首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined the roles of liver and splanchnic vascular bed in anaphylactic hypotension in anesthetized rats and the effects of anaphylaxis on hepatic vascular resistances and liver weight in isolated perfused rat livers. In anesthetized rats sensitized with ovalbumin (1 mg), an intravenous injection of 0.6 mg ovalbumin caused not only a decrease in systemic arterial pressure from 120 +/- 9 to 43 +/- 10 mmHg but also an increase in portal venous pressure that persisted for 20 min after the antigen injection (the portal hypertension phase). The elimination of the splanchnic vascular beds, by the occlusions of the celiac and mesenteric arteries, combined with total hepatectomy attenuated anaphylactic hypotension during the portal hypertension phase. For the isolated perfused rat liver experiment, the livers derived from sensitized rats were hemoperfused via the portal vein at a constant flow. Using the double-occlusion technique to estimate the hepatic sinusoidal pressure, presinusoidal (R(pre)) and postsinusoidal (R(post)) resistances were calculated. An injection of antigen (0.015 mg) caused venoconstriction characterized by an almost selective increase in R(pre) rather than R(post) and liver weight loss. Taken together, these results suggest that liver and splanchnic vascular beds are involved in anaphylactic hypotension presumably because of anaphylactic presinusoidal contraction-induced portal hypertension, which induced splanchnic congestion resulting in a decrease in circulating blood volume and thus systemic arterial hypotension.  相似文献   

2.
Using in vivo and isolated perfused liver preparations of BALB/c mice, we determined the roles of the liver and splanchnic vascular bed in anaphylactic hypotension. Intravenous injection of ovalbumin antigen into intact-sensitized mice decreased systemic arterial pressure (P(sa)) from 92 +/- 2 to 39 +/- 3 (SE) mmHg but only slightly increased portal venous pressure (P(pv)) from 6.4 +/- 0.1 cmH(2)O to the peak of 9.9 +/- 0.5 cmH(2)O at 3.5 min after antigen. Elimination of the splanchnic vascular beds by ligation of the celiac and mesenteric arteries, combined with total hepatectomy, attenuated anaphylactic hypotension. Ligation of these arteries alone, but not partial hepatectomy (70%), similarly attenuated anaphylactic hypotension. In contrast, isolated sensitized mouse liver perfused portally at constant flow did not show anaphylactic venoconstriction but, rather, substantial constriction in response to the anaphylaxis-associated platelet-activating factor, indicating that venoconstriction in mice in vivo may be induced by mediators released from extrahepatic tissues. These results suggest that splanchnic vascular beds are involved in BALB/c mouse anaphylactic hypotension. They presumably act as sources of chemical mediators to cause the anaphylaxis-induced portal hypertension, which induced splanchnic congestion, resulting in a decrease in circulating blood volume and, thus, systemic arterial hypotension. Mouse hepatic anaphylactic venoconstriction may be induced by factors outside the liver, but not by anaphylactic reaction within the liver.  相似文献   

3.
The hypothesis was tested that low-frequency vasomotions in individual vascular beds are integrated by the cardiovascular system, such that new fluctuations at additional frequencies occur in arterial blood pressure. In anesthetized rats (n = 8), the sympathetic splanchnic and renal nerves were simultaneously stimulated at combinations of frequencies ranging from 0.075 to 0.8 Hz. Blood pressure was recorded together with mesenteric and renal blood flow velocities. Dual nerve stimulation at low frequencies (<0.6 Hz) caused corresponding oscillations in vascular resistance and blood pressure, whereas higher stimulation frequencies increased the mean levels. Blood pressure oscillations were only detected at the individual stimulation frequencies and their harmonics. The strongest periodic responses in vascular resistance were found at 0.40 +/- 0.02 Hz in the mesenteric and at 0.32 +/- 0.03 Hz (P < 0.05) in the renal vascular bed. Thus frequency modulation of low-frequency vasomotions in individual vascular beds does not cause significant blood pressure oscillations at additional frequencies. Furthermore, our data suggest that sympathetic modulation of mesenteric vascular resistance can initiate blood pressure oscillations at slightly higher frequencies than sympathetic modulation of renal vascular resistance.  相似文献   

4.
Moderate exercise elicits a relative postexercise hypotension that is caused by an increase in systemic vascular conductance. Previous studies have shown that skeletal muscle vascular conductance is increased postexercise. It is unclear whether these hemodynamic changes are limited to skeletal muscle vascular beds. The aim of this study was to determine whether the splanchnic and/or renal vascular beds also contribute to the rise in systemic vascular conductance during postexercise hypotension. A companion study aims to determine whether the cutaneous vascular bed is involved in postexercise hypotension (Wilkins BW, Minson CT, and Halliwill JR. J Appl Physiol 97: 2071-2076, 2004). Heart rate, arterial pressure, cardiac output, leg blood flow, splanchnic blood flow, and renal blood flow were measured in 13 men and 3 women before and through 120 min after a 60-min bout of exercise at 60% of peak oxygen uptake. Vascular conductances of leg, splanchnic, and renal vascular beds were calculated. One hour postexercise, mean arterial pressure was reduced (79.1 +/- 1.7 vs. 83.4 +/- 1.8 mmHg; P < 0.05), systemic vascular conductance was increased by approximately 10%, leg vascular conductance was increased by approximately 65%, whereas splanchnic (16.0 +/- 1.8 vs. 18.5 +/- 2.4 ml.min(-1).mmHg(-1); P = 0.13) and renal (20.4 +/- 3.3 vs. 17.6 +/- 2.6 ml.min(-1).mmHg(-1); P = 0.14) vascular conductances were unchanged compared with preexercise. This suggests there is neither vasoconstriction nor vasodilation in the splanchnic and renal vasculature during postexercise hypotension. Thus the splanchnic and renal vascular beds neither directly contribute to nor attenuate postexercise hypotension.  相似文献   

5.
We tested the hypothesis that dynamic exercise resets the operating point and attenuates the spontaneous gain of the arterial baroreflex regulation of mesenteric and hindlimb vascular conductance in hypertensive rats. Eleven adult male spontaneously hypertensive rats were chronically instrumented with left carotid arterial catheters and Doppler ultrasonic flow probes around the superior mesenteric and left common iliac arteries. After the rats recovered, arterial baroreflex function was examined by recording reflex changes in conductance in response to spontaneous changes in mean arterial pressure before exercise and during steady-state treadmill running at 6 and 18 m/min. Dynamic exercise reduced the spontaneous baroreflex gain of mesenteric conductance (by 51 and 36%) and maximum mesenteric conductance (by 24 and 32%) at 6 and 18 m/min, respectively. In sharp contrast, dynamic exercise increased the spontaneous maximum iliac conductance (by 32 and 47%) without changing the spontaneous gain. Sinoaortic denervation eliminated the relationship between mean arterial pressure and conductance by reducing the mesenteric (92%) and iliac (68%) vascular conductance gain. These results demonstrate that dynamic exercise has differential effects on the regulation of mesenteric and iliac vascular conductance in hypertensive rats.  相似文献   

6.
In humans, multiparity (repeated pregnancy) is associated with increased risk of cardiovascular disease. In rats, multiparity increases the pressor response to phenylephrine and to acute stress, due in part to changes in tone of the splanchnic arterial vasculature. Given that the venous system also changes during pregnancy, we studied the effects of multiparity on venous tone and compliance. Cardiovascular responses to volume loading (2 ml/100 g body wt), and mean circulatory filling pressure (MCFP, an index of venomotor tone) were measured in conscious, repeatedly bred (RB), and age-matched virgin rats. In addition, passive compliance and venous reactivity of isolated mesenteric veins were measured by pressure myography. There was a greater increase in mean arterial pressure after volume loading in RB rats (+7.2 +/- 2.5 mmHg, n = 8) than virgin rats (-1.4 +/- 1.7 mmHg, n = 7) (P < 0.05). The increase in MCFP in response to norepinephrine (NE) was also greater in RB rats [half maximal effective dose (ED(50)) 3.1 +/- 0.5 nmol.kg(-1).min(-1), n = 6] than virgins (ED(50): 12.1 +/- 2.7 nmol.kg(-1).min(-1), n = 6) (P < 0.05). Pressure-induced changes in passive diameter were lower in isolated mesenteric veins from RB rats (29.3 +/- 1.8 microm/mmHg, n = 6) than from virgins (36.9 +/- 1.3 microm/mmHg, n = 6) (P < 0.05). Venous reactivity to NE in isolated veins was also greater in RB rats (EC(50): 2.68 +/- 0.37x10(-8) M, n = 5) than virgins (EC(50): 4.67 +/- 0.93 x 10(-8) M, n = 8). We conclude that repeated pregnancy induces a long-term reduction in splanchnic venous compliance and augments splanchnic venous reactivity and sympathetic tonic control of total body venous tone. This compromises the ability of the capacitance (venous) system to accommodate volume overloads and to buffer changes in cardiac preload.  相似文献   

7.
Chloraloseanesthetized rats were implanted with Doppler flow probes on the mesenteric, renal, and external caudal arteries and were exposed to an ambient temperature of 40 degrees C. Heart rate, core (Tc) and tail-skin temperatures, and mean arterial blood pressure (MAP) were also monitored. Before heating, the celiac ganglion was removed (ganglionectomy) from one group of animals (n = 11) and a bilateral adrenal demedullation was performed in a second group (n = 14). As Tc progressively increased from 37 degrees C to 43 degrees C, MAP rose to a plateau then fell precipitously as Tc exceeded 41 degrees C. Ganglionectomy eliminated the rise in mesenteric resistance (P less than 0.05) and attenuated the rise in MAP compared with an intact control group (n = 11). Ganglionectomy also increased the heating rate (P less than 0.05) and reduced heat tolerance time (P less than 0.05). Demedullation attenuated the rise in both mesenteric resistance and MAP (P less than 0.05) and increased the rate of heating (P less than 0.05) compared with controls (n = 10). Renal and caudal resistance changes were similar in all groups. These data show the importance of intact adrenal medullas and sympathetic innervation to the splanchnic region in contributing to thermal tolerance in the rat. However, neither factor alone can explain splanchnic vasoconstriction during severe heat stress.  相似文献   

8.
This study examines the hypothesis that acute thermal injury decreases renal and splanchnic blood flow which correlates with altered endogenous vasodilator eicosanoid release. Anesthetized male Wistar rats were subjected to sham or a non-resuscitated 30% total body surface area burn. At 1, 2, 4, 8, and 24 h post-burn mean arterial pressure as well as superior mesenteric and renal artery in vivo blood flow were measured. The superior mesenteric and renal arteries were cannulated and perfused in vitro with their end organs with Krebs buffer (pH 7.4, 37°C). Renal and splanchnic 6-keto-PGF (PGI2), PGE2, and thromboxane B2 (TXB2) release were measured by EIA at 15 min of perfusion. Renal and superior mesenteric artery blood flow decreased by 40% or more at 1 and 2 h post-burn despite mean arterial pressure remaining unchanged. The major eicosanoids released were PGI2 from the splanchnic bed and PGI2 and PGE2 from the kidney. Splanchnic PGI2 and TXB2 release and renal TXB2 increased 2–3 fold at 1 h post-burn but returned to the sham level at 2 h post-burn. By 24 h post-burn the vasodilator eicosanoids were increased in both the splanchnic and renal vascular beds. These data show that decreased renal and splanchnic blood flow was associated with increased endogenous release of the potent vasoconstrictor TXB2. By 2 h post-burn, renal and splanchnic blood flow began returning toward the sham level as endogenous release of TXB2 from both organs fell to sham levels. These data suggest that increased endogenous release of TXB2 may contribute to the short-term decrease in renal and splanchnic blood flow in the immediate post-burn period and thus may contribute to ischemia of both vascular beds.  相似文献   

9.
We examined the effect of acute complement activation on lung vascular permeability to proteins in awake sheep prepared with lung lymph fistulas. Complement was activated by cobra venom factor (CVF) infusion (400 U/kg for 1 h iv). Studies were made in two groups of sheep: 1) infusion of CVF containing the endogenous phospholipase A2 (PLA2) (n = 6); and 2) infusion of CVF pretreated with bromophenacyl bromide to inhibit PLA2 activity (n = 5). Intravascular complement activation transiently increased mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) in both groups. Pulmonary lymph flow (Qlym) and lymph protein clearance (Qlym X lymph-to-plasma protein concentration ratio) were also transiently increased in both groups. Pulmonary vascular permeability to proteins was assessed by raising left atrial pressure and determining the lymph-to-plasma protein concentration ratio (L/P) at maximal Qlym. In both groups the L/P at maximal Qlym was not different from normal. In a separate group (n = 4), CVF-induced complement activation was associated with 111In-oxine granulocyte sequestration in the lungs. In vitro plasma from CVF-treated animals aggregated neutrophils but did not stimulate neutrophils to produce superoxide anion generation. Therefore, CVF-induced complement activation results in pulmonary neutrophil sequestration and in increases in PVR and lymph protein clearance. The increase in lymph protein clearance is due to increased pulmonary microvascular pressure and not increased vascular permeability to proteins.  相似文献   

10.
To investigate the sequence and nature of the peripheral vascular responses during the prodromal period of heat stroke, rats were implanted with Doppler flow probes on the superior mesenteric (SMA), left iliac (LIA) or left renal (LRA), and external caudal (ECA) arteries. Studies were performed in unanesthetized rats (n = 6) exposed to 46 degrees C and in chloralose-anesthetized animals (n = 11) at 40 degrees C. Core (Tc) and tail-skin temperatures, heart rate, and mean arterial blood pressure (MAP) were also monitored. In both groups, prolonged (70-150 min) exposure progressively elevated Tc from 37.0 to 44.0 degrees C. MAP rose to a plateau then fell precipitously as Tc exceeded 41.5 degrees C. SMA resistance increased throughout the early stages of heating, with a sharp decline from this elevated level 10-15 min before the precipitous fall in MAP. ECA resistance fell initially but increased in the terminal stage of heating. In unanesthetized animals, LIA resistance progressively declined. In chloralose-anesthetized animals LRA resistance rose progressively, then increased markedly as Tc exceeded 41.5 degrees C. These data support the hypothesis that a selective loss of compensatory splanchnic vasoconstriction may trigger the cascade of events that characterize heat stroke. This differential vascular response was similar in both unanesthetized and anesthetized animals.  相似文献   

11.
Splanchnic ischemia-reperfusion (I/R) causes tissue hypoxia that triggers local and systemic microcirculatory inflammatory responses. We evaluated the effects of hyperoxia in I/R induced by 40-min superior mesenteric artery (SMA) occlusion and 120-min reperfusion in four groups of rats: 1) control (anesthesia only), 2) sham operated (all surgical procedures without vascular occlusion; air ventilation), 3) SMA I/R and air, 4) SMA I/R and 100% oxygen ventilation started 10 min before reperfusion. Leukocyte rolling and adhesion in mesenteric microvessels, pulmonary microvascular blood flow velocity (BFV), and macromolecular (FITC-albumin) flux into lungs were monitored by intravital videomicroscopy. We also determined pulmonary leukocyte infiltration. SMA I/R caused marked decreases in mean arterial blood pressure (MABP) and blood flow to the splanchnic and hindquarters vascular beds and pulmonary BFV and shear rates, followed by extensive increase in leukocyte rolling and adhesion and plugging of >50% of the mesenteric microvasculature. SMA I/R also caused marked increase in pulmonary sequestration of leukocytes and macromolecular leak with concomitant decrease in circulating leukocytes. Inhalation of 100% oxygen maintained MABP at significantly higher values (P < 0.001) but did not change regional blood flows. Oxygen therapy attenuated the increase in mesenteric leukocyte rolling and adherence (P < 0.0001) and maintained microvascular patency at values not significantly different from sham-operated animals. Hyperoxia also attenuated the decrease in pulmonary capillary BFV and shear rates, reduced leukocyte infiltration in the lungs (P < 0.001), and prevented the increase in pulmonary macromolecular leak (P < 0.001), maintaining it at values not different from sham-operated animals. The data suggest that beneficial effects of normobaric hyperoxia in splanchnic I/R are mediated by attenuation of both local and remote inflammatory microvascular responses.  相似文献   

12.
We examined the effects of thromboxane synthetase inhibition with OKY-1581 and OKY-046 on pulmonary hemodynamics and lung fluid balance after thrombin-induced intravascular coagulation. Studies were made in anesthetized sheep prepared with lyng lymph fistulas. Pulmonary intravascular coagulation was induced by i.v. infusion of α-thrombin over a 15 min period. Thrombin infusion in control sheep resulted in immediate increases in pulmonary artery pressure (P ) and pulmonary vascular resistance (PVR), which associated with rapid 3-fold increase in pulmonary lymph flow (Q̇lym) and a delayed increase in lymph-to-plasma protein concentration (L/P) ratio, indicating an increase in the pulmonary microvascular permeability to proteins. Thrombin-induced intravascular coagulation alos increased arterial thromboxane B2 (a metabolite of thromboxane A2) and 6-keto-PGF concentrations (a metabolite of prostacyclin). Both OKY-1581 and OKY-046 prevented thromboxane B2 and 6-keto-PGF generation. The initial increments in P and PVR were attenuated in both treated groups. The increases in Q̇lym were gradual in the treated groups but attained the same levels as in control group. However, the increases in Q̇lym were associated with decreases in L/P ratio. In both treated groups, the leukocyte count decreased after thrombin infusion but then increased steadily above the baseline value, whereas the leukocyte count remained depressed in the control group after thrombin. These studies indicate that a part of the initial pulmonary vasoconstrictor response to thrombin-induced intravascular coagulation is mediated by thromboxane generation. In addition, thromboxane may also contribute to the increase in lung vascular permeability to proteins that occurs after intravascular coagulation and this effect may be mediated by a thromboxane-neutrophil interaction.  相似文献   

13.
We have previously shown that intrasplenic fluid extravasation is important in controlling blood volume. We proposed that, because the splenic vein flows in the portal vein, portal hypertension would increase splenic venous pressure and thus increase intrasplenic microvascular pressure and fluid extravasation. Given that the rat spleen has no capacity to store/release blood, intrasplenic fluid extravasation can be estimated by measuring the difference between splenic arterial inflow and venous outflow. In anesthetized rats, partial ligation of the portal vein rostral to the junction with the splenic vein caused portal venous pressure to rise from 4.5 +/- 0.5 to 12.0 +/- 0.9 mmHg (n = 6); there was no change in portal venous pressure downstream of the ligation, although blood flow in the liver fell. Splenic arterial flow did not change, but the arteriovenous flow differential increased from 0.8 +/- 0.3 to 1.2 +/- 0.1 ml/min (n = 6), and splenic venous hematocrit rose. Mean arterial pressure fell (101 +/- 5.5 to 95 +/- 4 mmHg). Splenic afferent nerve activity increased (5.6 +/- 0.9 to 16.2 +/- 0.7 spikes/s, n = 5). Contrary to our hypothesis, partial ligation of the portal vein caudal to the junction with the splenic vein (same increase in portal venous pressure but no increase in splenic venous pressure) also caused the splenic arteriovenous flow differential to increase (0.6 +/- 0.1 to 1.0 +/- 0.2 ml/min; n = 8). The increase in intrasplenic fluid efflux and the fall in mean arterial pressure after rostral portal vein ligation were abolished by splenic denervation. We propose there to be an intestinal/hepatic/splenic reflex pathway, through which is mediated the changes in intrasplenic extravasation and systemic blood pressure observed during portal hypertension.  相似文献   

14.
Vascular dysfunction in the splanchnic circulation during portal hypertension is characterized by enhanced NO-mediated vasorelaxation and vascular hyporeactivity to norepinephrine that lead to arterial vasodilation. NPY most likely counteracts both of these key features. Firstly, NPY appears to inhibit Ach- and PNS-induced vasorelaxation in mesenteric arteries. This effect is more pronounced in portal hypertensive rats as compared to control, and most likely reflects the inhibition of increased e- and nNOS-derived NO-synthesis during portal hypertensive conditions. Secondly, NPY sensitizes the mesenteric vasculature to alpha(1)-adrenergic vasoconstriction. Most importantly, in portal hypertensive rats but not in sham rats NPY markedly augments vascular contractility and thereby corrects vascular hyporeactivity. Both actions of NPY increase vascular tone and may well act synergistically in the splanchnic circulation during portal hypertension. Moreover, the vasoconstrictive effects of NPY are most pronounced at particularly high levels of alpha(1)-adrenergic activity. Therefore, it appears that NPY becomes increasingly important for optimizing adrenergic vasoconstriction at particularly high adrenergic drive and also for playing a predominant role for vascular homeostasis. Cirrhotic patients present with elevated circulating plasma levels of NPY, which appears to be independent from the severity of liver dysfunction and to correlate with portal pressure. This finding indicates enhanced NPY release during portal hypertension that may represent a compensatory mechanism aimed at counterbalancing arterial vasodilation by restoring the efficacy of endogenous catecholamines and inhibiting vasodilative drive in the splanchnic circulation.  相似文献   

15.
Thrombin-induced alterations in lung fluid balance in awake sheep   总被引:5,自引:0,他引:5  
We examined the effect of fibrinolysis depression on thrombin-induced pulmonary microembolism in awake sheep prepared with chronic lung lymph fistulas. Fibrinolysis was depressed by an intravenous infusion (100 mg) of tranexamic acid [trans-4-(Aminomethyl)cyclohexanecarboxylic acid]. Pulmonary microembolism was induced by an intravenous infusion of alpha-thrombin (80 NIH U/kg) in normal (n = 7) and in tranexamic acid-treated (n = 6) sheep. Thrombin immediately increased pulmonary lymph flow (Qlym) in both groups. The increased Qlym was not associated with a change in the lymph-to-plasma protein concentration (L/P) ratio in the control group and with a small decrease in the tranexamic acid-treated group. The increases in Qlym and pulmonary transvascular protein clearance (Qlym X L/P ratio) in the tranexamic acid-treated group were greater and sustained at four- to fivefold above base line for 10 h after the thrombin and remained elevated at twofold above base line even at 24 h. In contrast, Qlym and protein clearance were transiently increased in the control group. The mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) increased after thrombin in tranexamic acid-treated group; the increases in Ppa and PVR in the control group were transient. Protein reflection coefficient as determined by the filtration independent method decreased after thrombin in tranexamic acid-treated sheep (n = 5), indicating an increased vascular permeability to proteins. We conclude that prolongation of microthrombi retention in the pulmonary circulation results in an increased vascular permeability to proteins. Both increased vascular permeability and vascular hydrostatic pressure are important determinants of the increases in Qlym and transvascular protein clearance after thrombin-induced pulmonary microembolism.  相似文献   

16.
To determine the fetal pulmonary vascular response to platelet-activating factor (PAF), we studied the hemodynamic effects of the infusion of PAF directly into the left pulmonary artery in 21 chronically catheterized fetal lambs. Left pulmonary arterial blood flow (Q) was measured with electromagnetic flow transducers. Ten-minute infusions of low-dose PAF (10-100 ng/min) produced increases in Q from a baseline of 71 +/- 5 to 207 +/- 20 ml/min (P less than 0.001) without changes in pulmonary arterial pressure. Pulmonary vasodilation with PAF was further confirmed through increases in Q with brief (15-s) infusions and increases in the slope of the pressure-flow relationship as assessed by rapid incremental compressions of the ductus arteriosus during PAF infusion. Infusion of Lyso-PAF had no effect on Q or pulmonary arterial pressure. Treatment with CV-3988, a selective PAF receptor antagonist, but not with meclofenamate, atropine, or diphenhydramine and cimetidine blocked the response to PAF infusion and did not affect baseline tone. Systemic infusion of high-dose PAF (300 ng/min) through the fetal inferior vena cava increased pulmonary arterial pressure (46.5 +/- 1.0 to 54.8 +/- 1.9 mmHg, P less than 0.01) and aorta pressure (44.3 +/- 1.0 to 52.7 +/- 2.2 mmHg, P less than 0.01) while also increasing Q. Neither PAF nor CV-3988 changed the gradient between pulmonary arterial and aorta pressures, suggesting that PAF does not affect ductal tone. We conclude that PAF is a potent fetal pulmonary vasodilator and that the effects are not mediated through cyclooxygenase products or by cholinergic or histaminergic effects.  相似文献   

17.
Six healthy subjects were given endothelin-1, intravenously in a dose of 4 pmol.kg-1.min-1 for 20 min. Blood samples were drawn from arterial, hepatic and renal vein catheters for determinations of splanchnic and renal blood flows and the extraction of endothelin-1 in these vascular beds. Intravenous infusion of endothelin-1 increased the mean arterial blood pressure by 6.8 +/- 2.0 mm Hg (p less than 0.05) and reduced splanchnic and renal blood flows by 34% (p less than 0.005) and 26% (p less than 0.001) respectively. Return to basal flow values occurred after about 1 hr for the splanchnic and 3 hrs for the renal blood flow. The fractional extractions of endothelin-1-like immunoreactivity corresponded to 75 +/- 2% and 60 +/- 2% in the splanchnic and renal vascular beds, respectively. The disappearance curve in plasma and two half-lives of 1.4 +/- 0.1 min and 35 +/- 2.8 min respectively.  相似文献   

18.
The mechanism of the pressor response to small muscle mass (e.g., forearm) exercise and during metaboreflex activation may include elevations in cardiac output (Q) or total peripheral resistance (TPR). Increases in Q must be supported by reductions in visceral venous volume to sustain venous return as heart rate (HR) increases. Therefore, this study tested the hypothesis that increases in Q, supported by reductions in splanchnic volume (portal vein constriction), explain the pressor response during handgrip exercise and metaboreflex activation. Seventeen healthy women performed 2 min of static ischemic handgrip exercise and 2 min of postexercise circulatory occlusion (PECO) while HR, stroke volume and superficial femoral artery flow (Doppler), blood pressure (Finometer), portal vein diameter (ultrasound imaging), and muscle sympathetic nerve activity (MSNA; microneurography) were measured followed by the calculation of Q, TPR, and leg vascular resistance (LVR). Compared with baseline, mean arterial blood pressure (MAP) (P < 0.001) and Q (P < 0.001) both increased in each minute of exercise accompanied by a approximately 5% reduction in portal vein diameter (P < 0.05). MAP remained elevated during PECO, whereas Q decreased below exercise levels. MSNA was elevated above baseline during the second minute of exercise and through the PECO period (P < 0.05). Neither TPR nor LVR was changed from baseline during exercise and PECO. The data indicate that the majority of the blood pressure response to isometric handgrip exercise in women was due to mobilization of central blood volume and elevated stroke volume and Q rather than elevations in TVR or LVR resistance.  相似文献   

19.
The effects of angiotensin-converting enzyme inhibition (ACE-I) by enalapril on splanchnic (n = 10) and central hemodynamics (n = 9) were examined in moderately salt-depleted healthy volunteers, at rest and during 15-20 min of lower body negative pressure (LBNP), reducing mean arterial pressure by 10 mmHg. During LBNP before ACE-I, both splanchnic and total peripheral vascular resistances increased. During ACE-I, splanchnic and total peripheral vascular resistances decreased. After enalapril administration, splanchnic vascular resistance did not increase during LBNP. Total peripheral vascular resistance still increased but not to the same extent as during LBNP before ACE-I. The increases in heart rate and plasma norepinephrine during LBNP were attenuated after ACE-I compared with LBNP before ACE-I. The effectiveness of the ACE-I was clearly demonstrated by unchanged and low plasma angiotensin II levels during ACE-I. We conclude that, in normal sodium-depleted humans, acute ACE-I decreases splanchnic vascular resistance at rest and abolishes splanchnic vasoconstriction during LBNP. Furthermore, it may interfere with autonomic nervous system control of the circulation.  相似文献   

20.
K Takaori  K Inoue  M Kogire  R Doi  S Sumi  M Yun  N Fujii  H Yajima  T Tobe 《Life sciences》1989,44(10):667-672
Physalaemin has been reported as one of the most potent vasodilator and hypotensive peptides (1-4). In spite of these studies, however, the effect of the peptide on splanchnic circulation is not known precisely. In the present study, the effect of synthetic physalaemin on superior mesenteric arterial blood flow, portal venous blood flow and pancreatic capillary blood flow was investigated in dogs. Dose dependent increases of superior mesenteric arterial blood flow and portal venous blood flow were induced in response to physalaemin (0.1-10.0 ng/kg). Superior mesenteric arterial blood flow and portal venous blood flow attained maximal increases of 77 +/- 8.9% and 70 +/- 8.6%, respectively, at a dose of 5 ng/kg. Physalaemin caused a dose-related decrease in systemic arterial blood pressure. Pancreatic capillary blood flow did not show significant change with the administration of physalaemin. These data suggest that physalaemin may play some physiological roles in the regulation of splanchnic circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号