首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
K Koo  W D Stuart 《Génome》1991,34(4):644-651
  相似文献   

2.
3.
A mitochondrial gene (denoted aap1) in Saccharomyces cerevisiae has been characterized by nucleotide sequence analysis of a region of mtDNA between the oxi3 and oli2 genes. The reading frame of the aap1 gene specifies a hydrophobic polypeptide containing 48 amino acids. The functional nature of this reading frame was established by sequence analysis of a series of mit- mutants and revertants. Evidence is presented that the aap1 gene codes for a mitochondrially synthesized polypeptide associated with the mitochondrial ATPase complex. This polypeptide (denoted subunit 8) is a proteolipid whose size has been previously assumed to be 10 kilodaltons based on its mobility on SDS-polyacrylamide gels, but the sequence of the aap1 gene predicts a molecular weight of 5,815 for this protein.  相似文献   

4.
5.
6.
The nucleotide sequence of a 4.39-kb DNA fragment encoding the alpha-glucosidase gene of Candida tsukubaensis is reported. The cloned gene contains a major open reading frame (ORF 1) which encodes the alpha-glucosidase as a single precursor polypeptide of 1070 amino acids with a predicted molecular mass of 119 kDa. N-terminal amino acid sequence analysis of the individual subunits of the purified enzyme, expressed in the recombinant host Saccharomyces cerevisiae, confirmed that the alpha-glucosidase precursor is proteolytically processed by removal of an N-terminal signal peptide to yield the two peptide subunits 1 and 2, of molecular masses 63-65 kDa and 50-52 kDa, respectively. Both subunits are secreted by the heterologous host S. cerevisiae in a glycosylated form. Coincident with its efficient expression in the heterologous host, the C. tsukubaensis alpha-glucosidase gene contains many of the canonical features of highly expressed S. cerevisiae genes. There is considerable sequence similarity between C. tsukubaensis alpha-glucosidase, the rabbit sucrase-isomaltase complex (proSI) and human lysosomal acid alpha-glucosidase. The cloned DNA fragment from C. tsukubaensis contains a second open reading frame (ORF 2) which has the capacity to encode a polypeptide of 170 amino acids. The function and identity of the polypeptide encoded by ORF 2 is not known.  相似文献   

7.
8.
9.
Summary We determined the nucleotide sequence of gene 1 of Klebsiella phage K11, which is a member of the T7 group of phages. The largest open reading frame corresponds to a polypeptide with 906 amino acids and a molecular weight of 100383 daltons. The deduced amino acid sequence of this polypeptide shows 71% homology to the T7 RNA polymerase (the product of T7 gene 1), 72% homology to the T3 RNA polymerase and 27% homology to the SP6 RNA polymerase. Divergent evolution was clearly most pronounced in the amino-terminal portion.  相似文献   

10.
11.
12.
13.
14.
We have cloned and characterized the alpha-amylase gene (AMY1) of the yeast Schwanniomyces occidentalis. A cosmid gene library of S. occidentalis DNA was screened in Saccharomyces cerevisiae for alpha-amylase secretion. The positive clone contained a DNA fragment harbouring an open reading frame of 1536 nucleotides coding for a 512-amino-acid polypeptide with a calculated Mr of 56,500. The deduced amino acid sequence reveals significant similarity to the sequence of the Saccharomycopsis fibuligera and Aspergillus oryzae alpha-amylases. The AMY l gene was found to be expressed from its original promoter in S. cerevisiae, Kluyveromyces lactis and Schizo-saccharomyces pombe leading to an active secreted gene product and thus enabling the different yeast transformants to grow on starch as a sole carbon source.  相似文献   

15.
16.
Sequencing and expression of the rne gene of Escherichia coli.   总被引:5,自引:1,他引:4       下载免费PDF全文
RNase E is a major endonucleolytic RNA processing enzyme in Escherichia coli. We have sequenced a 3.2 kb EcoRI-BamHI fragment encoding the rne gene, and identified its reading frame. Upstream from the gene, there are appropriate consensus sequences for a putative promoter and a ribosome binding site. We have translated this gene using a T7 RNA polymerase/promoter system. We determined 25 amino acids from the N-terminal of the translated product and they are in full agreement with the DNA sequence. The translated product of the rne gene migrates in SDS containing polyacrylamide gels as a 110,000 Da polypeptide, but the open reading frame found in the sequenced DNA indicates a much smaller protein. The entity that migrates as a 110,000 Da contains RNA, which could account, at least partially, for the migration of the rne gene product in SDS containing polyacrylamide gels.  相似文献   

17.
The gene from Bacillus brevis TT02–8 encoding arginase was cloned into Escherichia coli, and its nucleotide sequence was identified. The nucleotide sequence contained an open reading frame that encoded a polypeptide of 298 amino acid residues with a predicted molecular weight of 31,891, which was consistent with that previously calculated for arginase purified from this bacterium. Comparison of the deduced amino acid sequence of the B. brevis TT02–8 arginase with that of the prokaryotic and eukaryotic arginases of Bacillus caldovelox, Bacillus subtilis, Agrobacterium Ti plasmid C58, Saccharomyces cerevisiae, Coccidioides immitis, Xenopus laevis, Rana catesbeiana, rat liver, and human liver, showed 33–66% of the sequences to be similar; there were several highly conserved regions. Arginase activity was detected in Escherichia coli cells transformed with an expression plasmid of the cloned arginase gene.  相似文献   

18.
A biochemical, molecular, and genetic analysis of the Saccharomyces cerevisiae INO1 gene and its product, L-myo-inositol-1-phosphate synthase (EC 5.5.1.4) has been carried out. The sequence of the entire INO1 gene and surrounding regions has been determined. Computer analysis of the DNA sequence revealed four potential peptides. The largest open reading frame of 553 amino acids predicted a peptide with a molecular weight of 62,842. The amino acid composition and amino terminus of purified L-myo-inositol-1-phosphate synthase were chemically determined and compared to the amino acid composition and amino terminus of the protein predicted from the DNA sequence of the large open reading frame. This analysis established that the large open reading frame encodes L-myo-inositol-1-phosphate synthase. The largest of several small open reading frames adjacent to INO1 predicted a protein of 133 amino acids with a molecular weight of 15,182 and features which suggested that the encoded protein may be membrane-associated. A gene disruption was constructed at INO1 by eliminating a portion of the coding sequence and replacing it with another sequence. Strains carrying the gene disruption failed to express any protein cross-reactive to antibody directed against L-myo-inositol-1-phosphate synthase. Although auxotrophic for inositol, strains carrying the gene disruption were completely viable when supplemented with inositol. In a similar fashion, a gene disruption was constructed in the chromosomal locus of the 133-amino acid open reading frame. This mutation did not affect viability but did cause inositol to be excreted from the cell.  相似文献   

19.
The M2 double-stranded (ds) RNA species encodes toxin and resistance functions in Saccharomyces cerevisiae strains with the K2 killer specificity. RNA sequence analysis reveals the presence of a large open reading frame on the larger heat-cleavage product of M2 dsRNA, which is translated in vitro to yield a 28 kd polypeptide as a major product. The postulated translation initiator AUG triplet is located within a stem and loop structure near the 5' terminus of the positive strand, which also contains plausible 18S and 5.8S ribosomal RNA binding sites. These features may serve to regulate the translation of the K2 toxin precursor. The M1 (from type 1 yeast killers) and M2 dsRNA species lack extensive sequence homology, although specific features are shared, which may represent structural elements required for gene expression and replication.  相似文献   

20.
We have screened a Saccharomyces cerevisiae expression library with antibodies against seryl-tRNA synthetase (SerRS) from baker's yeast. In this way we obtained clones which contain serS, the structural gene for seryl-tRNA synthetase. Genomic Southern blots show that the serS gene resides on a 5.0 kb SalI fragment. Nucleotide sequence analysis of the genes revealed a single open reading frame from which we deduced the amino acid sequence of the enzyme consistent with that of two peptides isolated from SerRS. The enzyme is comprised of 462 amino acids consistent with earlier determinations of its molecular weight. The codon usage of serS is typical of abundant yeast proteins. Nuclease S1 analysis of serS mRNA defined the RNA initiation site 20-40 bases downstream from an AT rich sequence containing the TATA box and 21-39 nucleotides upstream of the translation initiation codon. Yeast strains transformed with the cloned gene overproduce seryl-tRNA synthetase in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号