首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Inbreeding depression may be common in nature, reflecting either the failure of inbreeding avoidance strategies or inbreeding tolerance when avoidance is costly. The combined assessment of inbreeding risk, avoidance and depression is therefore fundamental to evaluate the inbreeding strategy of a population, that is how individuals respond to the risk of inbreeding. Here, we use the demographic and genetic monitoring of 10 generations of wild grey mouse lemurs (Microcebus murinus), small primates from Madagascar with overlapping generations, to examine their inbreeding strategy. Grey mouse lemurs have retained ancestral mammalian traits, including solitary lifestyle, polygynandry and male‐biased dispersal, and may therefore offer a representative example of the inbreeding strategy of solitary mammals. The occurrence of close kin among candidate mates was frequent in young females (~37%, most often the father) and uncommon in young males (~6%) due to male‐biased dispersal. However, close kin consistently represented a tiny fraction of candidate mates (< 1%) across age and sex categories. Mating biases favouring partners with intermediate relatedness were detectable in yearling females and adult males, possibly partly caused by avoidance of daughter–father matings. Finally, inbreeding depression, assessed as the effect of heterozygosity on survival, was undetectable using a capture–mark–recapture study. Overall, these results indicate that sex‐biased dispersal is a primary inbreeding avoidance mechanism at the population level, and mating biases represent an additional strategy that may mitigate residual inbreeding costs at the individual level. Combined, these mechanisms explain the rarity of inbreeding and the lack of detectable inbreeding depression in this large, genetically diverse population.  相似文献   

2.
The social spiders are unusual among cooperatively breeding animals in being highly inbred. In contrast, most other social organisms are outbred owing to inbreeding avoidance mechanisms. The social spiders appear to originate from solitary subsocial ancestors, implying a transition from outbreeding to inbreeding mating systems. Such a transition may be constrained by inbreeding avoidance tactics or fitness loss due to inbreeding depression. We examined whether the mating system of a subsocial spider, in a genus with three social congeners, is likely to facilitate or hinder the transition to inbreeding social systems. Populations of subsocial Stegodyphus lineatus are substructured and spiders occur in patches, which may consist of kin groups. We investigated whether male mating dispersal prevents matings within kin groups in natural populations. Approximately half of the marked males that were recovered made short moves (< 5m) and mated within their natal patch. This potential for inbreeding was counterbalanced by a relatively high proportion of immigrant males. In mating experiments, we tested whether inbreeding actually results in lower offspring fitness. Two levels of inbreeding were tested: full sibling versus non-sib matings and matings of individuals within and between naturally occurring patches of spiders. Neither full siblings nor patch mates were discriminated against as mates. Sibling matings had no effect on direct fitness traits such as fecundity, hatching success, time to hatching and survival of the offspring, but negatively affected offspring growth rates and adult body size of both males and females. Neither direct nor indirect fitness measures differed significantly between within patch and between-patch pairs. We tested the relatedness between patch mates and nonpatch mates using DNA fingerprinting (TE-AFLP). Kinship explained 30% of the genetic variation among patches, confirming that patches are often composed of kin. Overall, we found limited male dispersal, lack of kin discrimination, and tolerance to low levels of inbreeding. These results suggest a history of inbreeding which may reduce the frequency of deleterious recessive alleles in the population and promote the evolution of inbreeding tolerance. It is likely that the lack of inbreeding avoidance in subsocial predecessors has facilitated the transition to regular inbreeding social systems.  相似文献   

3.
Although inbreeding depression and mechanisms for kin recognition have been described in natural bird populations, inbreeding avoidance through mate choice has rarely been reported suggesting that sex‐biased dispersal is the main mechanism reducing the risks of inbreeding. However, a full understanding of the effect of dispersal on the occurrence of inbred matings requires estimating the inbreeding risks prior to dispersal. Combining pairwise relatedness measures and kinship assignments, we investigated in black grouse whether the observed occurrence of inbred matings was explained by active kin discrimination or by female‐biased dispersal. In this large continuous population, copulations between close relatives were rare. As female mate choice was random for relatedness, females with more relatives in the local flock tended to mate with genetically more similar males. To quantify the initial risks of inbreeding, we measured the relatedness to the males of females captured in their parental flock and virtually translocated female hatchlings in their parental and to more distant flocks. These tests indicated that dispersal decreased the likelihood of mating with relatives and that philopatric females had higher inbreeding risks than the actual breeding females. As females do not discriminate against relatives, the few inbred matings were probably due to the variance in female dispersal propensity and dispersal distance. Our results support the view that kin discrimination mate choice is of little value if dispersal effectively reduces the risks of inbreeding.  相似文献   

4.
We studied mate choice and inbreeding avoidance a natural population of song sparrows (Melospiza melodia) on Mandarte Island, Canada. Inbreeding occurred regularly: 59% all matings were between known relatives. We tested for inbreeding avoidance by comparing the observed levels of inbreeding to those expected if mate choice had been random with respect to relatedness. Independent of our assumptions about the availability of mates in the random mating model, we found that the expected and observed distributions of inbreeding coefficients were similar, as was the expected and observed frequency of close (f >/= 0.125) inbreeding. Furthermore, there was no difference in relatedness observed pairs and those that would have resulted had birds mated instead with their nearest neighbors. The only evidence to suggest any inbreeding avoidance was a reduced rate of parent-offspring matings as compared to one random mating model but not the other. Hence, despite substantial inbreeding depression in this population, we found little evidence for inbreeding avoidance through mate choice. We present a simple model to suggest that variation in inbreeding avoidance behaviors in birds may arise from differences in survival rates: in species with low survival rates, the costs of forfeiting matings to avoid inbreeding may exceed the costs of inbreeding.  相似文献   

5.
Behavioural inbreeding avoidance in wild African elephants   总被引:3,自引:2,他引:1  
The costs of inbreeding depression, as well as the opportunity costs of inbreeding avoidance, determine whether and which mechanisms of inbreeding avoidance evolve. In African elephants, sex-biased dispersal does not lead to the complete separation of male and female relatives, and so individuals may experience selection to recognize kin and avoid inbreeding. However, because estrous females are rare and male-male competition for mates is intense, the opportunity costs of inbreeding avoidance may be high, particularly for males. Here we combine 28 years of behavioural and demographic data on wild elephants with genotypes from 545 adult females, adult males, and calves in Amboseli National Park, Kenya, to test the hypothesis that elephants engage in sexual behaviour and reproduction with relatives less often than expected by chance. We found support for this hypothesis: males engaged in proportionally fewer sexual behaviours and sired proportionally fewer offspring with females that were natal family members or close genetic relatives (both maternal and paternal) than they did with nonkin. We discuss the relevance of these results for understanding the evolution of inbreeding avoidance and for elephant conservation.  相似文献   

6.
Habitat fragmentation/alteration has been proposed as a distinct process threatening the viability of populations of many organisms. One expression of its impact may be the disruption of core population processes such as inbreeding avoidance. Using the experimental design outlined in our companion paper, we report on the impact of habitat alteration (deforestation) on inbreeding in the rock-dwelling Australian lizard Egernia cunninghami. Ten microsatellite loci were used to calculate relatedness coefficients of potential and actual breeding pairs, and to examine mate-choice and heterozygosity. Despite significantly less dispersal and higher within-group relatedness between potential mates in deforested than in natural habitats, this did not result in significantly more inbred matings. Average relatedness amongst breeding pairs was low, with no significant difference between natural and fragmented populations in relatedness between breeding pairs, or individual heterozygosity. Active avoidance of close kin as mates was indicated by the substantially and significantly lower relatedness in actual breeding pairs than potential ones. These facts, and heterozygote excesses in all groups of immature lizards from both habitats, show that E. cunninghami maintained outbreeding in the face of increased accumulation of relatives.  相似文献   

7.
Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt’s voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual- and population-level analyses, we found that the majority of Brandt’s vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt’s voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species.  相似文献   

8.
Inbreeding avoidance reduces the probability that an individual will mate with a related partner, thereby lowering the risk that it produces inbred offspring suffering from inbreeding depression. Inbreeding avoidance can occur through several mechanisms, including active mate choice, polyandry and sex‐biased dispersal. Here, we focus on the role of active mate choice as a mechanism for inbreeding avoidance. Recent evidence suggests that the experimental design used in mate choice experiments (i.e. simultaneous versus sequential choice) can have a strong impact on the strength of the reported mating preferences. In this study, we examine whether similar effects of experimental design also apply in the context of inbreeding avoidance. To this end, we designed two experiments on the burying beetle Nicrophorus vespilloides that matched two different contexts under which females encounter potential mates in the wild; that is, when females encounter males simultaneously and sequentially. We found that females were as likely to mate with related and unrelated males regardless of whether they encountered male partners simultaneously or sequentially. Thus, our study provides no evidence for inbreeding avoidance in this species, and suggests that the number of mates present did not influence the degree of inbreeding avoidance. We discuss potential explanations for the lack of inbreeding avoidance through mate choice, including lack of mechanisms for recognizing close relatives, low costs and/or low risks of inbreeding and the presence of other inbreeding avoidance mechanisms, such as sex‐biased dispersal and polyandry coupled with post‐copulatory mate choice.  相似文献   

9.
Effects of male‐biased dispersal on inbreeding avoidance were investigated in a semi‐natural population of Myodes (formerly Clethrionomys) rufocanus using a large outdoor enclosure (3 ha). Parentage of 918 voles weaned from 215 litters and relatedness of mates were analysed using microsatellite loci, and dispersal distances were obtained from mark–recapture live‐trapping data. Natal and breeding male‐biased dispersal was observed. There remained, however, chances that incestuous mating could occur, because not all males dispersed from their natal site, and 51 matings occurred between relatives (relatedness r > 0). The number of weaned juveniles from inbred litters was significantly smaller than that from non‐inbred litters. Fourteen incestuous matings occurred between close relatives (r ≥ 0.25), most of which were those between non‐littermate maternal half siblings (four cases) and those between paternal half siblings (seven cases). When comparing the observed frequencies to the expected ones generated by combining every oestrous female with a male randomly chosen from her surroundings, the observed values for inbreeding of r ≥ 0.25 were significantly smaller than the expectations, while no difference was observed for inbreeding of 0 < r < 0.25. These results suggest that male‐biased dispersal is partly effective to avoid incestuous mating, but it does not provide complete separation of male and female close relatives. Additional mechanisms such as kin discrimination based on familiarity may work in inbreeding avoidance of the vole.  相似文献   

10.
Inbreeding and inbreeding avoidance are key factors in the evolution of animal societies, influencing dispersal and reproductive strategies which can affect relatedness structure and helping behaviours. In cooperative breeding systems, individuals typically avoid inbreeding through reproductive restraint and/or dispersing to breed outside their natal group. However, where groups contain multiple potential mates of varying relatedness, strategies of kin recognition and mate choice may be favoured. Here, we investigate male mate choice and female control of paternity in the banded mongoose (Mungos mungo), a cooperatively breeding mammal where both sexes are often philopatric and mating between relatives is known to occur. We find evidence suggestive of inbreeding depression in banded mongooses, indicating a benefit to avoiding breeding with relatives. Successfully breeding pairs were less related than expected under random mating, which appeared to be driven by both male choice and female control of paternity. Male banded mongooses actively guard females to gain access to mating opportunities, and this guarding behaviour is preferentially directed towards less closely related females. Guard–female relatedness did not affect the guard's probability of gaining reproductive success. However, where mate‐guards are unsuccessful, they lose paternity to males that are less related to the females than themselves. Together, our results suggest that both sexes of banded mongoose use kin discrimination to avoid inbreeding. Although this strategy appears to be rare among cooperative breeders, it may be more prominent in species where relatedness to potential mates is variable, and/or where opportunities for dispersal and mating outside of the group are limited.  相似文献   

11.
In species with low levels of dispersal the chance of closely related individuals breeding may be a potential problem; sex-biased dispersal is a mechanism that may decrease the possibility of cosanguineous mating. Fragmentation of the habitat in which a species lives may affect mechanisms such as sex-biased dispersal, which may in turn exacerbate more direct effects of fragmentation such as decreasing population size that may lead to inbreeding depression. Relatedness statistics calculated using microsatellite DNA data showed that rainforest fragmentation has had an effect on the patterns of dispersal in the prickly forest skink (Gnypetoscincus queenslandiae), a rainforest endemic of the Wet Tropics of north eastern Australia. A lower level of relatedness was found in fragments compared to continuous forest sites due to a significantly lower level of pairwise relatedness between males in rainforest fragments. The pattern of genetic relatedness between sexes indicates the presence of male-biased dispersal in this species, with a stronger pattern detected in populations in rainforest fragments. Male prickly forest skinks may have to move further in fragmented habitat in order to find mates or suitable habitat logs.  相似文献   

12.
Mating with close kin can lead to inbreeding depression through the expression of recessive deleterious alleles and loss of heterozygosity. Mate selection may be affected by kin encounter rate, and inbreeding avoidance may not be uniform but associated with age and social system. Specifically, selection for kin recognition and inbreeding avoidance may be more developed in species that live in family groups or breed cooperatively. To test this hypothesis, we compared kin encounter rate and the proportion of related breeding pairs in noninbred and highly inbred canid populations. The chance of randomly encountering a full sib ranged between 1-8% and 20-22% in noninbred and inbred canid populations, respectively. We show that regardless of encounter rate, outside natal groups mates were selected independent of relatedness. Within natal groups, there was a significant avoidance of mating with a relative. Lack of discrimination against mating with close relatives outside packs suggests that the rate of inbreeding in canids is related to the proximity of close relatives, which could explain the high degree of inbreeding depression observed in some populations. The idea that kin encounter rate and social organization can explain the lack of inbreeding avoidance in some species is intriguing and may have implications for the management of populations at risk.  相似文献   

13.
Inbreeding depression, as commonly found in natural populations, should favour the evolution of inbreeding avoidance mechanisms. If natal dispersal, the first and probably most effective mechanism, does not lead to a complete separation of males and females from a common origin, a small-scale genetic population structure may result and other mechanisms to avoid inbreeding may exist. We studied the genetic population structure and individual mating patterns in blue tits (Parus caeruleus). The population showed a local genetic structure in two out of four years: genetic relatedness between individuals (estimated from microsatellite markers) decreased with distance. This pattern was mainly caused by immigrants to the study area; these, if paired with fellow immigrants, were more related than expected by chance. Since blue tits did not avoid inbreeding with their social partner, we examined if individuals preferred less related partners at later stages of the mate choice process. We found no evidence that females or males avoided inbreeding through extra-pair copulations or through mate desertion and postbreeding dispersal. Although the small-scale genetic population structure suggests that blue tits could use a simple rule of thumb to select less related mates, females did not generally prefer more distantly breeding extra-pair partners. However, the proportion of young fathered by an extra-pair male in mixed paternity broods depended on the genetic relatedness with the female. This suggests that there is a fertilization bias towards less related copulation partners and that blue tits are able to reduce the costs of inbreeding through a postcopulatory process.  相似文献   

14.
Extensive mark-recapture data from banner-tailed kangaroo rats, Dipodomys spectabilis, have shown that both males and females are highly philopatric and suggest the possibility of close inbreeding. However, indirect analyses based on genetic structure appear to contradict direct observations, suggesting longer dispersal distances. Using microsatellite genotypes from most members of a banner-tailed kangaroo rat population during five successive breeding seasons, we ask how relatedness is influenced by dispersal and how it in turn influences mating patterns. The data confirm that, because of philopatry, neighbours are often close relatives. However, patterns of parentage also show that the average distance between mates is large relative to natal dispersal distances and larger than the average distance between nearest opposite-sexed neighbours. Females' mates were often not their nearest male neighbour and many were less related than the nearest male neighbour. We detected multiple paternity in some females' litters; both sexes produce offspring with multiple mates within and between breeding seasons. At the population level, heterozygosities were high and estimates of F were low, indicating that levels of inbreeding were low. Using individual inbreeding coefficients of all juveniles to estimate their parents' relatedness, we found that parental relatedness was significantly lower than relatedness between nearest opposite-sexed adult neighbours. Thus in philopatric populations, long breeding forays can cause genes to move further than individuals disperse, and polyandry may serve to reduce relatedness between mates.  相似文献   

15.
We tested the hypothesis that sex-biased natal dispersal reduces close inbreeding in American black bears, a solitary species that exhibits nearly complete male dispersal and female philopatry. Using microsatellite DNA and spatial data from reproductively mature bears (>or= 4 years old), we examined the spatial genetic structure of two distinct populations in New Mexico from 1993 to 2000. As predicted, relatedness (r) and the frequency of close relationships (parent-offspring or full siblings) decreased with distance among female dyads, but little change was observed among male or opposite-sex dyads. Neighbouring females were more closely related than neighbouring males. The potential for inbreeding was low. Most opposite-sex pairs that lived sufficiently close to facilitate mating were unrelated, and few were close relatives. We found no evidence that bears actively avoided inbreeding in their selection of mates from this nearby pool, as mean r and relationship frequencies did not differ between potential and actual mating pairs (determined by parentage analysis). These basic patterns were apparent in both study areas despite a nearly two-fold difference in density. However, the sex bias in dispersal was less pronounced in the lower-density area, based on proportions of bears with male and female relatives residing nearby. This result suggests that male bears may respond to reduced competition by decreasing their rate or distance of dispersal. Evidence supports the hypothesis that inbreeding avoidance is achieved by means of male-biased dispersal but also indicates that competition (for mates or resources) modifies dispersal patterns.  相似文献   

16.
Habitat fragmentation is one of the major contributors to the loss of biodiversity worldwide. However, relatively little is known about its more immediate impacts on within-patch population processes such as social structure and mating systems, whose alteration may play an important role in extinction risk. We investigated the impacts of habitat fragmentation due to the establishment of an exotic softwood plantation on the social kin structure and breeding system of the Australian marsupial carnivore, Antechinus agilis. Restricted dispersal by males in fragmented habitat resulted in elevated relatedness among potential mates in populations in fragments, potentially increasing the risk of inbreeding. Antechinus agilis nests communally in tree hollows; these nests are important points for social contact between males and females in the mating season. In response to elevated relatedness among potential mates in fragmented habitat, A. agilis significantly avoided sharing nests with opposite-sex relatives in large fragment sites (but not in small ones, possibly due to limited nest locations and small population sizes). Because opposite-sex individuals shared nests randomly with respect to relatedness in unfragmented habitat, we interpreted the phenomenon in fragmented habitat as a precursor to inbreeding avoidance via mate choice. Despite evidence that female A. agilis at high inbreeding risk selected relatively unrelated mates, there was no overall increased avoidance of related mates by females in fragmented habitats compared to unfragmented habitats. Simulations indicated that only dispersal, and not nonrandom mating, contributed to inbreeding avoidance in either habitat context. However, habitat fragmentation did influence the mating system in that the degree of multiple paternity was reduced due to the reduction in population sizes and population connectivity. This, in turn, reduced the number of males available to females in the breeding season. This suggests that in addition to the obvious impacts of reduced recruitment, patch recolonization and increased genetic drift, the isolation of populations in habitat patches may cause changes in breeding behaviour that contribute to the negative impacts of habitat fragmentation.  相似文献   

17.
Previous work on the Glanville fritillary butterfly (Melitaea cinxia) shows substantial inbreeding depression in both of our two study regions, Finland and southern France. The influence of inbreeding depression on population dynamics should depend on the strength of inbreeding avoidance. We conducted mate choice experiments to ascertain whether and to what extent butterflies avoid mating with their sibs. Experiments with similar design were done in the laboratory with Finnish butterflies and in the field with French butterflies. Each female was given a choice of mates with equal opportunity to mate with a sib or with a non-sib. In neither experiment was there a trend towards avoidance of sib mating. 95% confidence intervals for the proportion of non-sib matings were 12–62% in the laboratory experiment and 28–69% in the field experiment. Any preference for non-sibs must be slight, and can provisionally be ignored in modelling the dynamics of M. cinxia populations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
As breeding between relatives often results in inbreeding depression, inbreeding avoidance is widespread in the animal kingdom. However, inbreeding avoidance may entail fitness costs. For example, dispersal away from relatives may reduce survival. How these conflicting selection pressures are resolved is challenging to investigate, but theoretical models predict that inbreeding should occur frequently in some systems. Despite this, few studies have found evidence of regular incest in mammals, even in social species where relatives are spatio-temporally clustered and opportunities for inbreeding frequently arise. We used genetic parentage assignments together with relatedness data to quantify inbreeding rates in a wild population of banded mongooses, a cooperatively breeding carnivore. We show that females regularly conceive to close relatives, including fathers and brothers. We suggest that the costs of inbreeding avoidance may sometimes outweigh the benefits, even in cooperatively breeding species where strong within-group incest avoidance is considered to be the norm.  相似文献   

19.
Inbreeding avoidance is predicted to induce sex biases in dispersal. But which sex should disperse? In polygynous species, females pay higher costs to inbreeding and thus might be expected to disperse more, but empirical evidence consistently reveals male biases. Here, we show that theoretical expectations change drastically if females are allowed to avoid inbreeding via kin recognition. At high inbreeding loads, females should prefer immigrants over residents, thereby boosting male dispersal. At lower inbreeding loads, by contrast, inclusive fitness benefits should induce females to prefer relatives, thereby promoting male philopatry. This result points to disruptive effects of sexual selection. The inbreeding load that females are ready to accept is surprisingly high. In absence of search costs, females should prefer related partners as long as delta相似文献   

20.
The conservation of many fragmented and small populations of endangered African wild dogs (Lycaon pictus) relies on understanding the natural processes affecting genetic diversity, demographics, and future viability. We used extensive behavioural, life-history, and genetic data from reintroduced African wild dogs in South Africa to (1) test for inbreeding avoidance via mate selection and (2) model the potential consequences of avoidance on population persistence. Results suggested that wild dogs avoided mating with kin. Inbreeding was rare in natal packs, after reproductive vacancies, and between sibling cohorts (observed on 0.8%, 12.5%, and 3.8% of occasions, respectively). Only one of the six (16.7%) breeding pairs confirmed as third-order (or closer) kin consisted of animals that were familiar with each other, while no other paired individuals had any prior association. Computer-simulated populations allowed to experience inbreeding had only a 1.6% probability of extinction within 100 years, whereas all populations avoiding incestuous matings became extinct due to the absence of unrelated mates. Populations that avoided mating with first-order relatives became extinct after 63 years compared with persistence of 37 and 19 years for those also prevented from second-order and third-order matings, respectively. Although stronger inbreeding avoidance maintains significantly more genetic variation, our results demonstrate the potentially severe demographic impacts of reduced numbers of suitable mates on the future viability of small, isolated wild dog populations. The rapid rate of population decline suggests that extinction may occur before inbreeding depression is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号