首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Seven citrus orchards on reduced- to no-pesticide spray programs were sampled for predacious mites in the family Phytoseiidae (Acari: Mesostigmata) in central and south central Florida. Inner and outer canopy leaves, open flowers, fruit, twigs, and trunk scrapings were sampled monthly between September 1994 and January 1996. Vines and ground cover plants were sampled monthly between September 1994 and January 1996 in five of these orchards. The two remaining orchards were on full herbicide programs and ground cover plants were absent. Thirty-three species of phytoseiid mites were identified from 35,405 specimens collected within citrus tree canopies within the seven citrus orchards, and 8,779 specimens from vines and ground cover plants within five of the seven orchards. The six most abundant phytoseiid species found within citrus tree canopies were: Euseius mesembrinus (Dean) (20,948), Typhlodromalus peregrinus (Muma) (8,628), Iphiseiodes quadripilis (Banks) (2,632), Typhlodromips dentilis (De Leon) (592), Typhlodromina subtropica Muma and Denmark (519), and Galendromus helveolus (Chant) (315). The six most abundant species found on vines or ground cover plants were: T. peregrinus (6,608), E. mesembrinus (788), T. dentilis (451), I. quadripilis (203), T. subtropica (90), and Proprioseiopsis asetus (Chant) (48). The remaining phytoseiids included: Amblyseius aerialis (Muma), A. herbicolus (Chant), A. largoensis (Chant), A. multidentatus (Chant), A. sp. near multidentatus, A. obtusus (Koch), Chelaseius vicinus (Muma), Euseius hibisci Chant, Galendromus gratus (Chant), Metaseiulus mcgregori (Chant), Neoseiulus mumai (Denmark), N. vagus (Denmark), Phytoscutus sexpilis (Muma), Phytoseiulus macropilis (Banks), Proprioseiopsis detritus (Muma), P. dorsatus (Muma), P. macrosetae (Banks), P. rotundus (Muma), P. solens (De Leon), Typhlodromips deleoni (Muma), T. dillus (De Leon), T. dimidiatus (De Leon), T. mastus Denmark and Muma, T. simplicissimus (De Leon), and T. sp. near tunus, and Typhlodromus transvaalensis (Nesbitt). Eighty-two ground cover plants or vines were sampled within the five orchards and one or more phytoseiids were collected from 71 of these plants. Five ground cover plants with the highest numbers of phytoseiids included: Bidens alba (L.) DC (1,420 mites within 13 species), Solanum americanum L. (1,355 mites within 8 species), Amaranthus spinosus L. (1,137 mites within 11 species), Gnaphalium pensylvanicum Willd. (844 mites within 8 species) and Richardia brasiliensis (Meg.) Gomez (354 mites within 8 species).  相似文献   

2.
We observed the number of predatory mites (Phytoseiidae:Typhlodromus caudiglans) on the foliage of 20 North American species of grapes (Vitis spp) plus the domesticated EuropeanVitis vinifera, all grown in a common garden. We found relatively few phytophagous mites. The numbers of phytophagous mites were not correlated with the plant characteristics that we measured. We found approximately five times as many predatory mites as phytophagous mites and the numbers of these phytoseiid predators were not affected by the availability of prey. Similarly, numbers of phytoseiids were unaffected by plant gender and, hence, the availability of pollen, another source of food. The numbers of phytoseiids were not clustered according to the taxonomic grouping of the tested plant species. Leaf surface characteristics explained over 25% of the variance in the numbers of phytoseiids. Numbers of phytoseiids were positively associated with the density of vein hairs, the density of bristles in leaf axils, and the presence of leaf domatia. These results suggest that sheltered habitats rather than food availability may limit the numbers of phytoseiid mites on grapevines.  相似文献   

3.
We introduced a mass-reared pyrethroid-resistant strain of the predatory phytoseiid mite Amblyseius fallacis (Garman) into an Ontario peach orchard in an attempt to control populations of the phytophagous mites Panonychus ulmi Koch and Tetranychus urticae Koch (Acari: Tetranychidae). Releases of 1,000 and 2,000 mites per tree were made, at three different times. The release of 2,000 mites per tree in June and in July resulted in significantly higher phytoseiid densities than was observed on control trees. However, densities of P. ulmi or T. urticae were not significantly affected by any release rate or by timing. The release of 1,000 A. fallacis per tree, or of any density in August, did not significantly increase phytoseiid abundance. In the following year, population dynamics of both phytoseiid and phytophagous mites were not significantly affected by the previous year's release. Amblyseius fallacis can be a useful predator in some fruit orchards. However, further research is necessary into the timing and rate of release, modified spray programmes, and with different crops, in order to clarify the role of this species for biological control in Ontario peach orchards.  相似文献   

4.
Generalist phytoseiids are often observed for long periods on plants in the absence of prey, feeding on alternative foods and reaching high population levels. The persistence of generalist predatory mites on plants with a scarcity or absence of prey is a requirement for successful biocontrol strategies of herbivore mites. The importance of pollen as an alternative food for the support of generalist predatory mite populations is widely recognized. However, on grape the presence of pollen is often limited and thus other food sources should contribute towards generalist predatory mite persistence on perennial plants. Previous field observations reported the relationships between the population increases of generalist phytoseiids with late-season spread of grape downy mildew (GDM) Plasmopara viticola. In this study, we test the hypothesis that GDM could be a suitable food source for the predatory mites Amblyseius andersoni and Typhlodromus pyri. In the laboratory we compared the development times, oviposition rates and life-table parameters of predatory mites feeding on pollen or GDM mycelium and spores. Grape downy mildew supported the survival, development and oviposition of T. pyri and A. andersoni. Life-table parameters showed that GDM was a less suitable food source than pollen for both phytoseiid species and that it was more favorable for A. andersoni than for T. pyri. Implications for predator–prey interactions and conservation biological control in vineyards are discussed.  相似文献   

5.
We sampled mites in three apple orchards in Nova Scotia, Canada, that had been inoculated with pyrethroid-resistant Typhlodromus pyri and had a history of Tetranychus urticae outbreaks. The objective of this study was to monitor populations of T. urticae and phytoseiid predators on the ground and in trees and to track dispersal between the two habitats. Pesticides were the chief cause of differences in mite dynamics between orchards. In two orchards, application of favourably selective acaricides (abamectin, clofentezine) in 2002, coupled with predation by T. pyri in trees and Neoseiulus fallacis in ground cover, decreased high T. urticae counts and suppressed Panonychus ulmi. By 2003 phytoseiids kept the tetranychids at low levels. In a third orchard, application of pyrethroids (cypermethrin, lambda-cyhalothrin), plus an unfavourably selective acaricide (pyridaben) in 2003, suppressed phytoseiids, allowing exponential increases of T. urticae in the ground cover and in tree canopies. By 2004 however, increasing numbers of T. pyri and application of clofentezine strongly reduced densities of T. urticae in tree canopies despite high numbers crawling up from the ground cover. Another influence on T. urticae dynamics was the distribution of the phytoseiids, T. pyri and N. fallacis. When harsh pesticides were avoided, T. pyri were numerous in tree canopies. Conversely, only a few N. fallacis were found there, even when they were present in the ground cover and on tree trunks. Low numbers were sometimes due to pyrethroid applications or to scarcity of prey. Another factor was likely the abundance of T. pyri, which not only competes with N. fallacis, but also feeds on its larvae and nymphs. The scarcity of a specialist predator of spider mites in trees means that control of T. urticae largely depends on T. pyri, a generalist predator that is not particularly effective in regulating T. urticae. The Canadian Crown's right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

6.
This study reports (1) a faunistic survey of phytoseiid mites observed inside a vine plot and in neighbouring vegetation (other vine plots and uncultivated areas) and (2) dispersal of phytoseiid mites into the plot studied. These data aim to raise some hypotheses concerning natural colonisation of a vineyard by predatory mites. The study was carried out over 3 years (1999, 2000 and 2001) in an experimental plot planted with two cultivars (Grenache and Syrah) and with Sorbus domestica in a framework of agroforestry investigations. Phytoseiid mites were collected in both cultivated and uncultivated areas surrounding the experimental plot, and their dispersal into the plot studied using “aerial” traps. Densities remained quite low compared to previous studies. The main species encountered in the uncultivated areas and in the traps was Typhlodromus phialatus. Despite the low numbers of phytoseiid mites trapped, densities of phytoseiid mites into the vine field increased during 3 years. Typhlodromus phialatus, the species mainly found in the neighbouring uncultivated areas, was rarely found in vineyards. Another morphologically close species was predominant on vines: Typhlodromus exhilaratus. However, Kampimodromus aberrans the main phytoseiid mite species in vineyards of Southern France was not found in the present survey. Hypotheses for this colonisation process are discussed.  相似文献   

7.
Interspecific predation and cannibalism are common types of interaction in phytoseiid predator guilds, but the extent and nature of these interactions have not been determined yet in phytoseiid guilds composed of African native and neotropical exotic phytoseiid predators found in cassava habitat in southern Africa. We determined in laboratory experiments the level of cannibalism and interspecific predation among the three phytoseiid mite species Euseius fustis, Iphiseius degenerans, and Typhlodromalus aripo in the absence of food and in the presence of limited or abundant quantities of two food types – Mononychellus tanajoa and maize pollen – commonly found on cassava in Africa. When confined without food, only two T. aripo females laid each two eggs within 5 days, and this species survived longer than I. degenerans and E. fustis. In the presence of con- or hetero-specific larvae or protonymphs, the three species fed more on the former than on the latter, and more on hetero-specifics than on con-specifics. Oviposition rates of the three species did not exceed 0.7 egg/female/day on con- and hetero-specific immatures. Typhlodromalus aripo and E. fustis survived longer on con-specific and hetero-specific larvae and on hetero-specific protonymphs than in the absence of any food, while T. aripo survived longer than the two other species on the same diets. Provision of limited quantity of food decreased interspecific predation rate by I. degenerans and T. aripo, but not by E. fustis, and increased oviposition rate and longevity of all three species. Provision of abundant food, however, eliminated cannibalism by all three species and further reduced interspecific predation rates, but their oviposition and longevity remained relatively unchanged compared with limited food provision. Potential consequences of cannibalism and interspecific predation among phytoseiid mites on cassava for the biological control of M. tanajoa are discussed.  相似文献   

8.
The effect of wind and woody margins on the dispersal and population dynamics of phytoseiid mites was studied in a vine plot for a period of two years. Mites were sampled in the plot and in the surrounding vegetation (crops and natural vegetation) in order to determine phytoseiid mite abundance. The surrounding vegetation was considered to be a reservoir of phytoseiids from where the vine plot could be invaded. Directional and non-directional soil and aerial traps were placed in the plot to determine predatory mite exchange between the two areas. Colonization of the plot occurred in two stages: first, mite migration into the plot, followed by their establishment. The two-year study partially clarified the first of these two stages. Kampimodromus aberrans was the main species caught in the aerial traps. Phytoseiid mite dispersal within the vine plot seemed to be affected by both wind (direction, intensity and regularity) and phytoseiid mite density in the woody margin. However, the woody margin had a large effect only over a short distance. Some observations pointed towards an effect of other reservoir areas but it was not possible to characterize these. The population density of the phytoseiid mites in the plot increased from 1996 to 1998, but these increases are much smaller than one would expect on the basis of the number of mites migrating by air in the plot. Moreover, blocks where most mites were trapped were not the blocks where densities of phytoseiid mites on vine leaves were the largest. It therefore seems likely that not all migrants were able to develop. Their settlement pattern was not determined and this could constitute a potential research focus for the future.  相似文献   

9.
The study was carried out to evaluate the effect of some insecticides and fungicides on the interaction between predacious mites of the families Phytoseiidae and Stigmaeidae on citrus. Euseius citrifolius Denmark and Muma, Euseius concordis (Chant) (Phytoseiidae), and Agistemus aff. bakeri (Stigmaeidae) were the most abundant species of predacious mites. No significant reduction of the population of stigmaeids was detected following the pesticide treatment. On the contrary, the population of those mites increased after the application of methidathion, petroleum oil, deltamethrin, cupric oxychloride and cuprous oxide, as compared to the population of those mites in the control plots. The chemicals promoting increased stigmaeid populations are some of those that promoted reduction of phytoseiid populations. A significant negative correlation was found between the numbers of phytoseiids and stigmaeids on citrus leaves immediately before treatments, and 33, 50, 83 and 105 days after treatment. A clear negative linear correlation between the number of predacious mites from both families was detected for benomyl, cupric oxychloride, cuprous oxide, thiophanate methyl, and control. Phytoseiid-stigmaeid interaction on citrus orchard is discussed.  相似文献   

10.
Herbicide strips are used in apple orchards to promote tree growth and survival, to increase yield and to reduce the risk of rodent damage to tree bark. However, herbicide strips, particularly wider ones, may cause problems including soil erosion, reduced organic matter, leaching of nitrates into ground water and increased incidence of plant diseases and pests, including two-spotted spider mites, Tetranychus urticae Koch. In this 2 year study we monitored mite dynamics in apple trees and used sticky bands on tree trunks to determine rates of T. urticae immigration into Nova Spy apple trees in plots with wide (2 m) or narrow (0.5 m) herbicide strips. Use of wider herbicide strips promoted two risk factors that could trigger outbreaks of tetranychid mites. First, concentrations of leaf N in apple trees were higher and those of P and K were lower with the wide strips. Such changes in nutritional quality of leaves would increase the potential for more rapid population growth of T. urticae, and to a lesser extent, the European red mite, Panonychus ulmi (Koch). Second, there were higher rates of T. urticae immigration from the ground cover vegetation into the trees. In 2006, and for most of 2007, densities of T. urticae were higher with wide herbicide strips, whereas densities of P. ulmi were not enhanced. However, by late August to early September in 2007, densities of both tetranychids were lower with wide herbicide strips. This is because both risk factors were counterbalanced, and eventually negated, by the enhanced action of phytoseiid predators, mostly Typhlodromus pyri Scheuten. From July through September 2006, ratios of phytoseiids to tetranychids were always several-fold lower with wide herbicide strips but in 2007, from mid-July onwards, predator–prey ratios were usually several-fold higher with wide strips. However, this numerical response of phytoseiids to prey density can only occur where the pesticide program in orchards is not too harsh on phytoseiids. Hence the impact of width of herbicide strip is contingent on the composition and size of the phytoseiid complex and the impact of pesticides on predation.  相似文献   

11.
Leaf samples were collected from sprayed (n=29) and unsprayed (n=19) apple orchards, from the surrounding vegetation (n=58) and from one arboretum (n=12), altogether from 46 plant species (1–5 samples each). The density of phytoseiid mites averaged 1.2 mites/leaf on unsprayed apple trees, but only 0.06 mites/leaf on sprayed trees. The phytoseiid density exceeded 1/leaf onAesculus hippocastani, Aristolochia macrophylla, Corylus avellana, Fragaria vesca, Frxinus excelsior, Juglans cinerea, Pterocarya rhoifolia, Ribes nigrum, Rubus odoratus, Sorbus aucuparia, S. thuringiaca, Tilia×euchlora andUlmus glabra. Other common trees and bushes inhabited by phytoseiids wereCrataegus coccinea (0.2 mites/leaf),Prunus padus (0.7),Salix caprea (0.4), andTilia cordata (0.9).Twelve species of phytoseiid mites were found, of which ten occurred on unsprayed apple trees. The most widely distributed species on apple trees werePhytoseius macropilis (in 79% of unsprayed samples),Euseius finlandicus (74%),Paraseiulus soleiger (53%),Paraseiulus triporus (37%),Amblyseius canadensis (26%) andAnthoseius rhenanus (26%). The highest densities on apple trees were found in populations ofE. finlandicus (mean 0.7 mites/leaf),Ph. macropilis (0.5) andA. canadensis (0.5). On sprayed apple trees,E. finlandicus, Pa. soleiger andPh. macropilis occurred most commonly, but their mean densities were under 0.1/leaf. Almost no phytoseiids were found in orchards sprayed with oxydemetonmethyl before blooming of apple.On other plants,E. finlandicus occurred most commonly (on 33 plant species) and in the highest densities, followed byPh. macropilis (14),Pa. soleiger (12),Pa. triporus (12) andAn. rhenanus (7).Seiulus aceri andParaseiulus talbii were identified as new phytoseiid species in Finland. It is concluded that deciduous trees and bushes in forest margins around orchards can serve as important reservoirs for phytoseiid mites, and that the dominant species in these plants would migrate into and colonize the orchards if the use of harmful chemicals were restricted.  相似文献   

12.
Habitat complexity can mediate interactions among predators and herbivores and influences arthropod population density and community structure. The abundance of many predatory mites (Acari: Phytoseiidae) is positively associated with abundance of non‐glandular trichomes. We hypothesized that (1) increasing the complexity (trichome density mimicked with cotton fiber patches) of the habitat that predatory mites encounter on leaves would reduce adult dispersal from plants, and (2) increasing habitat complexity would reduce the time that mites spend walking. Typhlodromus pyri Scheuten retention on plants increased linearly in the presence of trichome mimics; mites placed on plants lacking leaf trichomes showed a behavioral response that led to active dispersal. Phytoseiid retention increased with both fiber patch size and fiber density within patches. Moving fiber patches from the underside of the leaf to the upper leaf surface did not change phytoseiid retention but did alter egg distribution, suggesting trichomes do not exclusively influence phytoseiid behavior. Phytoseiid activity level as measured by the amount of time spent walking did not decrease with the addition of fibers. Overall, increasing habitat complexity in the form of non‐glandular trichomes strongly reduced T. pyri dispersal behavior; the predatory mites showed a consistent preference for complex trichome‐rich habitat that was manifest both rapidly and in absence of predators. Hence, the frequently observed pattern of population‐level accumulation of phytoseiids on trichome‐rich plants appears to be driven by a behavioral response to the presence and abundance of non‐glandular trichomes on the leaf surface manifested in the level of dispersal and/or retention. The primary implication of phytoseiid–habitat interactions for biocontrol programs is that where plants have no trichomes, T. pyri will not establish. Whether this behavioral response pattern is a general response of phytoseiids to leaf trichomes or varies with species is a question that remains unanswered.  相似文献   

13.
The abundance and diversity of phytoseiid mites were surveyed from April to September 2003 to 2005 in vineyards (Grenache and Syrah cultivars) co-planted with rows of Sorbus domestica or Pinus pinea and in monoculture plots of grapes in the South of France. Densities of phytoseiid mites were different on the two tree species, with P. pinea a more suitable host than S. domestica. Typhlodromus (Typhlodromus) exhilaratus was the dominant species occurring on grapes and on co-planted rows of S. domestica and P. pinea, whereas T. (T.) phialatus was the most abundant species in monoculture plots of both S. domestica and P. pinea. Factors determining the dominance of T. (T.) phialatus over T. (T.) exhilaratus in monoculture trees are discussed. In this study, agroforestry management did not affect phytoseiid diversity in vineyards, but did affect phytoseiid density, especially in 2005. The results obtained in 2003 and 2004 are not easy to discuss in this regard because of the low densities of mites observed during these 2 years (very dry climatic conditions and pesticide applications).  相似文献   

14.
This study deals with the long-term effect of agroforestry management (trees within vine crops) on communities of phytoseiid mites. Several plots were considered: vineyards co-planted with Sorbus domestica or Pinus pinea, monocultures of vines and monocultures of S. domestica or P. pinea. All vine plots included two vine cultivars, Syrah and Grenache. Phytoseiid mites have been surveyed in these plots during several years within the previous 10 years. In 2010, samplings were again carried out in these same plots, from May to September, twice a month. Significantly higher densities of Phytoseiidae were observed on the cultivar Syrah (0.85 phytoseiids per leaf) than on Grenache (0.26 phytoseiids per leaf). Furthermore, significantly higher phytoseiid mite densities were observed in the monocultural grapevine plot than in the two co-planted ones. The main species found was Typhlodromus (Typhlodromus) exhilaratus in all vine plots considered. However, Kampimodromus aberrans was observed in the grapevine plots co-planted with the two trees, but never in the monocultural vine plot. Surprisingly, this phytoseiid species was not found on the co-planted trees, nor in the neighbouring uncultivated vegetation. Several hypotheses are discussed to explain such an unexpected distribution. Furthermore, contrary to what has been observed previously, agroforestry management did not seem to favour phytoseiid mite development, especially on the Grenache cultivar. Again, some hypotheses are developed to explain such observations and density modifications.  相似文献   

15.
The objective of this study was to determine and to analyse the diversity of mites on native Myrtaceae of the "Cerrado" vegetation type of the State of S?o Paulo, with particular attention to the families Phytoseiidae and Tarsonemidae. In the year 2000, mites were collected from Myrtaceae species in three "Cerrado" areas in the State of S?o Paulo. Samples of leaves, flowers and fruits were taken from three plant of each species in each site. Mites of 49 genera belonging to 14 families were found. Fourteen phytoseiid species of nine genera and 19 tarsonemid species of six genera were collected. The most abundant phytoseiids were Euseius citrifolius Denmark & Muma, Transeius bellottii (Moraes & Mesa) and Amblyseius acalyphus Denmark & Muma. The most abundant tarsonemids were Daidalotarsonemus tesselatus DeLeon, Daidalotarsonemus folisetae Lofego & Ochoa and Metatarsonemus megasolenidii Lofego & Ochoa. The highest indexes of diversity of phytoseiids and tarsonemids were observed in the fall; the lowest indexes were found in the winter for phytoseiids and in the spring for tarsonemids. Taking into consideration the total number of phytoseiids and tarsonemids collected in this work, the corresponding indexes of diversity (Shannon) were similar and close to 2.0. Different predatory mite species prevailed on distinct plant species, indicating the complementariness of the latter as reservoirs of the former.  相似文献   

16.
In choice test experiments on strawberry leaf disc arenas the phytoseiid mites Neoseiulus californicus and N. cucumeris were more effective than Typhlodromus pyri as predators of the phytophagous mites Tetranychus urticae and Phytonemus pallidus. There were no preferences shown for either prey by any of these predators. In multiple predator leaf disc experiments both Phytoseiulus persimilis and N. cucumeris significantly reduced numbers of T. urticae eggs and active stages; this effect was seen when the two species were present alone or in combination with other predator species. Neoseiulus californicus was less effective at reducing T. urticae numbers, and T. pyri was not effective; no interaction between predator species was detected in these experiments. When T. urticae alone was present as prey on potted plants, P. persimilis and N. californicus were the only phytoseiids to significantly reduce T. urticae numbers. These two predator species provided effective control of T. urticae when P. pallidus was also present; however, none of the predators reduced numbers of P. pallidus. There were no significant negative interactions when different species of predators were present together on these potted plants. In field experiments, releases of both P. persimilis and N. cucumeris significantly reduced T. urticae numbers. However, there was a significant interaction between these predator species, leading to poorer control of T. urticae when both species were released together. These results show the importance of conducting predator/prey feeding tests at different spatial scales.  相似文献   

17.
Aerial dispersal of European red mite, Panonychus ulmi (Koch), in commercial apple orchards was estimated by trapping windborne mites. Studies were conducted at four orchards in eastern New York during 1989 and 1990 and at three orchards in western New York during 1989. In each orchard mites were trapped in three locations; the interior of the orchard, at the border of the orchard and in a field or woodlot beyond the orchard. Large numbers of mites were captured, even when the numbers of mites on apple foliage were well below levels where mite injury to leaves was visible (less than five per leaf). The log numbers of mites trapped were linearly related to the log density of mites on leaves and this relationship was consistent for each year and region the study was conducted. The trap captures among the three locations in and outside an orchard were highly correlated. The implications these findings may have on metapopulation dynamics and resistance to acaricide dynamics are discussed.  相似文献   

18.
Six Alabama Satsuma mandarin orchards (four conventionally sprayed and two unsprayed) were surveyed during 2005 and 2006 to determine the population dynamics of arthropod pests and their natural enemies. Twenty-eight arthropod pest species were encountered; the major foliage pests were citrus whitefly, Dialeurodes citri (Ashmead); purple scale, Lepidosaphes beckii (Newman); Glover scale, L. gloveri (Packard); and citrus red mite, Panonychus citri (McGregor). Two distinct population peaks were recorded for citrus whitefly at most locations. The most important direct sources of citrus whitefly mortality were parasitism by Encarsia lahorensis (Howard) and infection by the pathogenic fungus, Aschersonia aleyrodis Webber. In general, all stages of both scale insects (purple scale and Glover scale) were present in the orchards year-round, indicative of overlapping generations; however, the highest densities were recorded during the early season. Citrus whitefly, purple scale, and Glover scale were more abundant on leaves collected from the interior of the tree canopy than in the exterior canopy. Citrus red mite densities were highest in the spring, with populations declining at the start of the summer, and were more abundant in the exterior canopy than in the interior canopy. The most important natural enemies of citrus red mite were predatory mites belonging to several families, of which Typhlodromalus peregrinus Muma (Phytoseiidae) was the predominant species. Major differences were recorded in the relative abundance of different arthropod pest species in the orchards: citrus whitefly, purple scale, and Glover scale predominated in the unsprayed orchards, whereas citrus red mite infestations were more severe in the sprayed orchards. The results are discussed in relation to the possible effect of orchard management practices on abundance of the major pests.  相似文献   

19.
The differential impact of Zetzellia mali on the phytoseiids Metaseiulus occidentalis and Typhlodromus pyri was studied in the laboratory and by analysis of population from orchard plots that contained either phytoseiid, similar numbers of prey mites and high or low densities of Z. mali. Five hypotheses were evaluated to explain why Z. mali had more impact on M. occidentalis in the field than on T. pyri. Given equal opportunity, Z. mali adult females did not consume more M. occidentalis eggs than T. pyri eggs nor did adult females of either phytoseiid inflict greater mortality on Z. mali eggs or larvae through attack or consumption. There was no difference in the within-tree association of Z. mali adult females with eggs of either phytoseiid species nor were there differences in the way prey mites (all life stages) were spatially partitioned between adult female Z. mali as compared with adults and deutonymphs (combined) of either phytoseiid. The foraging area of adult female Z. mali and the oviposition locations of the two phytoseiids from both field and laboratory data were compared using spatial statistics. Metaseiulus occidentalis laid significantly more eggs in the primary foraging area of adult female Z. mali than T. pyri. This was the only factor identified which may explain the greater impact of Z. mali on M. occidentalis. The impact of these interspecific effects on the persistence of predatory mite guilds and biological control are discussed.  相似文献   

20.
采用随机取样和跟踪调查的方法对滇榄仁(Terminalia franchetii)种子扩散规律、空间分布特征以及种子库动态进行了系统研究。结果表明,滇榄仁种子扩散受到较强的风力作用影响,具有明显的方向性,扩散距离是其树高的1.6倍以上。不同群落类型中,滇榄仁的土壤种子库存在较大差异,但不同时间段的变化趋势基本一致,即在雨季(6月、8月和10月)数量相对较少,12月到翌年4月,数量逐渐增加。滇榄仁植冠种子库从当年10月开始缓慢脱落,到翌年3月达到脱落高峰(15%以上种子此时脱落),然后再次进入缓慢脱落期,翌年6、7月的种子脱落速率最低,但直到翌年10月仍有部分种子(约15%左右)存在于植株冠层。总体来说,不同类型群落中,滇榄仁幼苗更新不良的原因不应是缺乏种源,可能与种子质量以及群落环境等影响群落天然更新的其它因子存在较大关联。同时,滇榄仁土壤种子库数量与植冠种子库的脱落过程存在紧密联系,而植冠种子脱落可能与该区域气候因子存在着较大依存关系,其中,与风力可能存在着正相关,与降雨量和空气相对湿度存在着负相关,这可能是滇榄仁长期以来对干热河谷环境的一种适应特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号