscopy and turbidity measurements. The threshold concentration of polyethylene glycol for aggregation and fusion is found to be independent of lipid concentration. Typically, aggregation of phosphatidylcholine vesicles starts at 2.5% (wt/wt) polyethylene glycol, but fusion is not significant until the polyethylene glycol concentration reaches 35%. Multilamellar vesicles were formed as a result of fusion.Abbreviations PEG Polyethylene glycol - IMP Intramembranous particle - PC Phosphatidylcholine - PS Phosphatidylserine - SUV Small unilamellar vesicles - MLV Multilamellar vesicles - DPPC Dipalmitoyl phosphatidylcholine - DSC Differential scanning calorimetry  相似文献   

17.
The process of cell fusion of Madin-Darby canine kidney (MDCK) cells by HVJ (Sendai virus) was investigated to determine whether the HVJ particles were directly associated with the site of membrane fusion. Confluent monolayer cultures of MDCK cells are sealed together by tight junctions on the apices of their lateral membranes, so added virus particles can be adsorbed only to the apical surfaces of the cells. After incubation with HVJ at 37 degrees C for 30 min, the cells still appeared mononucleate and unfused by light microscopy, but electron microscopic examination showed that fusion at the lateral membranes had occurred below the tight junctions. Furthermore, when fluorescein isothiocyanate (FITC)-labeled macromolecules, which cannot pass across the gap junctions, were injected into the cells at this stage, labeled macromolecules were found to diffuse into the adjacent cells. These findings strongly suggest that cell fusion was initiated in the lateral membrane, a region distinct from the site of adsorbed HVJ particles. Thus, the virus particles were not directly associated with the fusion site, but induced fusion of the lateral membranes indirectly.  相似文献   

18.
Temperature-sensitive (ts) mutants were isolated in a cell line of Drosophila melanogaster, GM1, by ethyl methanesulfate treatment. Two of them, ts15 and ts58, formed colonies at 23 degrees C but not at 30 degrees when inoculated at densities of/or less than 10(5) cells per 60 X 15-mm dish. By using these ts mutants, cell fusion was attempted with polyethylene glycol (PEG) 6000. Several colonies per dish developed at 30 degrees C when different ts mutants were mixed, treated with PEG, and inoculated at a density of 10(4) cells per dish. Cells in some of the colonies thus developed were propagated and their temperature-sensitive character and karyotypes were studied. The results indicated that cell fusion could be induced with PEG and that the cells which formed colonies at 30 degrees C after PEG treatment were the hybrids in which the temperature-sensitive lesions in the mutants were complemented.  相似文献   

19.
Chinese hamster ovary (CHO) cells deficient in hypoxanthine-guanine phosphoribosyl transferase (HGPRT) have been fused by means of polyethylene glycol (PEG) with erythrocyte ghosts loaded with crude extracts of human HGPRT. When a ratio of 100 loaded ghosts per deficient CHO cell was used about 80% of the cells showed grains above the background. Mononucleated cells which comprised about 81% of the injected cells contained an average number of grains of 36 ± 1 compared with 96 ± 2 found in mononucleated wild-type cells fused and labelled under the same conditions. Cell viability was not greatly affected after injection as nearly 85% of the total cell population excluded trypan blue 22 h after fusion and at least 90% of the mononucleated cells divided within 30 h after fusion.  相似文献   

20.
The effects of polyethylene glycol and dimethyl sulfoxide (PEG/DMSO) treatment of donor cells on the fusion and subsequent development of bovine nuclear transfer embryos using mammary gland epithelial (MGE) cells before electrofusion (fresh MGE cells) was studied. The same study was conducted on those cells that were frozen and stored in liquid nitrogen, and then thawed (frozen-thawed MGE cells). Experiment 1 showed that the exposure time and pH of PEG/DMSO solution affected the fusion of nuclear transfer, and that a higher fusion rate was obtained when fresh MGE cells were exposed to PEG/DMSO solution at pH 8.0 for 5 min. In Experiment 2, the proportion of fused oocytes with fresh PEG/DMSO-treated cells (70 +/- 6%) was significantly higher than that with non-treated cells (50 +/- 13%, p < 0.05). The same tendency was observed when frozen-thawed cells as donor nuclei were used (48 +/- 6% vs. 34 +/- 12%, p < 0.05). In addition, PEG/DMSO treatment has neither harmful nor beneficial effects on the cleavage and development of the blastocyst stage of reconstructed embryos (p > 0.05). The fusion and cleavage rates of frozen-thawed cells were significantly lower than those of fresh cells (p < 0.05). After 10 blastocysts, derived from fresh PEG/DMSO-treated cells, were transferred to five recipient heifers, one live female calf was obtained. Experiment 3 showed that PEG/DMSO treatment reduced the viability of both fresh and frozen-thawed MGE cells (p < 0.05). We conclude that the PEG/DMSO treatment of fresh MGE cells, as well as the frozen-thawed cells, before electrofusion has a positive effect on the fusion of nuclear transfer without decreasing the in vitro development of reconstructed embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号