首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex fac-[RuCl3(NO)(P-N)] (1) was synthesized from the reaction of [RuCl3(H2O)2(NO)] and the P-N ligand, o-[(N,N-dimethylamino)phenyl]diphenylphosphine) in refluxing methanol solution, while complex mer,trans-[RuCl3(NO)(P-N)] (2) was obtained by photochemical isomerization of (1) in dichloromethane solution. The third possible isomer mer,cis-[RuCl3(NO)(P-N)] (3) was never observed in direct synthesis as well as in photo- or thermal-isomerization reactions. When refluxing a methanol solution of complex (2) a thermally induced isomerization occurs and complex (1) is regenerated.The complexes were characterized by NMR (31P{1H}, 15N{1H} and 1H), cyclic voltammetry, FTIR, UV-Vis, elemental analysis and X-ray diffraction structure determination. The 31P{1H} NMR revealed the presence of singlet at 35.6 for (1) and 28.3 ppm for (2). The 1H NMR spectrum for (1) presented two singlets for the methyl hydrogens at 3.81 and 3.13 ppm, while for (2) was observed only one singlet at 3.29 ppm. FTIR Ru-NO stretching in KBr pellets or CH2Cl2 solution presented 1866 and 1872 cm−1 for (1) and 1841 and 1860 cm−1 for (2). Electrochemical analysis revealed a irreversible reduction attributed to RuII-NO+ → RuII-NO0 at −0.81 V and −0.62 V, for (1) and (2), respectively; the process RuII → RuIII, as expected, is only observed around 2.0 V, for both complexes.Studies were conducted using 15NO and both complexes were isolated with 15N-enriched NO. Upon irradiation, the complex fac-[RuCl3(NO)(P-N)] (1) does not exchange 14NO by 15NO, while complex mer,trans-[RuCl3(NO)(P-N)] (2) does. Complex mer,trans-[RuCl3(15NO)(P-N)] (2′) was obtained by direct reaction of mer,trans-[RuCl3(NO)(P-N)] (2) with 15NO and the complex fac-[RuCl3(15NO)(P-N)] (1′) was obtained by thermal-isomerization of mer,trans-[RuCl3(15NO)(P-N)] (2′).DFT calculation on isomer energies, electronic spectra and electronic configuration were done. For complex (1) the HOMO orbital is essentially Ru (46.6%) and Cl (42.5%), for (2) Ru (57.4%) and Cl (39.0%) while LUMO orbital for (1) is based on NO (52.9%) and is less extent on Ru (38.4%), for (2) NO (58.2%) and Ru (31.5%).  相似文献   

2.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

3.
In the quest for complexes modelling functional characteristics of metal sulfur oxidoreductases, a series of molybdenum nitrosyl complexes with sulfur-dominated coordination sphere was synthesized. Treatment of the 16, 17 and 18 valence electron (VE) complexes [Mo(L)(NO)('S4')] (1–3) [L?=?SPh (1), PMe3 (2), NO (3), 'S4'2–?=?1,2-bis-(2-mercaptophenylthio) ethane(2-)] with the Brönsted acid HBF4 resulted in formation of different types of products. 1 and 3 were reversibly protonated at one thiolate atom of the 'S4'2– ligand;2, however, yielded the phosphonium salt [HPMe3]BF4 and the dinuclear [Mo(NO)('S4')]2. Alkylation of 1, 2 and 3 by Me3OBF4 or Et3OBF4 uniformly resulted in high yields of [Mo(L)(NO)(R-'S4')]BF4 complexes [L?=?SPh: R?=?Me (5), Et (6); L?=?PMe3: R?=?Me (7); L?=?NO: R?=?Me (8), Et (9)] in which one thiolate atom of the 'S4'2– ligand had become alkylated; the NMR spectra of 5, 6, 8 and 9 indicated that only one out of four theoretically possible diastereoisomers had formed. 5 and 6 were characterized also by single-crystal X-ray structure analyses. A comparison of ν(NO) bands and redox potentials (cyclic voltammetry) of parent complexes and alkylated derivatives showed that alkylation leads to a decrease in electron density at the molybdenum center and to a positive shift in redox potentials. The 16 VE complex 1 could be reduced, also chemically, to give the corresponding 17 VE anion [1], and inserted elemental sulfur into the Mo-SPh bond, forming the 18 VE phenylperthio complex [Mo(η2–SSPh)(NO)('S4')] (11) which, upon reaction with PPh3, gave SPPh3 and regenerated the parent complex 1. These results are discussed with regard to the sequence of proton and electron transfer steps occurring in substrate conversions catalyzed by metal sulfur oxidoreductases.  相似文献   

4.
[Ru(H)(CO)(PPh3)2(α/β-NaiR)](ClO4) (3, 4) are synthesized by the reaction of [Ru(H)(Cl)(CO)(PPh3)3] with 1-alkyl-2-(naphthyl-α/β-azo)imidazole (α-NaiR (3); β-NaiR (4)). One of the complexes [Ru(H)(CO)(PPh3)2(α-NaiMe)](ClO4) (3a) has been structurally established by X-ray diffraction study. Upon addition of Cl2 saturated in MeCN to 3 or 4 gives [Ru(Cl)(CO)(α/β-NaiR)(PPh3)2](ClO4) (for α-NaiR (5); β-NaiR (6)), without affecting metal oxidation state, which were characterized by spectroscopic measurements. The redox property of the complexes is examined by cyclic voltammetry.  相似文献   

5.
Dithioformato [Re{η2-SC(H)S}(NO)P3]BPh4 (1), thioformamido [Re{η2-RNC(H)S}(NO)P3]BPh4 (2) (R = Et, p-tolyl), formamido [Re{η2-PhNC(H)O}(NO)P3]BPh4 (3) and formamidinato [Re{η2-p-tolylNC(H)Np-tolyl}(NO)P3]BPh4 (4) (P = PPh2OEt) complexes were prepared by allowing the hydride ReH2(NO)P3 to react first with triflic acid and then with the appropriate heteroallene CS2, RNCS, PhNCO and p-tolylNCNp-tolyl. Treatment of the ReH2(NO)L(PPh3)2 [L = P(OEt)3, PPh(OEt)2] and ReH2(NO)(PPh3)3 hydrides first with triflic acid and then with isothiocyanate RNCS (R = Et, p-tolyl) gave the [Re{η2-RNC(H)S}(NO){P(OEt)3}(PPh3)2]BPh4 (5, 6) and [Re(η2-RNC(H)S)(NO)(PPh3)3]BPh4 (7) derivatives. Depending on the nature of the phosphite, instead, the reaction of ReH2(NO)L(PPh3)2 and ReH2(NO)(PPh3)3 hydrides first with CF3SO3H and then with isocyanate R1NCO (R1 = Ph, p-tolyl) gave the chelate [Re{η2-R1NC(H)O}(NO){P(OEt)3}(PPh3)2]BPh4 (8) and [Re{η2-R1NC(H)O}(NO)(PPh3)3]BPh4(10) complexes with P(OEt)3 or PPh3, while the η1-coordinate [Re{η1-RNC(H)S}(NO){PPh(OEt)2}2(PPh3)2]BPh4 (9) derivative was obtained with the PPh(OEt)2 phosphite ligand. η1-Coordinate dithioformato [Re{η1-SC(H)S}(NO){PPh(OEt)2}2(PPh3)2]BPh4 (11) and formato [Re{η1-OC(H)O}(NO){PPh(OEt)2}2(PPh3)2]BPh4 (12) complexes, as well as the formamidinato [Re{η2-p-tolylNC(H)Np-tolyl}(NO){P(OEt)3}(PPh3)2]BPh4 (13) derivative were also prepared.  相似文献   

6.
The first chiral bis(pyridine) N-C(H)-N pincer ligand, (5S,7S)-1,3-bis(6,6-dimethyl-5,6,7,8-tetrahydro-5,7-methanquinolin-2-yl)benzene (HL) has been synthesized and characterized by a thorough 1H NMR analysis. Reaction of HL with K2[PtCl4] in acetic acid gives [Pt(L)Cl] (1), where L acts as a tridentate N-C-N pincer ligand. The analogous palladium(II) derivatives [Pd(L)Cl] (2), and [Pd(L)(OAc)] (3), were first prepared through a transmetalation reaction between Pd(OAc)2 and the organomercury compound [Hg(L)Cl] (4). The structures of compounds 1 (Pt) and 2 (Pd), as determined by X-ray diffraction, are reported and compared. Compound 2 can also be obtained from Na2[PdCl4] and HL in refluxing acetic acid, i.e., under the same conditions used for compound 1. Apparently, this is the first palladium pincer derivative of a 1,3-bis(pyridyl)benzene ligand synthesized by direct C-H activation.The neutral complexes 1-3 are catalysts of modest activity, but devoid of enantioselectivity in the Heck reaction between iodobenzene and methyl acrylate and in the aldol condensation of benzaldehyde with methyl isocyanoacetate.  相似文献   

7.
The organometallic tin(IV) complexes [SnPh2(SRF)2] SRF = SC6F4-4-H (1), SC6F5 (2), were synthesized and their reactivity with [MCl2(PPh3)2] M = Ni, Pd and Pt explored. Thus, transmetallation products were obtained affording polymeric [Ni(SRF)(μ-SRF)]n, monomeric cis-[Pt(PPh3)2(SC6F4-4-H)2] (3) and cis-[Pt(PPh3)2(SC6F5)2] (4) and dimeric species [Pd(PPh3)(SC6F4-4-H)(μ-SC6F4-4-H)]2 (5) and [Pd(PPh3)(SC6F5)(μ-SC6F5)]2 (6) for Ni, Pt and Pd, respectively. The crystal structures of complexes 1, 2, 3, 4 and 6 were determined.  相似文献   

8.
Four new imidazole-based ligands, 4-((1H-imidazol-4-yl)methyl)-2-phenyl-4,5-dihydrooxyzole (L OL 1), 4-((1H-imidazol-4-yl)methyl)-2-(tert-butyl)-4,5-dihydrooxyzole (L OL 2), 4-((1H-imidazol-4-yl)methyl)-2-methyl-4,5-dihydrooxyzole (L OL 3), and N-(2,2-dimethylpropylidene)-2-(1-trityl-1H-imidazol-4-yl-)ethyl amine (L imz 1), have been synthesized. The corresponding copper(I) complexes [Cu(I)(L OL 1)(CH3CN)]PF6 (CuL OL 1), [Cu(I)(L OL 2)(CH3CN)]PF6 (CuL OL 2), [Cu(I)(L OL 3)(CH3CN)]PF6 (CuL OL 3), [Cu(I)(L imz 1)(CH3CN)2]PF6 (CuL imz 1) as well as the Cu(I) complex derived from the known ligand bis(1-methylimidazol-2-yl)methane (BIMZ), [Cu(I)(BIMZ)(CH3CN)]PF6 (CuBIMZ), are screened as catalysts for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC-H2) to 3,5-di-tert-butylquinone (3,5-DTBQ). The primary reaction product of these oxidations is 3,5-di-tert-butylsemiquinone (3,5-DTBSQ) which slowly converts to 3,5-DTBQ. Saturation kinetic studies reveal a trend of catalytic activity in the order CuL OL 3 ≈ CuL OL 1 > CuBIMZ > CuL OL 2 > CuL imz 1. Additionally, the catalytic activity of the copper(I) complexes towards the oxygenation of monophenols is investigated. As substrates 2,4-di-tert-butylphenol (2,4-DTBP-H), 3-tert-butylphenol (3-TBP-H), 4-methoxyphenol (4-MeOP-H), N-acetyl-l-tyrosine ethyl ester monohydrate (NATEE) and 8-hydroxyquinoline are employed. The oxygenation products are identified and characterized with the help of UV/Vis and NMR spectroscopy, mass spectrometry, and fluorescence measurements. Whereas the copper complexes with ligands containing combinations of imidazole and imine functions or two imidazole units (CuL imz 1 and CuBIMZ) are found to exhibit catalytic tyrosinase activity, the systems with ligands containing oxazoline just mediate a stoichiometric conversion. Correlations between the structures of the complexes and their reactivities are discussed.  相似文献   

9.
Reactions of 2-(arylazo)pyridine (La-c) with [IrCl3(PPh3)2] in two different solvents, viz. ethanol and toluene are reported. In refluxing toluene two new isomeric (mer and fac geometries) iridium complexes, having molecular formula [IrCl3(PPh3)(L)] (1 and 2) have been isolated. The reaction in refluxing ethanol yielded two new hydrido complexes of molecular formula [IrHCl2(PPh3)(L)] (3) and [IrHCl(PPh3)2(L)]Cl (4) along with the compound 2. All the complexes have been thoroughly characterized by NMR, UV-Vis spectroscopy, cyclic voltammetry and X-ray crystallographic analysis. The 1H NMR spectra of the hydrido complexes 3 and 4 showed a doublet and a triplet signals at δ −20.43 and −14.82 respectively due to coupling with magnetically equivalent phosphorous nuclei. Strong trans influence of the π-acceptor ligands guided the X-ray structural parameters; bonds trans to the these ligands are unusually long. Similar elongation effect was also noted for the bonds trans to the coordinated hydrido ligand. UV-Vis-NIR spectrum consisted of multiple transitions in the UV and visible regions. Cyclic voltammetry of each of these complexes has exhibited a reductive response between −0.25 and −0.55 V, which has been assigned to azo-ligand reduction. The compound 3, however, showed a quasireversible oxidative wave near 1.45 V, due to IrIII/IrIV couple.  相似文献   

10.
Phosphorus-carbon bond is formed via: (i) the apparent HCCH insertion into Ir-P bond to produce Ir-CHCH-PPh3 group and (ii) the activation of the ring-methyl group of the coordinated Cp* (C5Me5 −) to produce Ir(η5-C5Me4CH2-PPh3) group from reactions of iridium(III)-Cp* complexes, [Cp*IrL3]n+ (n=1, 2); Cp*=C5Me5 −; L3=Cl(PPh3)2 (3), (CH3CN)3 (5). The following new P-C bond containing iridium(III) complexes have been prepared: [Cp*Ir(-CHCH-PPh3)Cl(PPh3)]+ (4) from 3 with HCCH; [Ir(η5-C5Me4CH2-PPh3)(H)(PPh3)2]2+ (6) from 5 with PPh3; [Cp*Ir(-CHCH-PPh3)2(PPh3)]2+ (7) from 5 with HCCH and PPh3; [Ir(η5-C5Me4CH2-PPh3)(-CHCH-PPh3)Cl(PPh3)]2+ (8) from [Ir(η5-C5Me4CH2-PPh3)(Cl)(PPh3)2]2+ (6-Cl) with HCCH; [Ir(η5-C5Me3(1,3-CH2-PPh3)2(H)(PPh3)2)]3+ (10) from [Ir(η5-C5Me4CH2-PPh3)(NCCH3)2(PPh3)]3+ (9) with PPh3; [Ir(η5-C5Me4CH2-PPh3)(-CHCH-PPh3)2(PPh3)]3+ (11) from 9 with HCCH and PPh3.  相似文献   

11.
Addition of KTpPh2 to a solution of NiX2 (X = Cl, Br, NO3, OAc and acac) or NiBr(NO)(PPh3)2 in THF yields the structurally characterized series [NiCl(HpzPh2)TpPh2] (1) and [NiXTpPh2] (X = Br 2, NO 3, NO34, OAc 5 and acac 6) including the first example of a tris(pyrazolyl)borate nickel nitrosyl complex. IR spectroscopy confirms that all the TpPh2 ligands are κ3 coordinated and that the NO ligand in 3 is linearly bound. Electronic spectra are consistent with four- or five-coordinate species in solution. NMR spectroscopic studies indicate that the complexes are paramagnetic, with the exception of 3. This is confirmed by magnetic susceptibility studies, which suggest that complexes 1, 2 and 4-6 are paramagnetic with two unpaired electrons. X-ray crystallographic studies of 5 reveal a distorted trigonal bipyramidal nickel centre with a symmetrically coordinated acetate ligand.  相似文献   

12.
The ruthenium complexes [RuII(bbp)(L)(Cl)] (1), [RuII(bbp)(L)(H2O)] (2) and [RuII(bbp)(L)(DMSO)] (3) {bbp = 2,6-bis(benzimidazol-2-yl)pyridine, L = o-iminoquinone} have been synthesized in a stepwise manner starting from [RuIII(bbp)Cl3]. The single crystal X-ray structures, except for the complex 2, have been determined. All the complexes were characterized by UV-Vis, FT-IR, 1H NMR, Mass spectroscopic techniques and cyclic voltammetry. The RuIII/RuII couple for complexes 1, 2, and 3 appears at 0.63, 0.49, 0.55 V, respectively versus SCE. It is observed that complex 2, on refluxing in acetonitrile, results into [RuII(bbp)(L)(CH3CN)], 4 which has been prepared earlier in a different method. The structural, spectral and electrochemical properties of complexes 1, 2 and 3 were compared to those of earlier reported complex 4, [RuII(bbp)(L)(CH3CN)].  相似文献   

13.
Two new complex salts of the form (Bu4N)2[Ni(L)2] (1) and (Ph4P)2[Ni(L)2] (2) and four heteroleptic complexes cis-M(PPh3)2(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2NCS2] and cis-M(PPh3)2(L′) [ M = Pd(II) (5), Pt(II) (6), L′ = C6H5SO2NCS2] were prepared and characterized by elemental analyses, IR, 1H, 13C and 31P NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)2(SH)2, 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H?Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with σrt values ∼10−5 S cm−1 show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.  相似文献   

14.
Four different mononuclear octahedral Ni(II) complexes with protonated and deprotonated form of the same ligand have been synthesized by controlling reaction conditions and structurally characterized. The complexes are [Ni(HLl-his)(benzoate)(MeOH)] (1), [Ni(HLl-his)(SCN)(MeOH)] (2), [Ni(HLl-his)2] (3) and [Ni(Ll-his)(imidazole)2] (4) where H2Ll-his is (S)-2-(2-hydroxybenzylamino)-3-(1H-imidazol-4-yl)-propionic acid. The ligand behaves as a monobasic tetradentate ligand in 1 and 2, monobasic tridentate ligand in 3 and dibasic tetradentate ligand in 4. Ni(II) coordinated phenolic proton of the ligand in the complexes 1-2 shows strong intra-molecular H-bonding with benzoate in 1 and lattice water in 2, whereas 3 shows intermolecular H-bonding between uncoordinated phenols with neighbouring carboxylate. The pH titration of the complexes revealed that metal coordination and H-bond in complexes 1 and 2 considerably lowers the acidity of ligand phenol (pKa 6.8 and 7.0 respectively) compared to phenol (pKa 10). The complex 4 does not show any proton loss due to the absence of phenolic proton. All the complexes show extensive H-bonded network in the crystals including narrow (7.8 × 5.2 Å) water filled one dimensional channel in 2.  相似文献   

15.
Reaction between the carbonyl, nitrosyl complex, OsCl(CO)(NO)(PPh3)2 (1) and dioxygen results in combination of CO and O2, forming a chelating peroxycarbonyl ligand in the yellow complex, Cl(NO)(PPh3)2 (2). Confirmation of the unique peroxycarbonyl ligand arrangement in 2 is provided by crystal structure determination. When 2 is heated, as a suspension in heptane under reflux, there is a rearrangement to the regular chelating carbonate ligand in the orange complex, Cl(NO)(PPh3)2 (3). The structure of 3 has also been determined by X-ray crystallography. Compound 2 also undergoes the following reactions: with water, releasing CO2 and forming Os(OH)2Cl(NO)(PPh3)2 (4); with HCl releasing CO2 and forming Os(OH)Cl2(NO)(PPh3)2 (5); and with excess triphenylphosphine releasing CO2 and triphenylphosphine oxide forming OsCl(NO)(PPh3)3 (6).  相似文献   

16.
The reactions of [ReCl3(CH3CN)(PPh3)2] with benzil PhC(O)C(O)Ph, and with a natural 1,2-naphthoquinone derivative, β-lapachone (Lap), result in oxidative addition with the formation of Re(V) complexes with stilbenediolate, [ReCl3(PhC(O)C(O)Ph)(PPh3)] (1) and with a reduced semiquinonic form of lapachone, [ReIVCl3(Lap)(PPh3)] (2). The structures of both compounds were established by X-ray crystallography.  相似文献   

17.
Treatment of [Ti(OPri)2Cl2] with K(tpip) (tpip = [N(PPh2O)2]) followed by chlorination with HCl afforded cis-[Ti(tpip)2Cl]2 (1). Reduction of 1 with Na/Hg in THF gave [Ti(tpip)3] (2), which could also be prepared from [TiCl3(THF)3] and K(tpip). Recrystallization of [V(O)(tpip)2] (3) from CH2Cl2-Et2O in air afforded trinuclear [{V(O)}3(μ-tpip)3(μ-O)3] (4). Treatment of [Cr(NBut)2Cl2] and [Cr(NBut)Cl3(dme)] (dme = 1,2-dimethoxyethane) with [Ag(tpip)]4 led to isolation of [Cr(tpip)3] (6) and [Cr(NBut)(tpip)2Cl] (7), respectively. The Ti- and V-tpip complexes are capable of catalyzing oxidation of sulfides with tert-butyl hydroperoxide and H2O2. The crystal structures of 1, 2, and 4 have been determined.  相似文献   

18.
The dinuclear and trinuclear copper(II) complexes [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 · [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1) and [Cu3(L)2(OH)2(H2O)2](NO3)2 (2) (HL=2-[2-(α-pyridyl)ethyl]imino-3-butanone oxime and phen=1,10-phenanthroline) were prepared and their crystal structures have been determined by X-ray crystallography. Complex 1 is composed of [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 (1a) and [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1b). In 1a and 1b, one oximato of L and one hydroxo group bridge two copper(II) ions. The linear trinuclear cation [Cu3(L)2(OH)2(H2O)2]2+ in 2 is centrosymmetric, and one oximato and one hydroxo group bridge the central and terminal copper(II) ions. The strong antiferromagnetic interactions within the dinuclear and trinuclear complexes 1 and 2 have been observed (2J=∼−900 cm−1 for 1 and 2, respectively, H=−2JS1·S2).  相似文献   

19.
Complex [PtMe2(triphos-P,P′)], (1) where the linear triphosphine triphos [=bis(diphenylphosphinoethyl)phenylphosphine] acts as a bidentate ligand, can be easily converted in a variety of new complexes due to the reactivity of the free phosphorus donor. The selective oxidation of the uncoordinated phosphorus gave [PtMe2(triphosPO-P,P′)] whose X-ray crystal structure is here reported; from the reactions of 1 with platinum and non platinum precursors homotrimetallic [Pt3Me4XY(triphos)2] (X=Y=Me, Cl, I, X=Me, Y=Cl) and heterotrimetallic ([Pt2PdMe4Cl2(triphos)2] and [Pt2RhMe4(cod)(triphos)2]PF6) complexes were obtained where triphos acts as a chelating/bridging ligand. When 1 was treated with triflic acid in the presence of a neutral electron donor L (L=SMe2, pyridine, PPh3), complexes [PtL(triphos)]2+ were rapidly recovered in high yields. The protonolysis of 1 in the presence of CO and methanol gave the new organometallic complex [Pt(COOMe)(triphos)]OTf.  相似文献   

20.
The reactions of trans-[(PPh3)2M(CO)Cl] (M = Rh and Ir) with benzildiimine (H2BDI = 2) derived from benzil-bis(trimethylsilyl)diimine (Si2BDI) (1) in a 1:2 and 1:1 molar ratio afforded the cationic bis-benzildiiminato complexes [Rh(PPh3)2(HBDI)2]Cl (3) and the mono-benzildiimine complex [Ir(PPh3)2(CO)(H2BDI)]Cl (4), respectively. Both complexes are fully characterized using IR, FAB-MS, NMR spectroscopy and elemental analysis. The single crystal X-ray structure analysis reveals a distorted octahedral coordination geometry for the Rh(III) in 3 and a highly distorted square pyramidal geometry for Ir(I) in 4. In addition, the solid-state structure of Si2BDI is reported here for the first time showing the substituents highly twisted because of steric reasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号