首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
碳氮稳定同位素技术在草地生态系统研究中的应用日渐广泛,本文针对其在青藏高原高寒草甸生态系统中的研究与应用进行了总结。首先,探讨了环境因子(海拔、水肥、草地退化、温度)对青藏高原高寒草甸碳氮同位素组成(δ~(13)C、δ~(15)N)的影响:高寒草甸植物δ~(13)C值与海拔呈正相关,与大气压强、草地退化和温度均呈负相关,与降水的关系尚有争议;土壤δ~(13)C值与海拔和草地退化呈正相关;植被的δ~(15)N值与水肥呈正相关,土壤的δ~(15)N值与草地退化呈负相关。其次,综述了近年来该技术在高寒草甸植物光合型鉴定、植物水分利用、食物链营养关系、碳氮循环等方面的研究进展。最后,对碳氮稳定同位素技术在研究高寒草甸土壤有机碳与土壤呼吸、重现植被类型更替和气候演化历史、土壤N_2O溯源、探究高寒草甸退化的原因、藏药与动物食品产地溯源等方面的应用前景进行了展望,以期进一步发挥其在青藏高原高寒草甸研究中的潜力。  相似文献   

2.
对三江源区原生高寒草甸草原、退化高寒草甸草原、退化高寒草原和人工草地4种不同草地类型中,草地土壤养分的含量进行了测定,结果表明;高寒草甸草原随着退化程度的加重,全氮、有效氮、全磷、有效磷、有效钾均在土壤表层含量降低,中下层土壤含量升高。原生高寒草甸草原全氮、全磷、有效磷含量在中层土壤含量升高,而有效氮、有效钾含量随着土层加深逐渐降低。退化高寒草原全氮、全磷含量随土层加深变化较不明显,有效氮在中层土壤含量较多随后急剧下降,有效磷和有效钾随土层加深逐渐减少。人工草地各种土壤养分均呈现随土层逐步下降的态势,总体来看,人工草地在表层土壤的各种养分含量远远大于原生和退化草地,土壤速效养分受退化程度影响较大,其变化幅度明显高于全量养分,表层土壤养分受退化影响的程度较深层土壤大。  相似文献   

3.
杨军  刘秋蓉  王向涛 《应用生态学报》2020,31(12):4067-4072
选取西藏自治区拉萨市当雄县4块不同退化程度的高山嵩草高寒草甸,采用空间序列代替时间演替的方法,研究不同退化阶段高寒草甸的土壤理化性质和植物群落特征以及二者之间的相关关系。结果表明: 不同退化阶段高寒草甸的土壤有机碳、全氮、速效磷、速效钾、铵态氮、硝态氮和含水量均随土壤退化程度加剧呈降低的趋势,而pH值呈现升高的趋势。中度退化草甸的植物群落高度、丰富度指数、多样性指数、均匀度指数最大。群落盖度、总生物量均为未退化草甸最大、重度退化草甸最小。随着草甸退化程度加剧,莎草科生物量及比例下降,豆科和杂类草生物量及比例增加,禾本科生物量及比例先增加后减小;草甸植物群落地上生物量与土壤有机碳、全氮、全磷含量和土壤含水量呈显著正相关,与土壤pH值呈显著负相关。随着草甸植被的退化,土壤退化加重,最终表现为草地生产力显著下降。  相似文献   

4.
高寒草原植物功能群组成对退化程度的响应   总被引:1,自引:0,他引:1  
高寒草原作为青藏高原区主要的草地类型,在全球碳、氮循环、生物多样性维护、水土保持、畜牧业发展等方面发挥着重要的作用。在青海省果洛州玛多县高寒草原选取5块不同退化程度的样地,调查植物功能群组成和土壤理化性质,并采用多元排序法分析不同退化程度下植物功能群组成与土壤因子的关系,以期明确高寒草原功能群组成对草原退化的响应。结果表明:(1)禾本科功能群丰富度和重要值均随退化程度增加呈先增后降趋势,盖度表现为降低趋势;杂类草功能群的丰富度、盖度和重要值均随退化程度增加呈先增加后降低的趋势。而杂类草功能群的相对重要值随退化程度增加而增加。(2)土壤有机质含量随土层深度的增加而降低;随退化程度加剧,土壤有机质和全氮呈降低的趋势。(3)随退化程度加剧,0—30 cm各土层深度的容重均增加,土壤通气孔隙度降低。(4)各功能群重要值与土壤通气孔隙度呈正相关关系,与土壤容重呈负相关关系;通过冗余分析,草地退化首先影响土壤物理属性进而影响草地功能群组成。  相似文献   

5.
草地退化显著削弱了三江源高寒草甸的土壤肥力及生态承载功能,但空间尺度上的驱动强度和环境调控尚不清晰。在2020年7—8月,基于三江源国家公园高寒草甸典型分布区原生植被和退化植被的60个配对采样,研究表层(0—30 cm)土壤有机碳(SOC)、全氮(TN)和全磷(TP)含量对草地退化的空间响应特征。三江源国家公园高寒草甸原生植被SOC和TN含量分别为(2.45±2.05)%(平均值±标准差,下同)和(0.25±0.20)%,配对样本t-检验的结果表明草地退化导致SOC和TN分别极显著(P<0.001)下降了44.0%和35.6%。TP对草地退化无显著响应(P=0.22)。原生植被的土壤C∶N∶P平均为59.6∶6.2∶1.0,草地退化导致化学计量值平均下降28.3%。一般线性模型的结果表明草地退化对SOC和TN及土壤生态化学计量特征的空间降低强度主要取决于纬度和海拔(P<0.01),与经度和土壤深度关系较弱(P>0.30),即低纬度高海拔的高寒草甸响应相对强烈。草地退化导致三江源国家公园高寒草甸土壤碳氮损失严重,降低了土壤生态化学计量。研究结果可为三江源退化高寒草甸土壤...  相似文献   

6.
马源  杨洁  张德罡  周恒  周会程  陈建纲 《生态学报》2020,40(8):2680-2690
为深入了解高寒草甸退化对草原生态系统中土壤微生物碳氮量、土壤氮矿化及土壤微生物相关酶的变化特征,以祁连山东缘4个不同退化程度(未退化、轻度退化、中度退化和极度退化)的高寒草甸为研究对象,采集了深度为0—10 cm的土壤样品,并对不同退化程度高寒草甸中植物因子、土壤理化性质、土壤氨化速率、土壤硝化速率、土壤净氮矿化速率以及转化氮素的相关酶和微生物进行了相关研究。结果表明:(1)随退化程度的加剧,高寒草甸土壤中氨化速率和净氮矿化速率逐渐降低,硝化速率逐渐升高;(2)高寒草甸的退化降低了有关氮素转化相关酶,如土壤蛋白酶、脲酶、亮氨酸氨基肽酶的活性,而β-乙酰葡糖胺糖苷酶的活性呈先下降后上升趋势,且在极度退化草地活性最高;(3)随退化程度的加剧,高寒草甸土壤中微生物生物量碳和氮的含量逐渐降低,同时土壤基础呼吸、土壤微生物熵和代谢熵的指数也呈下降趋势。RDA分析表明,高寒草甸中氨化速率和净氮矿化速率与微生物生物量碳、微生物生物量氮、土壤基础呼吸、植物高度、植被盖度、地上生物量、蛋白酶、脲酶以及亮氨酸氨基肽酶呈显著正相关,而硝化速率则表现为负相关性。因此,高寒草甸退化对土壤微生物特性以及氮素转化和循环具有重要影响。  相似文献   

7.
为研究高寒湿地、草甸的退化及恢复与土壤微生物碳代谢功能多样性的关系,以及影响土壤微生物碳代谢功能多样性的关键因素,利用BIOLOG Eco微平板法,分析了甘肃玛曲地区5类(湿地、沼泽化草甸、高寒草甸、退化草甸、人工恢复草甸) 14个退化与恢复样地的土壤微生物对单一碳源的利用情况。结果表明,从湿地到沙化草地的逐渐退化过程中,草甸的土壤微生物群落代谢活性差异显著;主要是由于在湿地干化过程中,微生物活性逐渐升高,沼泽草甸土壤微生物活性最高;随着草甸不断退化,微生物活性逐渐降低,沙化草地最低;而人工补播恢复使土壤微生物活性有所增加,表明退化对微生物碳代谢功能多样性造成显著影响,人工恢复措施在一定程度上提高了土壤微生物活性。聚合物类(吐温40、吐温80、环状糊精、肝糖)、氨基酸类及碳水化合物类是土壤微生物主要利用的碳源。冗余分析结果显示,土壤的碳氮比、含水量、有机碳、全氮、容重、氮磷比、p H及植被覆盖度是影响土壤微生物碳代谢功能多样性的关键因子。因此,可用土壤碳代谢功能多样性变化评价高寒湿地及草甸的退化和恢复及其变化程度。  相似文献   

8.
不同退化阶段高寒草甸土壤化学计量特征   总被引:14,自引:1,他引:13  
为了阐明不同退化阶段高寒草甸土壤的化学计量特征,沿着高寒草甸退化的梯度选取了原生嵩草草甸、轻度退化草甸和严重沙化草甸,测定了高寒草甸退化过程中不同深度土壤的有机碳、全氮、全磷和全钾含量。结果表明:随着高寒草甸的退化,0~100cm土壤的有机碳、全氮、全磷和全钾含量以及碳氮比、碳磷比、碳钾比、氮磷比、氮钾比和磷钾比均呈降低趋势,且土壤有机碳对高寒草甸退化的敏感性最高,全氮、全磷和全钾的敏感性依次降低,表层20cm的土壤有机碳和全氮可作为表征高寒草甸退化程度最敏感的土壤养分指标。另外,随着草甸的退化,土壤的有机碳、全氮、全磷和全钾含量及其化学计量比的垂直分布明显不同:随着土壤深度的增加,原生嵩草草甸和轻度退化草甸的土壤有机碳、全氮和全磷含量以及碳氮比、碳磷比、碳钾比、氮磷比、氮钾比和磷钾比在0~40cm范围内锐减,在40cm以下缓慢降低并趋于稳定;而沙化草甸土壤的有机碳、全氮、全磷和全钾及其化学计量比随着土壤深度的增加保持不变。  相似文献   

9.
退化高寒草地土壤真菌群落与土壤环境因子间相互关系   总被引:3,自引:0,他引:3  
【目的】为探究祁连山高寒草地退化过程中土壤真菌群落分布特征与土壤环境因子间的相互关系。【方法】利用Illumina Miseq PE250高通量测序技术对轻度、中度和重度退化草地土壤真菌群落结构变化及其多样性进行分析,并对土壤真菌群落与土壤环境因子的相互关系进行冗余分析(RDA)。【结果】随着退化程度加剧,土壤pH呈现出升高趋势,电导率呈现出先升高后降低趋势,土壤含水量、有机碳、全氮、全磷和全钾含量均逐渐降低。高通量测序共得到750575条有效序列和5788个OTUs;各试验点样地中真菌群落Chao1指数和Shannon-Wiener指数变化各异。在门分类水平上,子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、接合菌门(Zygomycota)、球囊菌门(Glomeromycota)和壶菌门(Chytridiomycota)是各草地土壤的优势类群。RDA分析表明,土壤速效钾、全氮、速效氮和有机碳是祁连山不同退化高寒草地土壤真菌群落分布的主要驱动因子。【结论】祁连山不同退化高寒草地土壤真菌群落间差异明显,土壤环境因子是影响土壤真菌群落分布的重要因素。  相似文献   

10.
采用空间代时间的方法,以高寒嵩草草甸不同退化演替状态土壤物理性质(土壤机械阻力、温度、湿度)为变量,探讨高寒草甸不同退化阶段土壤物理性质同植物根系生长特质的相互关系。结果表明:高寒嵩草草甸根系分布具有明显的"V"型垂直构型特征;高寒嵩草草甸根系以细根为主,直径0.5 mm的根系占全剖面根系总长的90.8%—93.6%。土壤紧实度和土壤湿度与植物根系直径细化具有显著的正相关关系(P0.05);土壤温度与根系细化之间具有显著的负相关关系(P0.05),且其对高寒嵩草草甸根系生长特性形成的贡献率最高,说明高寒嵩草草甸植物根系生长构型特征的主控因子为温度。高寒嵩草草甸根系细化及表聚现象与土壤物理性质之间具有一定程度的互馈效应。低温、高紧实度和较高的土壤湿度有助于形成高密度和细根构型的草毡表层,这种土壤根系构型也是高寒草甸植物群落为适应放牧干扰及恶劣环境的应激性改变。该发现对明晰草地退化演替过程中生态系统构件对外界干扰改变的响应和适应过程及为制定合理有效的退化高寒草甸恢复措施提了供理论依据。  相似文献   

11.
为明确围栏封育对斑块化退化高寒草甸净生态系统碳交换(NEE)不同组分的影响,本研究选取青藏高原黄河源区斑块化退化高寒草甸进行围封试验,设置4个围封年限(1、2、5、11 a)和1个正常放牧对照,研究NEE及组分对不同围封年限的响应。结果表明,围封5 a退化高寒草甸总初级生产力(GPP)和生态系统呼吸(ER)显著大于正常放牧、围封1 a、2 a和11 a,围封2 a和5 a退化高寒草甸NEE显著小于正常放牧、围封1 a和11 a样地(P<0.01),其他NEE组分对不同围封年限的响应情况不一致。植被自养呼吸(Ra)、根系呼吸(Rr)和土壤异养呼吸(Rh)占ER的比例在不同围封年限间差异显著(P<0.01)。此外,土壤温度与NEE呈二次曲线的关系,与ER以及除Rh以外的其他呼吸组分呈指数关系,土壤含水量与NEE、GPP、ER、土壤呼吸(Rs)、Ra、Rr呈线性关系(P<0.05)。全氮、全磷、生物量和NEE及组分存在显著的相关关系。说明围封5 a能显著提高退化草地的土壤养分和固碳功能,并能维持草地生产力,无需进行长期围封。  相似文献   

12.
以位于青藏高原中部的隆宝滩自然保护区为对象,在2017—2018年生长季节使用便携式温室气体分析仪对高寒草地、沼泽化草甸和高寒沼泽的CH_4和CO_2通量进行原位观测,结合环境因子确定不同生态系统的CH_4和CO_2通量差异及其影响因素。结果表明,2个生长季节中沼泽化草甸和高寒沼泽排放CH_4,峰值出现在7—9月,高寒草地吸收CH_4,峰值出现在8月,沼泽化草甸和高寒沼泽CH_4通量与高寒草地差异显著(P0.05)。3种生态系统的CO_2通量均为正值,峰值出现在6—8月,高寒草地CO_2通量年均值最大,高寒沼泽最小,二者差异显著(P0.05)。统计显示,高寒草地和高寒沼泽CO_2与CH_4通量之间呈极显著负相关(P0.01),而在沼泽化草甸中二者呈显著正相关(P=0.02)。CH_4、CO_2与环境因子关系的主成分分析结果显示,第1主成分是土壤因子,第2主成分是生物因子,第3主成分是温度因子。逐步回归结果显示,土壤温度是影响月尺度CH_4通量的关键因子,土壤温度和湿度是影响月尺度CO_2通量的关键因子。Pearson相关分析表明,3种生态系统的CO_2通量均与土温呈极显著正相关(P0.01),与土壤水分呈显著负相关(P0.05),CH_4通量则与土壤水分呈极显著正相关(P0.01)。受温度、土壤水分以及土壤有机质和氮等因素影响,高寒草地、沼泽化草甸和高寒沼泽CH_4和CO_2通量存在明显的异质性。因此,在估算青藏高原CH_4和CO_2排放时,需考虑不同生态系统碳排放的差异。  相似文献   

13.
杜志勇  丛楠 《生态学报》2024,(6):2504-2516
高寒草地作为青藏高原高寒生态系统的重要组分之一,其退化已严重影响到高原的可持续发展和草地恢复重建。搜集了2004—2022年间关于青藏高原高寒草地退化的64篇研究结果,包含土壤有机碳、生物量和多样性指数等16个指标的1403组数据,运用meta分析解析了草地退化对土壤理化性质、植被生产力和物种多样性的影响,并对重度退化草地的土壤理化性质和植物生物量进行线性回归分析。结果表明:随着草地退化的加剧,土壤有机碳、全氮、全磷、有效氮、有效磷、有效钾、土壤含水量、地上生物量、地下生物量和植被高度显著下降;土壤容重显著上升;土壤pH、全钾在各个退化阶段没有明显差异;Shannon多样性指数、Pielou均匀度指数和Margalef丰富度指数整体呈下降趋势。土壤有机碳、全氮、全磷、有效氮、有效磷、有效钾和土壤含水量与地上生物量、地下生物量存在显著的正相关;土壤容重与地上生物量、地下生物量呈显著的负相关;土壤pH与地上生物量、地下生物量呈负相关。因此,青藏高原高寒草地退化通过改变土壤理化性质而改变地上群落多样性和生物量,为阐明植被与土壤特征对草地退化的响应机制以及高寒退化草地的恢复提供了科学依据。  相似文献   

14.
为阐明高原鼠兔干扰下高寒草甸植物功能群分布及其与土壤因子的关系,以高原鼠兔有效洞口密度代表其干扰强度,在青藏高原东缘高寒草甸选择3个不同干扰强度的高原鼠兔栖息区,调查植物群落结构和土壤理化性质,并分析高原鼠兔干扰下二者之间的关系.结果表明:(1)随高原鼠兔干扰强度增加,植物群落平均高度增加、盖度下降;(2)植物功能群多样性指数下降,其中莎草科和杂类草功能群多样性指数下降显著;(3)土壤有机质和全磷含量显著增加,土壤pH和土壤紧实度显著下降(P<0.05);(4)通过冗余分析和偏冗余分析,土壤化学因子(土壤全磷和全钾)的总效应和净效应达到极显著水平,表明高原鼠兔干扰下高寒草甸植物功能群分布与土壤全磷和全钾含量显著相关(P<0.05).  相似文献   

15.
为明确甘南州退化高寒草甸植被及土壤特性的演化规律,本研究以甘南藏族自治州碌曲县、夏河县和合作市不同退化程度高寒草甸为研究对象,调查其植被特征并采集土壤样品,测定土壤理化性质、酶活性及微生物数量。结果表明,随退化程度加深,莎草科、蔷薇科和毛茛科等科属毒杂草逐渐代替禾本科优质牧草优势位,植被高度、盖度、草产量、多样性指数降低,重度退化草地较轻度退化草地草产量降低了约2000 kg/hm2;土壤理化性质全氮、全磷、全钾、孔隙度、粉粒含量下降,pH值、全盐、容重及黏粒含量升高,由轻度至重度退化草地土壤全磷含量下降了0.67 g/kg,土壤全钾含量下降0.62 g/kg;土壤脲酶活性、蔗糖酶活性、碱性磷酸酶活性降低,蔗糖酶活性由轻度至重度退化草地降幅最大,可达0.45 mg/g/24h;土壤细菌和放线菌数量降低,真菌数量增加,重度退化草地较轻度而言细菌数量降低约5×106 cfu/g,放线菌降低约5×105 cfu/g,真菌增加约2×103 cfu/g;相关性分析发现各因子与退化程度的相关性性强,相关系数在0.92以上,多为0.99甚至1。因此,甘南州高寒草甸随退化程度加深,总体呈现出草地优势种消失,植被高度、盖度、草产量、多样性下降,土壤养分及活性降低,并呈现向盐碱化、荒漠化演替的趋势。本研究为甘南州高寒草甸生态系统退化预测、管理、恢复等方案的制定提供理论依据。  相似文献   

16.
不同退化程度高寒草原土壤肥力变化特征   总被引:17,自引:3,他引:14  
蔡晓布  张永青  邵伟 《生态学报》2008,28(3):1034-1044
就藏北退化高寒草原土壤肥力的变化等进行了研究.结果表明: (1)高寒草原土壤物理性质的变化对土壤化学、生物学性质具有重要的调控作用,土壤生物学性质对土壤肥力的演变则具有关键影响.(2)随草地退化程度的提高,2~10 cm土层土壤容重均呈不同程度的下降,土壤孔度、土壤含水量则分呈显著的增、减趋势,但草地退化对土壤含水量的影响更为显著;高寒草原土壤中,>0.25 mm的水稳性团粒与土壤含水量呈极显著正相关,有机质对改善土壤结构、提高土壤含水量则具有极为显著的促进作用.(3)轻度退化草地土壤有机质、腐殖质与土壤全氮、磷、钾含量均呈不同程度的提高,中度、严重退化草地则呈相反趋势;土壤有效氮、磷、钾含量在总体上随草地退化的加剧而呈下降趋势;腐殖质碳占有机碳比重、HA-C占腐殖质碳比重、HA/FA则均随草地退化的加剧而呈明显上升;(4)不同程度退化草地2~10 cm土层微生物(细菌、真菌、放线菌)数量、微生物生物量(碳、氮)、土壤酶(纤维素酶、脲酶、碱性磷酸酶)活性等在总体上与有机质的变化趋势相一致;BC/BN与TC/TN间呈极显著正相关(r=0.937 0* *,p≤0.01),轻度、中度退化草地BC/TC、BN/TN均呈明显上升,仅严重退化草地呈下降趋势.5)高寒草原微生物量、土壤酶活性与土壤有机质、全氮、有效氮、有效钾含量间均呈极显著或显著正相关,与有效磷则均呈不同程度的负相关.  相似文献   

17.
了解植物叶片性状的生态学含义,对于阐明不同自然环境下的群落构建途径,进一步揭示生态系统维持机制具有重要的理论意义。本研究通过测定甘南高寒草甸坡向梯度25科86种植物叶片稳定碳同位素、比叶面积、叶干物质量及叶片营养元素含量等叶片组成特征,分析不同坡向条件下植物叶片特征与环境因子之间的关系。结果表明,北坡-南坡梯度上,随着土壤含水量、土壤全磷、土壤有机碳、土壤速效氮、速效磷含量等养分的不同程度降低,土壤温度、光照度及pH值的增加,植物叶片相对含水量、叶片磷含量、比叶面积、叶片钾含量显著减少,而叶片干物质量、相对叶绿素含量及稳定碳同位素值显著升高。冗余分析结果表明,坡向梯度上土壤含水量、土壤全磷、有机碳及速效磷含量与植物叶片含水量、叶片磷含量、比叶面积及叶片钾含量显著正相关,与植物叶片稳定碳同位素值、叶片干物质量及相对叶绿素含量显著负相关。而土壤温度、光照度及pH值与植物叶片稳定碳同位素值、叶片干物质量及相对叶绿素含量显著正相关,与叶片含水量、叶片磷含量、比叶面积及叶片钾含量显著负相关。说明不同环境因子对植物叶片特征的贡献显著不同。其中土壤含水量、土壤全磷含量、土壤温度及pH值等是关键的限制因子。植物叶片性状特征对不同坡向条件下环境因子的这种响应模式反映了高寒草甸微地形生态系统的环境状况和稳定程度。  相似文献   

18.
磷素是高寒草地生态系统的重要支持元素,高寒草甸退化导致较为严重的生态和生产问题,同时也引起了生态系统物质循环的变化。为揭示高寒草甸退化中土壤磷素特征及其对植被特征的效应,以东祁连山轻度(LD)、中度(MD)、重度退化(SD)高寒草甸退化阶段为研究对象,以多年围封高寒草甸(FG)为对照,在春季和夏季分别对不同高寒草甸阶段样地不同土层深度土壤全磷、有效磷、微生物量磷含量及碱性磷酸酶活性等磷素特征进行了研究,并对夏季植被地上生物量和磷素含量等植被特征进行了调查。结果表明:东祁连山高寒草甸退化导致植被地上生物量和磷含量急剧下降,重度退化高寒草甸地上生物量干重仅是围封草地的35.93%,退化高寒草甸地上部磷含量仅为围封草地的60%,且不同退化阶段地上部磷含量没有明显差异。退化导致高寒草甸表层土壤的全磷、有效磷含量升高,相比FG,土壤有效磷含量春季LD、MD和SD分别升高了16.67%、36.67%和3.33%,夏季分别升高了4.35%、26.09%和4.35%,且有效磷含量具有夏季低于春季的季节差异性。退化导致土壤微生物量磷含量明显降低,而对碱性磷酸酶活性影响没有明显的规律性,但围封草地夏季碱性...  相似文献   

19.
以甘南高寒草甸演替过程中5个阶段的典型群落为研究对象,对围封样地内不同演替阶段群落叶片功能性状进行比较,分析了围封地内各演替阶段群落水平上主要物种叶性状与环境因子的关系。结果显示:(1)此围封地形成了一个从草本到灌木的演替过程。随着演替的进行,Margalef指数显著增加,Shannon-Wiener指数呈先增加后降低的趋势。(2)从演替前期到演替后期,土壤有机碳(SOC)、土壤全氮(STN)、土壤含水量(SWC)逐渐升高,光照度(LI)、土壤温度(ST)逐渐降低,土壤全磷(STP)呈先降低后增加趋势;叶片有机碳(LCC)、全氮(LNC)、含水量(LWC)逐渐升高;比叶面积(SLA)、磷利用效率(PUPE)、稳定碳同位素(δ13C)逐渐下降,叶片全磷(LPC)先降低后升高,而氮利用效率(PUNE)先升高后降低。(3)RDA冗余分析表明,在此围封样地内,演替前期植物群落叶性状主要受到LI和ST的限制作用。而在演替的中后期SWC[WTBZ]是主要影响因子。此研究有助于我们认识高寒草甸生态系统的退化过程所导致的生态环境问题,进而寻求更好的草地恢复和重建方法。  相似文献   

20.
高寒草甸根际土壤化学计量特征对草地退化的响应   总被引:1,自引:0,他引:1  
为深入理解高寒草甸退化过程中根际和非根际土壤中碳(C)、氮(N)和磷(P)的化学计量特征和土壤养分的变化规律,并获得退化草地土壤养分和微生物养分限制的信息,本研究以祁连山东缘4个不同退化程度高寒草甸为对象,通过采集优势植物根际土(0~2 mm)和非根际土(0~10 cm)的土壤样品,分析了土壤C、N、P浓度和比例,土壤中可提取的C、N、P(Ext-C、Ext-N、Ext-P)的浓度和比例,参与C、N、P循环的胞外酶(β-1,4-葡萄糖苷酶、N-乙酰-β-D-葡萄糖苷酶、亮氨酸基肽酶、酸性磷酸酶)的活性和比例,以及土壤微生物生物量碳、氮、磷(MBC、MBN、MBP)的含量及比例.结果表明: 高寒草甸退化过程中优势植物根际养分含量高于非根际养分.随着高寒草甸退化程度的加剧,其土壤的C∶N∶P发生重大改变,表现出C∶N的严重失调,表明草地退化程度越高受到N的限制越严重.不同退化程度的高寒草甸中,经过对数转化的根际C-、N-和P-胞外酶的比例均偏离了在全球生态系统分析中获得的1∶1∶1比例,表明高寒草甸退化主要受到强烈的N限制,P次之.高寒草甸地区土壤全量养分含量较高,土壤中的速效养分较低,成为阻碍牧草生长的限制因子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号