首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kurushima J  Kuwae A  Abe A 《PloS one》2012,7(6):e38925
Bordetella bronchiseptica is closely related with B. pertussis and B. parapertussis, the causative agents of whooping cough. These pathogenic species share a number of virulence genes, including the gene locus for the type III secretion system (T3SS) that delivers effector proteins. To identify unknown type III effectors in Bordetella, secreted proteins in the bacterial culture supernatants of wild-type B. bronchiseptica and an isogenic T3SS-deficient mutant were compared with iTRAQ-based, quantitative proteomic analysis method. BB1639, annotated as a hypothetical protein, was identified as a novel type III secreted protein and was designated BspR (Bordetella secreted protein regulator). The virulence of a BspR mutant (ΔbspR) in B. bronchiseptica was significantly attenuated in a mouse infection model. BspR was also highly conserved in B. pertussis and B. parapertussis, suggesting that BspR is an essential virulence factor in these three Bordetella species. Interestingly, the BspR-deficient strain showed hyper-secretion of T3SS-related proteins. Furthermore, T3SS-dependent host cell cytotoxicity and hemolytic activity were also enhanced in the absence of BspR. By contrast, the expression of filamentous hemagglutinin, pertactin, and adenylate cyclase toxin was completely abolished in the BspR-deficient strain. Finally, we demonstrated that BspR is involved in the iron-responsive regulation of T3SS. Thus, Bordetella virulence factors are coordinately but inversely controlled by BspR, which functions as a regulator in response to iron starvation.  相似文献   

2.
3.
The type III secretion system (T3SS) is a sophisticated protein secretion machinery that delivers bacterial virulence proteins into host cells. A needle-tip protein, Bsp22 , is one of the secreted substrates of the T3SS and plays an essential role in the full function of the T3SS in Bordetella bronchiseptica. In this study, we found that BB1618 functions as a chaperone for Bsp22 . The deletion of BB1618 resulted in a dramatic impairment of Bsp22 secretion into the culture supernatants and Bsp22 stability in the bacterial cytosol. In contrast, the secretion of other type III secreted proteins was not affected by the BB1618 mutation. Furthermore, the BB1618 mutant strain could not induce cytotoxicity and displayed the same phenotypes as the Bsp22 mutant strain. An immunoprecipitation assay demonstrated that BB1618 interacts with Bsp22 , but not with BopB and BopD . Thus, we identified BB1618 as a specific type III chaperone for Bsp22 . Therefore, we propose that BB1618 be renamed Btc22 for the Bordetella type III chaperone for Bsp22 .  相似文献   

4.
The Bordetella type III secretion system (T3SS) effector protein BteA is necessary and sufficient for rapid cytotoxicity in a wide range of mammalian cells. We show that BteA is highly conserved and functionally interchangeable between Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis . The identification of BteA sequences required for cytotoxicity allowed the construction of non-cytotoxic mutants for localization studies. BteA derivatives were targeted to lipid rafts and showed clear colocalization with cortical actin, ezrin and the lipid raft marker GM1. We hypothesized that BteA associates with the cytoplasmic face of lipid rafts to locally modulate host cell responses to Bordetella attachment. B. bronchiseptica adhered to host cells almost exclusively to GM1-enriched lipid raft microdomains and BteA colocalized to these same sites following T3SS-mediated translocation. Disruption of lipid rafts with methyl-β-cyclodextrin protected cells from T3SS-induced cytotoxicity. Localization to lipid rafts was mediated by a 130-amino-acid lipid raft targeting domain at the N-terminus of BteA, and homologous domains were identified in virulence factors from other bacterial species. Lipid raft targeting sequences from a T3SS effector (Plu4750) and an RTX-type toxin (Plu3217) from Photorhabdus luminescens directed fusion proteins to lipid rafts in a manner identical to the N-terminus of BteA.  相似文献   

5.
Bordetella bronchiseptica establishes respiratory tract infections in laboratory animals with high efficiency. Colonization persists for the life of the animal and infection is usually asymptomatic in immunocompetent hosts. We hypothesize that this reflects a balance between immunostimulatory events associated with infection and immunomodulatory events mediated by the bacteria. We have identified 15 loci that are part of a type III secretion apparatus in B. bronchiseptica and three secreted proteins. The functions of the type III secretion system were investigated by comparing the phenotypes of wild-type bacteria with two strains that are defective in type III secretion using in vivo and in vitro infection models. Type III secretion mutants were defective in long-term colonization of the trachea in immunocompetent mice. The mutants also elicited higher titres of anti- Bordetella antibodies upon infection compared with wild-type bacteria. Type III secretion mutants also showed increased lethal virulence in immunodeficient SCID-beige mice. These observations suggest that type III-secreted products of B. bronchiseptica interact with components of both innate and adaptive immune systems of the host. B. bronchiseptica induced apoptosis in macrophages in vitro and inflammatory cells in vivo and type III secretion was required for this process. Infection of an epithelial cell line with high numbers of wild type, but not type III deficient B. bronchiseptica resulted in rapid aggregation of NF-κB into large complexes in the cytoplasm. NF-κB aggregation was dependent on type III secretion and aggregated NF-κB did not respond to TNFα activation, suggesting B. bronchiseptica may modulate host immunity by inactivating NF-κB. Based on these in vivo and in vitro results, we hypothesize that the Bordetella type III secretion system functions to modulate host immune responses during infection.  相似文献   

6.
The type III secretion system (T3SS) of Pseudomonas aeruginosa is an important virulence factor. The T3SS of P. aeruginosa can be induced by a low calcium signal or upon direct contact with the host cells. The exact pathway of signal sensing and T3SS activation is not clear. By screening a transposon insertion mutant library of the PAK strain, mutation in the mucA gene was found to cause repression of T3SS expression under both type III-inducing and -noninducing conditions. Mutation in the mucA gene is known to cause alginate overproduction, resulting in a mucoid phenotype. Alginate production responds to various environmental stresses and plays a protective role for P. aeruginosa. Comparison of global gene expression of mucA mutant and wild-type PAK under T3SS-inducing conditions confirmed the down regulation of T3SS genes and up regulation of genes involved in alginate biosynthesis. Further analysis indicated that the repression of T3SS in the mucA mutant was AlgU and AlgR dependent, as double mutants mucA/algU and mucA/algR showed normal type III expression. An algR::Gm mutant showed a higher level of type III expression, while overexpression of the algR gene inhibited type III gene expression; thus, it seems that the AlgR-regulated product inhibits the expression of the T3SS genes. It is likely that P. aeruginosa has evolved tight regulatory networks to turn off the energy-expensive T3SS when striving for survival under environmental stresses.  相似文献   

7.
8.
9.
10.
Type III secretion system (T3SS) tip complexes serve as adaptors that bridge the T3SS needle and the pore-forming translocation apparatus. In this report we demonstrate that Bsp22, the most abundantly secreted substrate of the Bordetella T3SS, self-polymerizes to form the Bordetella bronchiseptica tip complex. Bsp22 is required for both T3SS-mediated cytotoxicity against eukaryotic cells and haemoglobin release from erythrocytes. Bacterial two-hybrid analysis and protein pull-down assays demonstrated the ability of Bsp22 to associate with itself and to bind BopD, a component of the Bordetella translocation pore. Immunoblot and cross-linking analysis of secreted proteins or purified Bsp22 showed extensive multimerization which was shown by transmission electron microscopy to lead to the formation of variable length flexible filaments. Immunoelectron microscopy revealed Bsp22 filaments on the surface of bacterial cells. Given its required role in secretion and cell-surface exposure, we tested the protective effects of antibodies against Bsp22 in vitro and in vivo . Polyclonal antisera against Bsp22 fully protected epithelial cells from T3SS-dependent killing and immunization with Bsp22 protected mice against Bordetella infection. Of the approximately 30 genes which encode the Bordetella T3SS apparatus, bsp22 is the only one without characterized orthologues in other well-characterized T3SS loci. A maximum likelihood phylogenetic analysis indicated that Bsp22 defines a new subfamily of T3SS tip complex proteins. Given its immunogenic and immunoprotective properties and high degree of conservation among Bordetella species, Bsp22 and its homologues may prove useful for diagnostics and next-generation subunit vaccines.  相似文献   

11.
12.
13.
Bordetella avium is a pathogen of poultry and is phylogenetically distinct from Bordetella bronchiseptica, Bordetella pertussis, and Bordetella parapertussis, which are other species in the Bordetella genus that infect mammals. In order to understand the evolutionary relatedness of Bordetella species and further the understanding of pathogenesis, we obtained the complete genome sequence of B. avium strain 197N, a pathogenic strain that has been extensively studied. With 3,732,255 base pairs of DNA and 3,417 predicted coding sequences, it has the smallest genome and gene complement of the sequenced bordetellae. In this study, the presence or absence of previously reported virulence factors from B. avium was confirmed, and the genetic bases for growth characteristics were elucidated. Over 1,100 genes present in B. avium but not in B. bronchiseptica were identified, and most were predicted to encode surface or secreted proteins that are likely to define an organism adapted to the avian rather than the mammalian respiratory tracts. These include genes coding for the synthesis of a polysaccharide capsule, hemagglutinins, a type I secretion system adjacent to two very large genes for secreted proteins, and unique genes for both lipopolysaccharide and fimbrial biogenesis. Three apparently complete prophages are also present. The BvgAS virulence regulatory system appears to have polymorphisms at a poly(C) tract that is involved in phase variation in other bordetellae. A number of putative iron-regulated outer membrane proteins were predicted from the sequence, and this regulation was confirmed experimentally for five of these.  相似文献   

14.
15.
16.
The ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To identify genes encoding type III effectors and other potential virulence factors that are regulated by the HrpL alternative sigma factor, we used a hidden Markov model, weight matrix model, and type III targeting-associated patterns to search the genome of P. syringae pv. phaseolicola 1448A, which recently was sequenced to completion. We identified 44 high-probability putative Hrp promoters upstream of genes encoding the core T3SS machinery, 27 candidate effectors and related T3SS substrates, and 10 factors unrelated to the Hrp system. The expression of 13 of these candidate HrpL regulon genes was analyzed by real-time polymerase chain reaction, and all were found to be upregulated by HrpL. Six of the candidate type III effectors were assayed for T3SS-dependent translocation into plant cells using the Bordetella pertussis calmodulin-dependent adenylate cyclase (Cya) translocation reporter, and all were translocated. PSPPH1855 (ApbE-family protein) and PSPPH3759 (alcohol dehydrogenase) have no apparent T3SS-related function; however, they do have homologs in the model strain P. syringae pv. tomato DC3000 (PSPTO2105 and PSPTO0834, respectively) that are similarly upregulated by HrpL. Mutations were constructed in the DC3000 homologs and found to reduce bacterial growth in host Arabidopsis leaves. These results establish the utility of the bioinformatic or candidate gene approach to identifying effectors and other genes relevant to pathogenesis in P. syringae genomes.  相似文献   

17.
18.
The cytotoxicity of Bordetella bronchiseptica to infected cells is known to be dependent on a B. bronchiseptica type III secretion system. Although the precise mechanism of the type III secretion system is unknown, BopN, BopD and Bsp22 have been identified as type III secreted proteins. In order to identify other proteins secreted via the type III secretion machinery in Bordetella, a type III mutant was generated, and its secretion profile was compared with that of the wild-type strain. The results showed that the wild-type strain, but not the type III mutant, secreted a 40-kDa protein into the culture supernatant. This protein was identified as BopB by the analysis of its N-terminal amino acid sequence. Severe cytotoxicity such as necrosis was induced in L2 cells by infection with the wild-type B. bronchiseptica. In contrast, this effect was not observed by the BopB mutant infection. The haemolytic activity of the BopB mutant was greatly impaired compared with that of the wild-type strain. The results of a digitonin assay strongly suggested that BopB was translocated into HeLa cells infected with the wild-type strain. Taken together, our results demonstrate that Bordetella secretes BopB via a type III secretion system during infection. BopB may play a role in the formation of pores in the host plasma membrane which serve as a conduit for the translocation of effector proteins into host cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号