首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Abstract Species of Prunus L. sect. Persica are not only important fruit trees, but also popular ornamental and medicinal plants. Correct identification of seedlings, barks, or fruit kernels is sometimes required, but no reliable morphological characters are available. Nowadays, the technique of DNA barcoding has the potential to meet such requirements. In this study, we evaluated the suitability of 11 DNA loci (atpB‐rbcL, trnH‐psbA, trnLF, trnSG, atpFH, rbcL, matK, rpoB, rpoC1, nad1, and internal transcribed spacer [ITS]) as candidate DNA barcodes for peaches, using samples from 38 populations, covering all the species in sect. Persica. On the whole, the primers worked well in this group and sequencing difficulties were met only in the case of ITS locus. Five loci (rbcL, matK, rpoB, rpoC, and nad1) have very low variation rates, whereas atpB‐rbcL, atpF‐H, trnH‐psbA, trnL‐F and trnSG show more variability. The most variable loci, atpB‐rbcL and trnH‐psbA, can distinguish three of the five species. Two two‐locus combinations, atpB‐rbcL+trnL‐F and atpB‐rbcL+atpF‐H, can resolve all five species. We also find that identification powers of the loci are method‐dependent. The NeighborNet method shows higher species identification power than maximum parsimony, neighbor joining, and unweighted pair group method with arithmetic mean methods.  相似文献   

2.
The systematic utility of sequences from a non-coding region of chloroplast DNA (cpDNA) betweenpsbA andtrnH(GUG) was examined by assessing phylogenetic relationships in subtribeSonchinae (Asteraceae:Lactuceae). Primers constructed against highly conserved regions of tRNA genes were used for PCR amplification and sequencing. ThepsbA-trnH intergenic spacer contains several insertions and deletions (indels) inSonchinae with the length varying from 385 to 450 bp. Sequence divergence ranges from 0.00% to 7.54% withinSonchinae, with an average of 2.4%. Average sequence divergence inSonchus subg.Sonchus is 2.0%, while the mean for subg.Dendrosonchus and its close relatives in Macaronesia (the woodySonchus alliance) is 1.0%. Our results suggest that this region does not evolve rapidly enough to resolve relationships among closely related genera or insular endemics in theAsteraceae. The phylogenetic utility ofpsbA-trnH sequences of the non-coding cpDNA was compared to sequences from the ITS region of nuclear ribosomal DNA. The results suggest that ITS sequences evolve nearly four times faster thanpsbA-trnH intergenic spacer sequences. Furthermore, the ITS sequences provide more variable and phylogenetically informative sites and generate more highly resolved trees with more strongly supported clades, and thus are more suitable for phylogenetic comparisons at lower taxonomic levels than thepsbA-trnH intergenic chloroplast sequences.  相似文献   

3.
Ficus, with about 755 species, diverse habits and complicated co‐evolutionary history with fig wasps, is a notoriously difficult group in taxonomy. DNA barcoding is expected to bring light to the identification of Ficus but needs evaluation of candidate loci. Based on five plastid loci (rbcL, matK, trnH‐psbA, psbK‐psbI, atpF‐atpH) and a nuclear locus [internal transcribed spacer (ITS)], we calculated genetic distances and DNA barcoding gaps individually and in combination and constructed phylogenetic trees to test their ability to distinguish the species of the genus. A total of 228 samples representing 63 putative species in Ficus (Moraceae) of China were included in this study. The results demonstrated that ITS has the most variable sites, greater intra‐ and inter‐specific divergences, the highest species discrimination rate (72%) and higher primer universality among the single loci. It is followed by psbK‐psbI and trnH‐psbA with moderate variation and considerably lower species discrimination rates (about 19%), whereas matK, rbcL and atpF‐atpH could not effectively separate the species. Among the possible combinations of loci, ITS + trnH‐psbA performed best but only marginally improved species resolution over ITS alone (75% vs. 72%). Therefore, we recommend using ITS as a single DNA barcoding locus in Ficus.  相似文献   

4.
通过分析山麦冬及其近缘种cpDNA trnL-F、psbA-trnH间隔区序列特点,探讨trnL-F、psbA-trnH序列作为山麦冬及其近缘种DNA条形码的潜力。分别对两者进行PCR扩增后,并进行纯化测序。其中山麦冬及其近缘种9个物种18个样品的trnL-F序列长度为355~356 bp,在山麦冬属内序列完全一致,但在沿阶草属中存在特异变异位点,可对麦冬与沿阶草两物种进行鉴别。而psbA-trnH序列长度为543~544 bp,仅在麦冬中存在特异鉴别位点。结果表明,trnL-F、psbA-trnH序列由于进化速率低、保守性强,仅适合麦冬类植物属间鉴别的DNA条形码,而在属下水平的应用有一定的局限。  相似文献   

5.
To gain insight into the mutational events responsible for the extensive variation of chloroplast DNA (cpDNA) within the green algal genus Chlamydomonas, we have investigated the chloroplast gene organization of Chlamydomonas pitschmannii, a close relative of the interfertile species C. eugametos and C. moewusii whose cpDNAs have been well characterized. At 187 kb, the circular cpDNA of C. pitschmannii is the smallest Chlamydomonas cpDNA yet reported; it is 56 and 105 kb smaller than those of its C. eugametos and C. moewusii counterparts, respectively. Despite this substantial size difference, the arrangement of 77 genes on the C. pitschmannii cpDNA displays only three noticeable differences from the organization of the corresponding genes on the collinear C. eugametos and C. moewusii cpDNAs. These changes in gene order are accounted for by the expansion/contraction of the inverted repeat and one or two inversions in a single-copy region. In land plant cpDNAs, these kinds of events are also responsible for gene rearrangements. The large size difference between the C. pitschmannii and C. eugametos/C. moewusii cpDNAs is mainly attributed to multiple events of deletions/additions as opposed to the usually observed expansion/contraction of the inverted repeat in land plant cpDNAs. We also found that the mitochondrial genome of C. pitschmannii is a circular DNA molecule of 16.5 kb which is 5.5 and 7.5 kb smaller than its C. moewusii and C. eugametos counterparts, respectively.  相似文献   

6.
The cpDNA trnT-trnF region, a molecular marker widely used in the phylogenetic reconstruction at lower taxonomic levels, is relatively conserved in size and structure. In this region single length variation over 100 bp is much less common than small deletion for congeneric species of angiosperms. Here we examined evolutionary patterns of the trnT-trnF region in 43 species of Pedicularis, a species-rich genus with adaptive radiation. Four independent large deletions, varying from 203 to 297 bp in length, were detected from nine species of the genus, which might result from slipped-strand mispairing. These deletions occurred in different locations of the cpDNA region and in different clades of the phylogenetic tree, indicating that the deletion of large cpDNA fragments may be very frequent in the hemiparasitic lineage of the family Orobanchaceae. Parsimony analyses showed that section Cyathophora of Pedicularis, endemic to the Sino-Himalayan region, was a strongly supported monophyletic group. This section could have a recent origin followed by rapid radiation, considering that it is characterized by a large deletion in the trnT-trnF region and a relatively low interspecific sequence divergence.  相似文献   

7.
8.
Aim The aim of this study was to test hypotheses regarding some of the main phylogeographical patterns proposed for European plants, in particular the locations of glacial refugia, the post‐glacial colonization routes, and genetic affinities between southern (alpine) and northern (boreal) populations. Location The mountains of Europe (Alps, Balkans, Carpathians, Central Massif, Pyrenees, Scandinavian chain, Sudetes), and central European/southern Scandinavian lowlands. Methods As our model system we used Pulsatilla vernalis, a widely distributed European herbaceous plant occurring both in the high‐mountain environments of the Alps and other European ranges and in lowlands north of these ranges up to Scandinavia. Based on a distribution‐wide sampling of 61 populations, we estimated chloroplast DNA (cpDNA) variation along six regions using polymerase chain reaction–restriction fragment‐length polymorphisms (PCR–RFLPs) (trnH–trnK, trnK–trnK, trnC–trnD, psbC–trnS, psaA–trnS, trnL–trnF) and further sequencing of trnL–trnF and trnH–psbA. In addition, 11 samples of other European species of Pulsatilla were sequenced to survey the genus‐scale cpDNA variation. Results Eleven PCR–RFLP polymorphisms were detected in P. vernalis, revealing seven haplotypes. They formed two distinct genetic groups. Three haplotypes representing both groups dominated and were widely distributed across Europe, whereas the others were restricted to localized regions (central Alps, Tatras/Sudetes mountains) or single populations. Sequencing analysis confirmed the reliability of PCR–RFLPs and homology of haplotypes across their distribution. The chloroplast DNA variation across the section Pulsatilla was low, but P. vernalis did not share haplotypes with other species. Main conclusions The genetic distinctiveness of P. vernalis populations from the south‐western Alps with respect to other Alpine populations, as well as the affinities between the former populations and those from the eastern Pyrenees, is demonstrated, thus providing support for the conclusions of previous studies. Glacial refugia in the Dolomites are also suggested. Isolation is inferred for the high‐mountain populations from the Tatras and Sudetes; this is in contrast to the case for the Balkans, which harboured the common haplotype. Specific microsatellite variation indicates the occurrence of periglacial lowland refugia north of the Alps, acting as a source for the post‐glacial colonization of Scandinavia. The presence of different fixed haplotypes in eastern and western Scandinavia, however, suggests independent post‐glacial colonization of these two areas, with possible founder effects.  相似文献   

9.
Restriction site variation in chloroplast DNAs (cpDNAs) of Coreopsis section Coreopsis was employed to assess divergence and phylogenetic relationships among the nine species of the section. A total of fourteen restriction site mutations and one length mutation was detected. Cladistic analysis of the cpDNA data produced a phylogeny that is different in several respects from previous hypotheses. CpDNA mutations divide the section into two groups, with the two perennial species C. auriculata and C. pubescens lacking any derived restriction site changes. The other seven species are united by five synapomorphic restriction site mutations and the one length mutation. These seven species fall into three unresolved clades consisting of 1) the remaining three perennial species, C. grandiflora, C. intermedia, and C. lanceolata; 2) three annual species, C. basalis, C. nuecensoides, and C. nuecensis; and 3) the remaining annual, C. wrightii. The cpDNA data suggest that, although the perennial habit is primitive within the section, the annual species of section Coreopsis have likely not originated from an extant perennial species. The estimated proportion of nucleotide differences per site (given as 100p) for the cpDNAs of species in the section ranges from 0.00 to 0.20, which is comparable to or lower than values reported for other congeneric species. The low level of cpDNA divergence is concordant with other data, including cross compatibility, interfertility and allozymes, in suggesting that species of the section are not highly divergent genetically.  相似文献   

10.
Summary Restriction fragment analysis of chloroplast (cp) DNAs from 35 wheat (Triticum) and Aegilops species, including their 42 accessions, was carried out with the use of 13 restriction enzymes to clarify variation in their cpDNAs. Fourteen fragment size mutations (deletions/insertions) and 33 recognition site changes were detected among 209 restriction sites sampled. Based on these results, the 42 accessions of wheat-Aegilops could be classified into 16 chloroplast genome types. Most polyploids and their related diploids showed identical restriction fragment patterns, indicating the conservatism of the chloroplast genome during speciation, and maternal lineages of most polyploids were disclosed. This classification of cpDNAs was principally in agreement with that of the plasma types assigned according to phenotypes arising from nucleus-cytoplasm interactions. These mutations detected by restriction fragment analysis were mapped on the physical map of common wheat cpDNA, which was constructed with 13 restriction endonucleases. Length mutations were more frequently observed in some regions than in others: in a 16.0 kilo base pairs (kbp) of DNA region, including rbcL and petA genes, 6 of 14 length mutations were concentrated. This indicates that hot spot regions exist for deletions/insertions in chloroplast genome. On the other hand, 33 recognition site mutations seemed to be distributed equally throughout the genome, except in the inverted repeat region where only one recognition site change was observed. Base substitution rate (p) of cpDNA was similar to that of other plants, such as Brassica, pea and Lycopersicon, showing constant base substitution rates among related taxa and slow evolution of cpDNA compared with animal mitochondrial DNA. Phylogenetic relationships among Triticum and Aegilops species were discussed, based on the present data.Contributions no. 45 and no. 490 from the Kihara Institute for Biological Research, Yokohama City University and the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, respectively.  相似文献   

11.
The psbA-trnH intergenic region is among the most variable regions in the angiosperm chloroplast genome. It is a popular tool for plant population genetics and species level phylogenetics and has been proposed as suitable for DNA barcoding studies. This region contains two parts differing in their evolutionary conservation: 1) the psbA 3′UTR (untranslated region) and 2) the psbA-trnH intergenic non-transcribed spacer. We compared the sequence and RNA secondary structure of the psbA 3′ UTR across angiosperms and found consensus motifs corresponding to the stem portions of the RNA stem-loop structures and a consensus TTAGTGTATA box. The psbA-trnH spacer exhibited patterns that can be explained by the independent evolution of large inversions in the psbA 3′UTR and mutational hot spots in the remaining portion of the psbA-trnH spacer. We conclude that a comparison of chloroplast UTRs across angiosperms offer clues to the identity of putative regulatory elements and information about selective constraints imposed on the chloroplast non-coding regions.  相似文献   

12.
13.
14.
Phylogenetic relationships based on the chloroplast genome of Taraxacum were studied. Representative samples of 44 sections or species groups and a number of isolated species were analyzed. On the basis of the sequence variation in psbAtrnH and in trnL–trnF, mutations associated with RFLPs were monitored. Five RFLPs without homoplasy were recognized and used to reconstruct four main cpDNA groups (haplotypes); Group I is ancestral and, contrary to the information in the primary sequences, the RFLPs were not distinct from those of the outgroup species of Agoseris and Prenanthes. This group corresponds to dandelions believed to be ancestral on the basis of morphological data and previous studies of the chloroplast genome. A comparison of parsimony analysis of morphological and chloroplast data showed an overall lack of congruence. The conflict can most probably be accounted for as a consequence of reticulation.  相似文献   

15.
16.
Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.  相似文献   

17.
The genus Prunus contains the subgenus Prunus incorporating the European plums (section Prunus), the North American plums (section Prunocerasus) and the apricots (section Armeniaca). In section Prunus, there are approximately 20 species, which occur in three levels of ploidy, diploid ( 2n = 2x = 16 ) \left( {2n = 2x = 16} \right) , tetraploid ( 2n = 4x = 32 ) \left( {2n = 4x = 32} \right) and hexaploid ( 2n = 6x = 48 ) \left( {2n = 6x = 48} \right) . Despite a clear distinction between section Prunus and the other sections, phylogenetic relationships between species within the section are unclear. We performed a phylogenetic analysis on members of the section Prunus and three outgroup species using sequence data from four single-copy phylogenetically informative chloroplast DNA regions (atpB-rbcL, matK, rpl16, and trnL-trnF). After alignment, the analysed regions totalled 4,696 bp of sequence, containing 68 parsimony-informative sites and 14 parsimony-informative indels. Data were analysed using both maximum parsimony and Bayesian likelihood and phylogenetic trees were reconstructed. The analyses recovered trees with congruent topologies and similar levels of statistical support for relationships between taxa. They confirmed that species belonging to section Prunus form a monophyletic clade within Prunus. The section is resolved into four well-supported clades, which correspond to the geographical distribution of the species. The hexaploid species could not be resolved into distinct species clades but formed a well-supported group separate from the tetraploid species, highlighting the distinct evolutionary origins of the different polyploid groups. The close relationship between the hexaploids and Prunus divaricata, Prunus cerasifera and Prunus ursina indicates the former may have derived from an ancestor of P. cerasifera and its allies.  相似文献   

18.
Chloroplast DNA (cpDNA) regions, trnS-psbC and rbcL, from 120 individuals of 24 mangrove and mangrove associate species belonging to 11 orders, 13 families and 17 genera of Angiospermae were amplified by the polymerase chain reaction (PCR) and restriction-digested with HaeIII. Analysis of polymorphism in the restriction fragments (PCR-RFLP) revealed 18 classes of restriction banding pattern in trnS-psbC region. This has provided molecular evidence for diversity in the mangrove floral component at the above-species level. Intra-generic variations were observed in three genera, viz. Rhizophora, Avicennia and Suaeda. Species-specific restriction patterns were found in the genera Rhizophora and Suaeda. A natural hybrid belonging to the genus Rhizophora was also analysed, and its restriction pattern was the same as that of a putative parental species.PCR-RFLP analysis of rbcL gene region was less differentiating. However, it showed 13 different classes of restriction patterns and revealed the usefulness of these investigations for genome analysis at a higher taxonomic level. Intra-specific variation was not observed in any of the species in either of the cpDNA regions analysed. This is the first report which describes variations in the chloroplast genome of mangrove species. Received: 20 April 1999 / Accepted: 12 May 1999  相似文献   

19.
Restriction site maps and a clone bank of chloroplast DNA (cpDNA) ofMahonia higginsae (Munz)Ahrendt (Berberidaceae) were constructed. The size ofMahonia cpDNA was about 167 kb. Precise mapping using gene probes revealed that cpDNA ofM. higginsae has an inverted repeat (IR) 11.5 kb larger than the tobacco IR. The expansion of the IR into the large single copy region has resulted in the duplication of at least ten genes includingpsbB. The phylogenetic distribution of the expanded IR was examined in twenty-five species ofBerberis andMahonia, twenty species representing the fifteen remaining genera of theBerberidaceae, and four species from four allied families. Our survey indicates that only the species of the closely related generaBerberis andMahonia share the 11.5kb expansion of IR. This result supports their close phylogenetic relationship, which has been suggested previously by chromosomal, morphological, and serological data.  相似文献   

20.
The diversity and maternal lineage in wild and cultivated soybeans have previously been assayed using restriction fragment length polymorphism (RFLP) and sequencing analyses of chloroplast DNA (cpDNA). Here we describe a method based on PCR-RFLP for the identification of nucleotides at four mutation sites in non-coding regions of cpDNA. Of the four sites, two were located in restriction enzyme sites and two were not. For the latter two sites, new primers were designed to artificially create restriction sites that spanned them. The PCR-RFLP method enabled us to identify nucleotides at each of the four mutation sites easily and reliably. Fifty-seven wild and sixty-seven cultivated soybeans of different origins and different cpDNA types (types I, II, and III) were assayed. All of the samples tested could be classified into four haplotypes. All of the type-I and -II accessions had the same nucleotides at each of the four mutation sites, while all of the type-III accessions, except for 3 wild ones, had nucleotides that were different from those of types I and II. A sequencing analysis revealed that the 3 wild accessions possessed other single-base variations in the non-coding regions of trnH-psbA and trnT-trnL. The results of this study suggest that the type-I and type-II chloroplast genomes form a group that is distinct from the type-III chloroplast genome. Received: 14 April 2000 / Accepted: 11 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号