首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na+, K+ and Cl- in Xylem Sap Flowing to Shoots of NaCl-Treated Barley   总被引:7,自引:0,他引:7  
Munns, R. 1985. Na+, K+ and Cl in xylem sap flowing toshoots of NaCl-treated barley.—J. exp. Bot. 36: 1032–1042. Na+, Cl and K+ concentrations were measured in xylemsap obtained by applying pressure to the roots of decapitatedbarley plants grown at external [NaCl] of 0, 25, 50, 100, 150and 200 mol m–3. For any given NaCl treatment, ion concentrationsin the xylem sap were hyperbolically related to the flux ofwater. Ion concentrations in sap collected at very low volumefluxes (without applied pressure) were 5–10 times higherthan in sap collected at moderate fluxes (under pressure). Fora given moderate volume flux, Na+ concentration in the xylemsap, [Na+]x, was only 4.0 mol m–3 at external [NaCl] of25–150 mol m–3, and increased to 7.0 mol m–3at 200 mol m–3. [Cl-]x showed a similar pattern. Thisshows there would be little difference in the rate of uptaketo the shoot of plants at 25–150 mol m–3 externalNaCl and indicates little change even at 200 mol m-3 NaCl becausetranspiration rates would be much lower. Thus the reduced growthof the shoot of plants at high NaCl concentrations is not dueto higher uptake rates of Na+ or Cl. The fluxes of Na+, Cl and K increased non-linearlywith increasing volume flux indicating little movement of saltin the apoplast. The flux of K+ increased even when [K+]x wasgreater than external [K+], indicating that membrane transportprocesses modify the K+ concentration in the transpiration streamas it flows through the root system. Key words: -Xylem sap, Na+, K+, Cl fluxes, salinity, barley  相似文献   

2.
In springwater (25.5 mol m–3 Cl, 20.4 mol m–3Na+, 0.14 mol m–3 K+) Enteromorpha intestinalis couldnot survive for more than a few weeks unless provided with 0.5mol m–3 K+ in the medium or alternatively exposed to seawaterfor 1 day per week. Maintenance of a cytoplasmic K+ level ofabout 200 mol m–3 is critical for the maintenance of normalmetabolic activity. Net gains of intracellular K+ occurred whenthe plants were transferred from low-salinity to seawater; converselylarge net losses occurred when plants were transferred fromseawater to springwater. These two processes were not simplythe reverse of one another; net gain of K+ involved a largeincrease in the tracer flux both into and out of the cell butnet loss of K+ virtually halted the tracer flux into the cell.Any injury incurred by rapid salinity changes was short-lived;plants were rapidly able to adjust intracellular [K1.K+). K+(orto some extent Rb+) was found to be necessary in the effluxmedium for 42K+ exchange to occur. The osmotic concentrationof the medium was also important but extracellular Na+ and Clconcentrationswere not critical. K+ influx and efflux in both springwaterand seawater were largely independent of light and were sensitivein varying degrees to a range of common metabolic inhibitorsand uncouplers. The results are best explained by the presenceof an active K+ influx, generated by an ATP-dependent K+ pumpat the plasmalemma. Key words: Enteromorpha, Potassium transport, Salinity changes, Uncouplers, Inhibitors  相似文献   

3.
Concentrations of inorganic and organic solutes were measuredin sap extracted from individual mesophyll and epidermal cellsof the third leaf of barley. During the development of the thirdleaf plants were grown in various salt solutions (NaCl; 2, 50,100, and 150 mM, KCI; 100 mM or KNO3; 100 mM). Leaves were analysed2–4 d after full expansion. Cell-sap was extracted usinga modified pressure probe and analysed for its osmolality, concentrationsof P, Na+ K+ Ca2+, and Cl and, in some cases, of nitrate,hexoses and total amino acids. Salt treatment caused differentialchanges in the concentrations of solutes in mesophyll and epidermalcells, but did not affect the basic pattern of solute compartmentationbetween these tissues. Calcium was found at osmotically significantconcentrations only in the epidermis, whereas P and organicsolutes were almost exclusively found in the mesophyll. Chlorideand Na+ accumulated preferentially in the epidermis, althoughmesophyll concentrations also increased considerably. At 150mM external NaCl, mesophyll cells contained 302 mM Na and 167mM Cl, compared to 29 mM Na+ and 16 mM Cl in thecontrol. Mesophyll Cl levels were even higher in the100 mM KCl treatment (216 mM) where mesophyll and epidermalK+ accumulated to 424 and 491 mM, respectively. These huge increasesin mesophyll Na+ Cl and K+ were not associated with abreakdown in leaf performance since net rates of photosynthesisdecreased only by less than 20%. Under control (2 mM NaCl) conditions,solutes followed patterned gradients between the various epidermalcell types. The extent of these gradients changed with leafage. During 50 mM NaCl treatment, gradients in Cl, nitrateand malate concentrations progressively disappeared, with malateconcentrations approaching zero. Potassium and Na+ exhibitedaltered distribution profiles, whereas Ca2+ distribution wasunaffected. NaCl-dependent increases in osmolalities differedbetween cells. Exposure of plants to 150 mM NaCl caused qualitativelysimilar changes in both epidermal solute and osmolality profiles,although absolute values differed from those at 50 mM NaCl.In particular, epidermal Cl and Na+ increased to about500 mM and K+ disappeared (<<5 mM) from the vacuole ofcertain epidermal cell types completely. Key words: Barley leaf epidermis, mesophyll, salt stress, single-cell analysis, vacuolar solutes  相似文献   

4.
The concentrations of K+, Na+ and Cl in the cytoplasmof Lamprothamnium succinctum, a brackish water Characeae, areabout 137, 47 and 86 mM respectively. The concentration of K+in the cytoplasm is of the same order as that in the cell sap,while the concentrations of Na+ and Cl are much lowerthan those in the cell sap (i.e., 140 mM Na+, 370 mM Cl).In the brackish water, in which the plant grows, the internodesis never excitable electrically. However, it acquires excitabilitywhen it is kept in a mannitol-pond water. The action potentialthus elicited is accompanied by a temporary cessation or slowdown of the cytoplasmic streaming. 1This work was supported by Research Grants from the Ministryof Education of Japan  相似文献   

5.
The contribution of membrane transport to regulation of cytoplasmicpH in Chara corallina has been measured during proton-loadingby uptake of butyric acid. In the short-term (i.e. up to 20min) uptake of butyric acid is not affected by removal of externalK+, Na+ or Cl but over longer periods uptake is decreased(by 20–50% in different experiments) in the absence ofexternal Na+ or, sometimes, K+. Influxes of both Na+ and K+increase temporarily after addition of butyrate, Na+ immediatelyand K+ after a lag. Effects on Cl influx are small butCl efflux increases enormously after a short lag. Anapproximate comparison of internal butyrate with changes inthe concentration of K+, Na+, and Cl suggests that initially(i.e. for a few min) cytoplasmic pH is determined by bufferingand possibly by some decarboxylation of organic acids (biochemicalpH regulation), and that biophysical pH regulation involvingefflux of H+ balanced by influxes of K+, Na+ and especiallyefflux of Cl progressively becomes dominant. When butyric acid is washed out of the cells, cytoplasmic pHis restored completely or partially (depending on the butyrateconcentration used) and this is independent of the presenceor absence of external Cl. Where Cl is present,its influx is relatively small. It is suggested that cytoplasmicpH is then controlled biochemically, involving the synthesisof an (unidentified) organic acid and the accumulation of acidicanions in place of butyurate lost from the cell. During thesecond application of butyrate, net Cl efflux is small:it is suggested that control of cytoplasmic pH then involvesdecarboxylation of the organic acid anions. The questions of the source of Cl lost from the cell(cytoplasm or vacuole) and of possible cytoplasmic swellingassociated with the accumulation of butyrate are discussed. Key words: Chara corallina, butyric acid, cytoplasmic pH, membrane transport  相似文献   

6.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

7.
Two strains of Dunaliella, one halotolerant and one halophilic,were grown in batch culture at NaCl concentrations varying from500 mol m–3 to 3000 mol m–3. Measurements were madeof the following solutes: glycerol, Na+, K+, Mg2+, Cl,phosphate in the cells of logarithmic and of stationary-phasecultures. The method used was to separate the cells from thebulk of the medium by differential density centrifugation. Soluteconcentrations were calculated using Blue Dextran as a markerfor extracellular space. It was found that in log-phase cells,glycerol accounted for one-half to two-thirds of the total cellsolute concentration, the remainder being largely accountedfor by Na+ and Cl. In the stationary phase glycerol felland Na+, plus Cl, rose. Light intensity was found toaffect cell volume and solute content. The means whereby soluteconcentrations are controlled is discussed. Key words: Osmoregulation, Ion concentrations, Dunaliella  相似文献   

8.
Internal Factors Regulating Nitrate and Chloride Influx in Plant Cells   总被引:14,自引:0,他引:14  
The primary factor determining the observed decrease in activeC1 influx during salt accumulation in carrot and barleyroot cells has been shown to be the concentration of C1+ NO3 in the vacuole. The relationship between C1 influx and the vacuolar concentrationsof various substances was examined after the tissues had accumulatedions from various salt solutions. After accumulating K+ malate,C1 influx was not reduced, but after accumulating C1or NO3 salts, C1 influx was reduced by up to 90per cent. Considering all treatments, C1 influx was notcorrelated with the vacuolar concentration of K+, Na+, (K++Na+),reducing sugars, malate, C1, or NO3, nor withthe cellular osmotic pressure. The correlation coefficient betweenCl influx and log (C1 + NO3 concentrationin the vacuole) was highly significant, and accounted for allthe variation in C1 influx in this experiment. Net NO3 influx is similarly reduced by a high C1concentration in the vacuole. External Cl and NO3have quantitatively different, apparently competitive, effectson C1 influx. These differ from the apparently negative-feedbackeffects of C1 and NO3 in the vacuole, which arequantitatively similar. Decreasing the internal hydrostatic pressure by raising theexternal osmotic pressure increased active K+ influx in Valoniaventricosa, but had no effect on C1 or K+ influx in carrotor maize root cells. Cl influx is not related to thereducing sugar concentration during ageing drifts in excisedcarrot root tissue. Acetazolamide did not inhibit C1 influx to carrot tissue. The implications of this type of negative feedback regulation,and the relationship between C1 and NO3 transportare discussed.  相似文献   

9.
The Ionic Relations of Acetabularia mediterranea   总被引:3,自引:0,他引:3  
The concentrations of K+, Na+, and Cl in the cytoplasmand the vacuole of Acetabularia mediterranea have been measured,as have the vacuolar concentrations of SO4–– andoxalate. The electrical potential difference between externalsolution, and vacuole and cytoplasm has been measured. The resultsindicate that Cl and SO4–– are probably transportedactively into the cell, and that active transport of Na+ isoutwards. The results for K+ are equivocal. The fluxes of K+,Na+, Cl, and S04–– into the cell and theeffluxes of Na+ and Cl have been determined. The Clfluxes are extremely large. In all cases the plasmalemma isthe rate-limiting membrane for ion movement. A technique isdescribed for the preparation of large, completely viable cellfragments containing only cytoplasm, with no vacuole.  相似文献   

10.
Osmotic and Ionic Regulation in Chara L-cell Fragments   总被引:1,自引:0,他引:1  
Ion absorption from rather complicated artificial pond water(APW) by cell fragments having a lower osmotic pressure thanthe intact internodal cell (L-cell fragments) was studied. L-cellfragments were prepared by taking advantage of trans cellularosmosis and ligating the cell with thread. The results wereas follows: (1) L-cell fragments absorbed more K+ than Na+ fromaKCL + NaCl mixture in the presence of Ca2+, Mg2+ and SO24 inthe light; (2) the influx of KCI was larger than that of KNO3;(3) the amount of positive charge carried by K+, Na+ and Mg2+across the cell membrane balanced well with the amount of negativecharge carried by Cl in Cl-containing and NO3-free APW; (4) no conclusion could be made as to whether ornot the rule of electro neutrality held for the K+, Na+, Ca2+and NO3 fluxes across the cell membrane, because dilutedKNO3 is unstable; (5) L-cell fragments in KCl-containing APWsurvived longer than those in KNO3-containing and Cl-free APW; (6) after incubation in KNO3-containing and Cl-freeAPW, L-cell fragments absorbed a great amount of KCI immediatelyafter being transferred to KCl-containing and NO3 -freeAPW; and (7) lowering the turgor pressure of the intact cellby raising the external osmotic pressure did not induce ionflux into the cell. Thus, we concluded that the L-cell fragmentsabsorbed ions from the external solution not because of theirlower turgor pressure, but because of the diluted ion concentrationof the cytoplasm and the vacuole. The electroneutrality ruleheld, at least, for K+, Na+, Mg2+ and Cl influxes acrossthe cell membrane inthe KCl-containing and NO3-free APW.These results were analyzed on the basis of an extended poremodel which presumed the existence of ATP-dependent processesin the membrane, and suggested that K+, Na+ and Mg2+ inflowsinto an L-cell fragment are likely to be induced by active Clinflow. (Received May 18, 1987; Accepted September 29, 1987)  相似文献   

11.
Faraday, C. D., Quinton, P. M. and Thomson, W. W. 1986. Ionfluxes across the transfusion zone of secreting Limonium saltglands determined from secretion rates, transfusion zone areasand plasmodesmatal frequencies.—J. exp. Bot. 37: 482–494. The epidermal salt-secreting glands of Limonium (Plumbaginaceae)are enclosed in a cuticular envelope. Ions and metabolites enterthe glands from the mesophyll through gaps in the cuticularenvelope, the transfusion zones. Net influxes of ions acrossthe transfusion zone were calculated from measurements of secretionrates and transfusion zone areas. When leaves of L. pereziiF. T. Hubb. were treated with 300 mol m–3 NaCl, transfusionzone influxes of Na+ K+, Ca++ and Cl as high as 7?0?10–5,1.7?10–5, 5?8?10–7 and 8.5?10–5 mol m–2s–1 respectively, were calculated. Assuming a transmembranepathway, these fluxes would be some of the highest reportedfor ions in plant cells. Key words: Salt glands, ion fluxes, ultrastructure  相似文献   

12.
Chara cells show an inward positive electric current acrossthe plasmalemma when exposed to Cl under voltage-clampconditions. The rapid rise of this current suggests that itis directly associated with the inward transport of Cl.The dependence of the current on Cl concentration showssaturation, the data fitting the Michaelis-Menten equation withVm up to 100 nmol m–2 s–1 (for Clstarvedcells) with KM 10–20 µM, and with some allowancefor an unstirred layer of water adjacent to the membrane. Theeffects on the current of clamp potential, illumination, withdrawalof alkali metal cations, and addition of amine were also investigated.These results suggest that the mechanism is the symport of 2H+ with each Cl, and that the actions of light, externalK+, and amine in stimulating Cl, influx are indirect.  相似文献   

13.
A method has been developed to measure the cell volume of theunicellular green alga Dunaliella parva 19/9 using Li+ measurementsonly. Concentrations of internal solutes can also be calculatedif they are assayed in the same samples as Li+. We found thatD. parva cells grown in 0.4 kmol m–3 NaCl have an averageaqueous cell volume of 65.1 ?2.9 µm3, a K+ concentrationof 126?6 mol m–3, a Na+ concentration of 11?11 mol m–3and a glycerol concentration of 615?27 mol m–3 (n= 12).Algae grown in 1.5 kmol m–3 NaCl have an average aqueouscell volume of 131 ?7.5 µm3, a K+ concentration of 109?4mol m–3, a Na+ concentration of 10?39 mol m–3 anda glycerol concentration of 1 425?59 mol m–3 (n = 12).These results indicate that D. parva cells adapted to high salinitieshave larger cell volumes than those adapted to lower salinities.However, there is no evidence for a significant difference ininternal Na+ concentration, despite the almost 4-fold differencein the concentration of external NaCl. The intracellular glycerolconcentration alone accounts for 65% and 54%, respectively,of the osmotic balance in low and high salt grown cells. Key words: Dunaliella, cell volume, intracellular solutes  相似文献   

14.
Non-selected and Na2SO-, K2SO4- or KCl-selected callus culturesof Vaccinium corymbosum L. cv. Blue Crop were grown on mediasupplemented with 0, 25 and 50 mM Na2SO4 (non-selected and Na2SO(-selectedonly), 0, 25 and 50mMK2SO4 (non-selected and K2SO4-selectedonly) or 0, 50 and 100 mM KCl (non-selected and KCl-selectedonly). On all media, growth of selected callus (on a fresh-weightor dry-weight basis) was greater than that of non-selected callus,and selected callus grew optimally on the level and type ofsalt on which it was selected. Selected callus was friable andmaintained a higher f. wt:d. wt ratio. Tissue water potentialin selected callus was more negative than in non-selected callus. Flame photometry and chloridometry showed Na+, K+ and Claccumulated in callus to concentrations equal to or greaterthan the initial concentration in the medium. Turbidometry showedthat tissue SO42- concentration was lower than the concentrationin the medium. In most cases selected callus accumulated moreNa+, Ksup, SO42– or Cl than non-selected callus.Vacuolar ion concentration was measured by electronprobe X-raymicroanalysis, and on most media selected callus had highervacuolar ion concentrations than non-selected callus. SO42–and Cl were accumulated in the vacuoles at concentrationshigher than the external medium, but vacuolar Na+ concentrationdid not reach external concentration on Na2SO4 and on potassiumsalts was maintained between 12 and 17 mM. Vacuolar K+ concentration(approx. 142–191 mM on no salt) decreased on Na2SO4 andincreased on K2SO4 and KCl. There was no precise correlation between total or specific ionaccumulation (Na+, K+, SO42– and Cl and fresh-weightyield. Results suggest that selection results in adaptationin response to decreased water potential of the medium. Vaccinium corymbosum, blueberry, electronprobe X-ray microanalysis, callus, in vitro selection, salt tolerance, KCl, K2SO4, Na2SO4  相似文献   

15.
Ion Composition of the Chara Internode   总被引:2,自引:0,他引:2  
Ion compositions of the cytoplasm and the vacuole of Chara australiswere analyzed according to Kishimoto and Tazawa (1964) and Kiyosawa(1979a). The ions in the cytoplasm and the vacuole analyzedwere K+, Na+, Ca2+, Mg2+, Cl, NO3 and H2PO4.Assuming that the volume of the cytoplasm Vp is 10% of thatof the whole cell V, the concentrations of K+, Na+, Ca2+, Mg2+,Cl, NO3 and H2PO4 in the cytoplasm averaged70, 15, 13, 4.6, 31, 2.2 and 16 mM, respectively. If the volumeof the cytoplasm was assumed to be 5% of that of the whole cell,their averaged concentrations were 139, 31, 25, 9.2, 62, 4.4and 33 mM, respectively. The averaged ion compositions of thecell sap were K+, 111; Na+, 47; Ca2+, 4.4; Mg2+, 8.9; Cl,91; NO3, 3.3 and H2PO4, 6.0 mM. These values,taking the concentrations and the charges of the protein (Kiyosawa1979b) and amino acids (Sakano and Tazawa 1984) into accountand assuming the presence of some uni- or oligovalent anionsand/or small nonelectrolyte molecules, could explain fairlywell both the electroneutrality and the osmotic pressure ofthe cell, except when Vp/V = 5%. (Received May 18, 1987; Accepted September 29, 1987)  相似文献   

16.
Diurnal K+ and Anion Transport in Phaseolus Pulvinus   总被引:1,自引:0,他引:1  
Diurnal movement of Phaseolus leaf is caused by deformationof the laminar pulvinus located at the joint of the leaf bladeand the petiole. The plants were cultured in solutions withvarious ion compositions, and changes of K+, Na+, Ca2+, Mg2+,Cl, NO3– and P1 concentrations both in the upperand lower parts of the laminar pulvinus were measured. Culturein 10 mM KCl solution caused an increase in K+ and Clconcentrations both in the upper and lower parts without anysignificant change in the concentration of NO3; culturein 10 mM KNO3 solution caused an increase in K+ and NO3concentration without any significant change in the concentrationof Cl; and culture in 10 mM KH2PO4 solution caused anincrease in K+ and P1 concentrations without any significantchange in the concentrations of NO3- and Cl. K+ moved from the upper to lower parts or from the lower toupper parts diurnally in all plants cultured in any solutionmentioned above. The main inorganic anion that accompanied thisK+ movement was Cl in KCl solution, and NO3 inKNO3 solution. When the seedlings were cultured in distilledwater or in KH2PO4 solution, neither Cl NO3 norP1 accompanied this K+ movement. In these cases, mainly H+ and/ororganic anions are supposed to move in exchange for and/or incombination with K+ movement. (Received November 8, 1982; Accepted June 13, 1983)  相似文献   

17.
Light-dependent potassium uptake by Pisum sativum leaf fragments   总被引:1,自引:0,他引:1  
A net K+ influx into chopped pea leaves bathed in 5 mM KCl,0.26 M sucrose and illuminated with 4000 lux amounted to about7.5 µmoles/g fresh weight-hr, while essentially no netflux occurred in the dark. This light-dependent K+ uptake waslinear with time for nearly 2 hr and continuously increasedas the light intensity was raised to 9000 lux. Over half ofthe K+ uptake was balanced by H+ release into the bathing solution,possibly by a mechanism in which bicarbonate was the anion accompanyingK+. The replacement of Cl by HCO3 increased thelight-dependent K+ uptake to 56 µmoles/g fresh weight-hr.About 23% of the light-dependent K+ uptake in 5 mM KCl was accompaniedby a Cl uptake. This net Cl influx was less sensitiveto the uncoupler tri-Fl-CCP and more sensitive to DCMU in thebathing solution than was the K+ uptake. The remaining net K+influx into pea leaf fragments was balanced by effluxes of sodium(accounting for 5%), magnesium (8%) and calcium (1%). (Received March 31, 1969; )  相似文献   

18.
Salinity-induced Malate Accumulation in Chara   总被引:3,自引:0,他引:3  
Ion absorption by Chara corallina from solutions containingpredominantly KC1 or RbCl at up to 100 mol m–3 resultedin accumulation of salts and turgor regulation. Turgor regulationdid not occur in solutions containing Na+ or Li+salts. Duringion absorption from various salts of K+ and Rb+ vacuolar cationconcentration exceeded Cl concentration. This differencewas shown to be balanced by the synthesis and accumulation ofmalate. Vacuolar malate concentration reached 48 mol m3,with accumulation occurring at rates of up to 0.45 mol m–3h–1. Malate accumulation was inhibited by low externalpH and was dependent upon external HCO3 concentration.The synthesis of malic acid and its subsequent dissociationimposed a severe acid load on the cell. Biophysical regulationof cellular pH was achieved by a H+efflux at a rate of about40 nmol m–2 s–1from the cell. The results presentedargue against cytoplasmic Cl, HCO3 or pH regulatingmalate accumulation in Chara and it is suggested that malatetransport across the tonoplast may regulate malate accumulation. Key words: Malate, Chara corallina, pH regulation, salinity  相似文献   

19.
Ricinus communis L. var. Gibsonii was grown in Long Ashton nutrientmedium with either 12mol m–3 NO3 or 8.0 mol m–3NH+4 as N source. Two plants from each N treatment were harvestedtwice a week and analysed for C, N, P, S, NO3, SO2–4ClK+Na+, Ca2+ Mg2+ and ash alkalinity. Statistical analysis of thedata showed that the effect of age and N source was differentfor the chemical variables analysed. Thus [Na+] was unaffectedby age or N source, and for both N sources [Mg2+] started atthe same level and decreased at the same rate as the plantsmatured. With NH+4 as N source, [SO2–4] was higher thanwith NO3, but did not alter with age. The concentrations,in mmol g–1 dry wt, of C, organic N, K+ and Ca2+ weredifferent for the two N sources, but the levels of these variablesaltered with age in the same way for both N sources; i.e. therewas no age x N interaction. In the case of P, NO3, Cl and COO, however,age-related variations were different for the two N sources.It is concluded, inter alia, that [Na+] is determined by external[Na+] alone, and that K+, Ca2+ and Cl are the inorganicions actively involved in charge balance during ion uptake bythe roots. Key words: Ontogeny, Chemical composition, Plant nutrition  相似文献   

20.
Interaction of Salinity and Anaerobiosis in Barley and Rice   总被引:3,自引:0,他引:3  
Barley and rice at the early tillering stage were exposed simultaneouslyto anaerobiosis and high [NaCl]. Barley was grown at 0.5, 70,and 125 mol m–3 NaCl, and rice at 2, 20, 40, and 80 molm–3 NaCl. Surprisingly, anaerobiosis only slightly aggravatedthe adverse effects of high [NaCl] on root and shoot growthof both species. For rice and barley grown under aerobic conditions, high [NaCl]increased [Na+] and [Cl] and decreased [K+] in both rootsand shoots. However, the changes in ion concentrations in theshoots were smaller for rice than for barley. For roots of barley, anaerobiosis decreased [Na+], [Cl],and [K+] at both low and high [NaCl], possibly as a result ofinhibition of active ion accumulation. For barley shoots, anaerobiosisincreased [Na+] and [Cl], but only at high salinity;in contrast, [K+] was reduced by anaerobiosis at both low andhigh [NaCl]. These results indicate that anaerobiosis slightlyincreased the permeability of the barley root system to Na+and Cl. For rice, the most important interaction between salinity andanaerobiosis occurred in the shoots, where anaerobiosis increased[Na+] and decreased [K+], particularly at 40 and 80 mol m–3NaCl, while there was no interaction between anaerobiosis andsalinity for Cl uptake. It is therefore suggested thatanaerobic treatment of rice decreased the selectivity for K+over Na+ of cation transport to the shoots, at least for plantsgrown at high salinities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号