首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Zhao X  Miller JR  Cronan JE 《Biochemistry》2005,44(50):16737-16746
The lipB gene of Escherichia coli encodes an enzyme (LipB) that transfers the octanoyl moiety of octanoyl-acyl carrier protein (octanoyl-ACP) to the lipoyl domains of the 2-oxo acid dehydrogenases and the H subunit of glycine cleavage enzyme. We report that the LipB reaction proceeds through an acyl-enzyme intermediate in which the octanoyl moiety forms a thioester bond with the thiol of residue C169. The intermediate was catalytically competent in that the octanoyl group of the purified octanoylated LipB was transferred either to an 87-residue lipoyl domain derived from E. coli pyruvate dehydrogenase or to ACP (in the reversal of the physiological reaction). The octanoylated LipB linkage was cleaved by thiol reagents and by neutral hydroxylamine, strongly suggesting a thioester bond. Separation and mass spectral analyses of the peptides of the unmodified and octanoylated proteins showed that each of the assigned peptides of the two proteins had identical masses, indicating that none of these peptides were octanoylated. However, the one major peptide that we failed to recover was that predicted to contain all three LipB cysteine residues. These three cysteine residues were therefore targeted for site-directed mutagenesis and only C169 was found to be essential for LipB function in vivo. The C169S protein had no detectable activity whereas the C169A protein retained trace activity. Surprisingly, both proteins lacking C169 formed an octanoyl-LipB species, although neither was catalytically competent. The octanoyl-LipB species formed by the C169S protein was resistant to neutral hydroxylamine treatment, consistent with formation of an ester linkage to the serine hydroxyl group. The octanoyl-C169A LipB species was probably acylated at C147. LipB species that lacked all three cysteine residues also formed a catalytically incompetent octanoyl adduct, indicating the presence of a reactive side chain other than a cysteine thiol that lies adjacent to the active site.  相似文献   

2.
The amino acid sequence of plastocyanin from Chlorella fusca   总被引:5,自引:2,他引:3       下载免费PDF全文
The amino acid sequence of the plastocyanin from the green alga Chlorella fusca was determined. The protein consists of a single polypeptide chain of 98 residues, and was determined by characterization of chymotryptic and thermolysin peptides. The amino acid sequence shows considerable similarity to that of higher plant plastocyanins. The protein contains a single cysteine, and the sequence in the vicinity of this residue is similar to that around the cysteine residue of bacterial azurins. The plastocyanin contains some uncharacterized carbohydrate. Detailed evidence for the sequence of the protein has been deposited as Supplementary Publication SUP 50 036 (17pp., 1 microfiche) at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5.  相似文献   

3.
Z I Randhawa  S Smith 《Biochemistry》1987,26(5):1365-1373
The complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase (thioesterase II) from rat mammary gland is presented. Most of the sequence was derived by analysis of peptide fragments produced by cleavage at methionyl, glutamyl, lysyl, arginyl, and tryptophanyl residues. A small section of the sequence was deduced from a previously analyzed cDNA clone. The protein consists of 260 residues and has a blocked amino-terminal methionine and calculated Mr of 29,212. The carboxy-terminal sequence, verified by Edman degradation of the carboxy-terminal cyanogen bromide fragment and carboxypeptidase Y digestion of the intact thioesterase II, terminates with a serine residue and lacks three additional residues predicted by the cDNA sequence. The native enzyme contains three cysteine residues but no disulfide bridges. The active site serine residue is located at position 101. The rat mammary gland thioesterase II exhibits approximately 40% homology with a thioesterase from mallard uropygial gland, the sequence of which was recently determined by cDNA analysis [Poulose, A.J., Rogers, L., Cheesbrough, T. M., & Kolattukudy, P. E. (1985) J. Biol. Chem. 260, 15953-15958]. Thus the two enzymes may share similar structural features and a common evolutionary origin. The location of the active site in these thioesterases differs from that of other serine active site esterases; indeed, the enzymes do not exhibit any significant homology with other serine esterases, suggesting that they may constitute a separate new family of serine active site enzymes.  相似文献   

4.
The amino acid sequence of histidine-containing protein (HPr) from Streptococcus faecalis has been determined by direct Edman degradation of intact HPr and by amino acid sequence analysis of tryptic peptides, V8 proteolytic peptides, thermolytic peptides, and cyanogen bromide cleavage products. HPr from S. faecalis was found to contain 89 amino acid residues, corresponding to a molecular weight of 9438. The amino acid sequence of HPr from S. faecalis shows extended homology to the primary structure of HPr proteins from other bacteria. Besides the phosphoenolpyruvate-dependent phosphorylation of a histidyl residue in HPr, catalyzed by enzyme I of the bacterial phosphotransferase system, HPr was also found to be phosphorylated at a seryl residue in an ATP-dependent protein kinase catalyzed reaction [Deutscher, J., & Saier, M. H., Jr. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6790-6794]. The site of ATP-dependent phosphorylation in HPr of S. faecalis has now been determined. [32P]P-Ser-HPr was digested with three different proteases, and in each case, a single labeled peptide was isolated. Following digestion with subtilisin, we obtained a peptide with the sequence -(P)Ser-Ile-Met-. Using chymotrypsin, we isolated a peptide with the sequence -Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-Gly-Val-Met-. The longest labeled peptide was obtained with V8 staphylococcal protease. According to amino acid analysis, this peptide contained 36 out of the 89 amino acid residues of HPr. The following sequence of 12 amino acid residues of the V8 peptide was determined: -Tyr-Lys-Gly-Lys-Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A conserved cysteine in molybdenum oxotransferases   总被引:5,自引:0,他引:5  
The amino acid sequences of peptides derived from rat hepatic sulfite oxidase have been determined by a combination of amino acid analysis and Edman degradation of the purified protein. The data obtained showed the rat liver enzyme contained 3 cysteine residues which was confirmed by thiol modification studies using 4,4'-dithiodipyridine of the native enzyme. Combining these data with that previously published for chicken liver sulfite oxidase (Neame, P. J., and Barber, M. J. (1989) J. Biol. Chem. 264, 20894-20901) indicates that 2 cysteines (Cys186 and Cys430, based upon the numbering for the chicken sequence) are conserved in both chicken and rat liver enzymes with all the cysteine residues being present in the molybdenum-containing domain. Further comparison of the sequences of the molybdenum domains of rat and chicken liver sulfite oxidase with the amino acid sequences published for the molybdenum domains of a variety of assimilatory nitrate reductases suggests that only a single cysteine residue (Cys186) is conserved in all these enzymes, indicating that it may play a role in the binding of Mo-pterin to the protein.  相似文献   

6.
Hemolysin, a toxic protein produced by pathogenic Escherichia coli, is one of a family of homologous toxins and toxin-processing proteins produced by Gram-negative bacteria. HlyC, an internal protein acyltransferase, converts it from nontoxic prohemolysin to toxic hemolysin. Acyl-acyl carrier protein is the essential acyl donor. The acyltransferase reaction progresses through formation of a binary complex between acyl-ACP and HlyC to a reactive acyl-HlyC intermediate [Trent, M. S., Worsham, L. M., and Ernst-Fonberg, M. L. (1998) Biochemistry 37, 4644-4655]. The homologous acyltransferases of the family have a number of conserved amino acid residues that may be catalytically important. Experiments to illuminate the reaction mechanism were done. The formation of an acyl-enzyme intermediate suggested that the reaction likely proceeded through two partial reactions. The reversibility of the first partial reaction was shown by using separately subcloned, purified, and expressed substrates and enzyme. The effects of single site-directed mutations of conserved residues of HlyC on different portions of reaction progress (binary complex formation, acyl-enzyme formation, and enzyme activity, including kinetic parameters) were determined. Mutations of His23, the only residue essential for activity, formed normal binary complexes but were unable to form acyl-HlyC. The same was seen with S20A, a mutant with greatly impaired activity. Mutation of two conserved tyrosines separately to glycines results in greatly impaired binary complex and acyl-HlyC formation, but mutation of those residues to phenylalanines restored behavior to wild-type.  相似文献   

7.
Escherichia coli contains a soluble, [2Fe-2S] ferredoxin of unknown function (Knoell, H.-E., and Knappe, J. (1974) Eur. J. Biochem. 50, 245-252). Using antiserum to the purified protein to screen E. coli genomic expression libraries, we have cloned a gene (designated fdx) encoding this protein. The DNA sequence of the gene predicts a polypeptide of 110 residues after removal of the initiator methionine (polypeptide M(r) = 12,186, holoprotein M(r) = 12,358). The deduced amino acid sequence is strikingly similar to those of the ferredoxins found in animal mitochondria which function with cytochrome P450 enzymes and to the ferredoxin from Pseudomonas putida which functions with P450cam. The overall sequence identity is approximately 36% when compared with human mitochondrial and P. putida ferredoxins, and the identities include 4 cysteine residues proposed to coordinate the iron cluster. The protein was overproduced approximately 500-fold using an expression plasmid, and the holoprotein was assembled and accumulated in amounts exceeding 30% of the total cell protein. The overexpressed ferredoxin exhibits absorption, circular dichroism, and electron paramagnetic resonance spectra closely resembling those of the animal ferredoxins and P. putida ferredoxin.  相似文献   

8.
Structural studies on bovine γ-crystallin   总被引:4,自引:4,他引:0       下载免费PDF全文
The amino acid sequences around the cysteine residues in the lens protein, γ-crystallin, were studied. Fraction II of the γ-crystallin from calf lens (Björk, 1964) was used. The protein was oxidized with performic acid and then hydrolysed with trypsin. Six peptides containing cysteic acid were isolated. One of the peptides contained three residues of cysteic acid and the others contained one residue of cysteic acid. We conclude that there are eight unique residues of cysteic acid in the oxidized protein. Amino acid analysis suggests that there are also eight residues of cysteic acid in the molecule, which thus contains only one polypeptide chain.  相似文献   

9.
Ficin that had been prepared from the latex of Ficus glabrata by salt fractionation and chromatography on carboxymethylcellulose was completely and irreversibly inhibited with 1,3-dibromo[2-(14)C]acetone and then treated with N-(4-dimethylamino-3,5-dinitrophenyl)maleimide in 6m-guanidinium chloride. After reduction and carboxymethylation of the labelled protein, it was digested with trypsin and alpha-chymotrypsin. Two radioactive peptides and two coloured peptides were isolated chromatographically and their sequences determined. The radioactive peptides revealed the amino acid sequences around the active-site cysteine and histidine residues and showed a high degree of homology with the omino acid sequence around the active-site cysteine and histidine residues in papain. The coloured peptides allowed the amino acid sequence around the buried cysteine residue in ficin to be determined.  相似文献   

10.
The lactose-specific phosphocarrier protein enzyme II of the bacterial phosphoenol-pyruvate-dependent phosphotransferase system of Staphylococcus aureus was modified by site-specific mutagenesis on the corresponding lacE gene in order to replace the histidine residues 245, 274 and 510 and the cysteine residue 476 of the amino acid sequence with a serine residue. The wild-type and mutant genes were expressed in Escherichia coli and the gene products were characterized in different in vitro test systems. In vitro phosphorylation studies on mutant derivatives of the lactose-specific enzyme II led to the conclusion that cysteine residue 476 is the active-site for phosphorylation of this enzyme II by a phospho-enzyme III of the same sugar specificity. A cysteine residue phosphorylated intermediate was first postulated for the mannitol-specific enzyme II of E. coli and studies performed independently concerning the lactose-specific enzyme II of Lactobacillus casei are in agreement with the above results.  相似文献   

11.
The Pseudomonas putida cytochrome P-450 was alkylated with the SH-reagent, 2-bromoacetamido-4-nitrophenol. One out of eight cysteine residues present in the enzyme reacted rapidly while another 3 ~ 4 cysteine residues were gradually alkylated at longer reaction times. The derivative in which the most reactive cysteine residue was labeled with this reagent was hydrolyzed with trypsin and a tryptic peptide isolated. From the amino acid composition and end group analysis of the peptide, the rapidly reacting cysteine residue was shown to be Cys 355. This cysteine residue is probably exposed on the surface and is involved in the dimerization of the enzyme. The amino acid sequence about cysteine 355 shows sequence homology with residues 429–445 of the rat liver cytochrome P-450-LM-2.  相似文献   

12.
The complete amino acid sequence of wool protein SCMKB-IIIB3 was determined. The peptides used for the sequence work were obtained by peptic and thermolysin digestions and were fractionated by chromatography on DEAE-cellulose, paper chromatography and electrophoresis. The peptides were analysed by dansyl-Edman degradation, mass spectrometry and tritium-labelling of C-terminal residues. The protein consists of 98 residues and has acetylalanine as N-terminal residue and carboxymethylcysteine as C-terminus. It is homologous with protein SCMKB-IIIB2 (Haylett & Swart, 1969). A salient feature of the sequence of protein SCMKB-IIIB3 is three consecutive cysteine residues.  相似文献   

13.
The complete amino acid sequence of the 86-residue heme subunit of flavocytochrome c (sulfide dehydrogenase) from the green phototrophic bacterium Chlorobium thiosulfatophilum strain Tassajara has been determined as follows: APEQSKSIPRGEILSLSCAGCHGTDGKSESIIPTIYGRSAEYIESALLDFKSGA- RPSTVMGRHAKGYSDEEIHQIAEYFGSLSTMNN. The subunit has a single heme-binding site near the N terminus, consisting of a pair of cysteine residues at positions 18 and 21. The out-of-plane ligands are apparently contributed by histidine 22 and methionine 60. The molecular weight including heme is 10,014. The heme subunit is apparently homologous to small cytochromes c by virtue of the location of the heme-binding site and its extraplanar ligands. However, the amino acid sequence is closer to Paracoccus sp. cytochrome c554(548) (37%) than it is to the heme subunit from Pseudomonas putida p-cresol methylhydroxylase flavocytochrome c (20%). The flavocytochrome c heme subunit is only 14% similar to the small cytochrome c555 also found in Chlorobium. Secondary structure predictions suggest N- and C-terminal helices as expected, but the midsection of the protein probably folds somewhat differently from the small cytochromes of known three-dimensional structure such as Pseudomonas cytochrome c551. Analyses of the residues near the exposed heme edges of the cytochrome subunits of P. putida and C. thiosulfatophilum flavocytochromes c (assuming homology to proteins of known structure) indicate that charged residues are not conserved, suggesting that electrostatic interactions are not involved in the association of the heme and flavin subunits. The N-terminal sequence of the flavoprotein subunit of flavocytochrome has also been determined. It shows no similarity to the comparable region of the p-cresol methylhydroxylase flavoprotein subunit from P. putida. The flavin-binding hexapeptide, isolated and sequenced earlier (Kenney, W. C., McIntire, W., and Yamanaka, T. (1977) Biochim. Biophys. Acta 483, 467-474), is situated at positions 40-46.  相似文献   

14.
Protein engineering techniques were used to construct a derivative of the serine protease subtilisin that ligates peptides efficiently in water. The subtilisin double mutant in which the catalytic Ser221 was converted to Cys (S221C) and Pro225 converted to Ala (P225A) has 10-fold higher peptide ligase activity and at least 100-fold lower amidase activity than the singly mutated thiolsubtilisin (S221C) that was previously shown to have some peptide ligase activity [Nakatsuka, T., Sasaki, T., & Kaiser, E.T. (1987) J. Am. Chem. Soc. 109, 3808-3810]. A 1.5-A X-ray crystal structure of an oxidized derivative of the double mutant (S221C/P225A) supports the protein design strategy in showing that the P225A mutation partly relieves the steric crowding expected from the S221C substitution, thus accounting for its improved catalytic efficiency. Stable and synthetically reasonable alkyl ester peptide substrates were prepared that rapidly acylate the S221C/P225A enzyme, and aminolysis of the resulting thioacyl-enzyme intermediate by various peptides is strongly preferred over hydrolysis. The efficiency of aminolysis is relatively insensitive to the sequence of the first two residues in the acyl acceptor peptide whose alpha-amino group attacks the thioacyl-enzyme. To obtain greater flexibility in the choice of coupling sites, a set of three additional peptide ligases were engineered by introducing mutations into the parent ligase (S221C/P225A) that were previously shown to change the specificity of subtilisin for the residue nearest the acyl bond (the P1 residue). The specificity properties of the parent ligase and derivatives of it paralleled those of wild type and corresponding specificity variants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
S W Kim  S Joo  G Choi  H S Cho  B H Oh    K Y Choi 《Journal of bacteriology》1997,179(24):7742-7747
In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate.  相似文献   

16.
Antistasin is a 15-kDa protein from the salivary glands of the Mexican leech, Haementeria officinalis, which manifests anticoagulant activity by inhibiting factor Xa. Previous work demonstrating the presence of this activity in salivary gland extracts and its partial purification has been reported (Tuszynski, G. P., Gasic, T. B, and Gasic, G.J. (1987) J. Biol. Chem. 262, 9718-9723). The present study includes further purification to homogeneity of antistasin and its subsequent fragmentation and complete amino acid sequence determination. The protein, which possesses 119 amino acid residues, is blocked at its amino terminus by the presence of a pyroglutamic acid residue and has an unusually high cysteine content, with 20 cysteine residues. The primary structure of antistasin shows no homology to hirudin, a 65-residue anticoagulant protein from the medicinal leech, Hirudo medicinalis. Of great interest is the finding of significant internal homology within antistasin where a 2-fold internal repeated structure is observed. At least four isoforms of antistasin have been identified in leech salivary gland extracts by high performance liquid chromatography analysis, and partial amino acid sequence analysis of these isoforms indicates they differ by 1 or 2 amino acid residues.  相似文献   

17.
Primary structure of glycolipid transfer protein from pig brain   总被引:2,自引:0,他引:2  
The amino acid sequence of a glycolipid transfer protein from pig brain was determined by automatic sequencing and fast atom bombardment mass spectroscopic analysis of peptides produced by chemical and enzymatic cleavage reactions. The protein consists of 208 residues, with N-acetylalanine as the N-terminal residue and valine as the C-terminal residue. It contains 3 cysteine residues. The primary structure of the glycolipid transfer protein from pig brain is as follows: acetyl-A-L-L-A-E-H-L-L-K-P-L-P-A-D-K15-Q-I-E-T- G-P-F-L-E-A-V-S-H-L-P30-P-F-F-D-C-L-G-S-P-V-F- T-P-I-K45-A-D-I-S-G-N-I-T-K-I-K-A-V-Y-D60-T-N- P-A-K-F-R-T-L-Q-N-I-L-E-V75-E-K-E-M-Y-G-A-E- W-P-K-V-G-A-T90-L-A-L-M-W-L-K-R-G-L-R-F-I-Q- V105-F-L-Q-S-I-C-D-G-E-R-D-E-N-H-P120-N-L-I-R- V-N-A-T-K-A-Y-E-M-A-L135-K-K-Y-H-G-W-I-V-Q- K-I-F-Q-A-A150-L-Y-A-A-P-Y-K-S-D-F-L-K-A-L- S165-K-G-Q-N-V-T-E-E-E-C-L-E-K-V-R180-L-F-L-V- N-Y-T-A-T-I-D-V-I-Y-E195-M-Y-T-K-M-N-A-E-L-N- Y-K-V-OH. The sequence does not have detectable homology with other lipid transfer proteins or lipid-binding proteins. The cysteine residue at position 35 is reactive to iodoacetamide under nondenaturing conditions.  相似文献   

18.
Lipoprotein lipase (LpL) activity is enhanced by apolipoprotein C-II (apoC-II), a 79 amino acid residue peptide. The minimal apoC-II sequence required for activation of LpL resides between residues 56-79. To determine the possible role of an acyl-apoC-II intermediate involving Ser61 in enzyme catalysis, a synthetic peptide of apoC-II containing residues 56-79 was synthesized and compared to the corresponding peptide with serine at position 61 being substituted with glycine. With two different LpL assay systems, both peptides enhanced enzyme activity. Since glycine does not contain a hydroxyl group, these results rule out the possibility that an acyl-apoC-II intermediate with Ser61 is required for enzyme activation.  相似文献   

19.
Oxidative addition of a nitric oxide (NO) molecule to the thiol group of cysteine residues is a physiologically important post-translational modification that has been implicated in several metabolic and pathophysiological events. Our previous studies have indicated that S-nitrosylation can result in the disruption of the endothelial NO synthase (eNOS) dimer. It has been suggested that for S-nitrosylation to occur, the cysteine residue must be flanked by hydrophilic residues either in the primary structure or in the spatial proximity through appropriate conformation. However, this hypothesis has not been confirmed. Thus, the objective of this study was to determine if the nature of the amino acid residues that flank the cysteine in the primary structure has a significant effect on the rate and/or specificity of S-nitrosylation. To accomplish this, we utilized several model peptides based on the eNOS protein sequence. Some of these peptides contained point mutations to allow for different combinations of amino acid properties (acidic, basic, and hydrophobic) around the cysteine residue. To ensure that the results obtained were not dependent on the nitrosylation procedure, several common S-nitrosylation techniques were used and S-nitrosylation followed by mass spectrometric detection. Our data indicated that all peptides independent of the amino acids surrounding the cysteine residue underwent rapid S-nitrosylation. Thus, there does not appear to be a profound effect of the primary sequence of adjacent amino acid residues on the rate of cysteine S-nitrosylation at least at the peptide levels. Finally, our studies using recombinant human eNOS confirm that Cys98 undergoes S-nitrosylation. Thus, our data validate the importance of Cys98 in regulating eNOS dimerization and activity, and the utility of mass spectroscopy to identify cysteine residues susceptible to S-nitrosoylation.  相似文献   

20.
T Nakayama  N Esaki  H Tanaka  K Soda 《Biochemistry》1988,27(5):1587-1591
L-Methionine gamma-lyase from Pseudomonas putida is composed of four identical polypeptide chains and contains four cysteinyl residues per subunit. We have found one of them catalytically essential by its specific cyanylation with 2-nitro-5-thiocyanobenzoic acid. We have shown its essentiality also with N-(bromoacetyl)pyridoxamine 5'-phosphate (BAPMP), which is a cofactor analogue and also an affinity-labeling agent. The kinetic data show that the apoenzyme forms a binary complex with BAPMP prior to covalent binding. The stoichiometry of inactivation was 1 mol of BAPMP per subunit. We have shown that the cysteine residue modified with BAPMP is identical with that labeled specifically with [14C]iodoacetic acid. The amino acid sequences of the peptides containing the essential cysteine residue and the lysine residue to which pyridoxal 5'-phosphate is bound were determined by automated Edman degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号