首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. The relationship between vegetation and environment was investigated for calcareous grasslands in a region in the west of Spain, France, Britain and Ireland defined by climatic criteria. Vegetation was sampled using objective methods and data collected on soils, land cover, location and management. Climate data were obtained from an available database. Examination of the first axis of vegetation variation as defined by Detrended Correspondence Analysis (DCA) showed a gradient from the Irish and British samples to those from France. The Spanish samples formed a separate group on the second axis. The species composition along the gradients is discussed. Correlations between the vegetation gradients and environmental variables were determined. The strongest correlations with the first DCA axis were for temperature, latitude, soil organic matter, grazing and land cover. The second DCA axis was highly correlated with rainfall, altitude and land cover. The third and fourth DCA axes were more difficult to interpret but appeared to be related to land cover. The results indicate that climate factors are important at this scale, but should not be considered in isolation and that factors relating to land cover and management should also be taken into account.  相似文献   

2.
Aim To examine the trends of 1982–2003 satellite‐derived normalized difference vegetation index (NDVI) values at several spatial scales within tundra and boreal forest areas of Alaska. Location Arctic and subarctic Alaska. Methods Annual maximum NDVI data from the twice monthly Global Inventory Modelling and Mapping Studies (GIMMS) NDVI 1982–2003 data set with 64‐km2 pixels were extracted from a spatial hierarchy including three large regions: ecoregion polygons within regions, ecozone polygons within boreal ecoregions and 100‐km climate station buffers. The 1982–2003 trends of mean annual maximum NDVI values within each area, and within individual pixels, were computed using simple linear regression. The relationship between NDVI and temperature and precipitation was investigated within climate station buffers. Results At the largest spatial scale of polar, boreal and maritime regions, the strongest trend was a negative trend in NDVI within the boreal region. At a finer scale of ecoregion polygons, there was a strong positive NDVI trend in cold arctic tundra areas, and a strong negative trend in interior boreal forest areas. Within boreal ecozone polygons, the weakest negative trends were from areas with a maritime climate or colder mountainous ecozones, while the strongest negative trends were from warmer basin ecozones. The trends from climate station buffers were similar to ecoregion trends, with no significant trends from Bering tundra buffers, significant increasing trends among arctic tundra buffers and significant decreasing trends among interior boreal forest buffers. The interannual variability of NDVI among the arctic tundra buffers was related to the previous summer warmth index. The spatial pattern of increasing tundra NDVI at the pixel level was related to the west‐to‐east spatial pattern in changing climate across arctic Alaska. There was no significant relationship between interannual NDVI and precipitation or temperature among the boreal forest buffers. The decreasing NDVI trend in interior boreal forests may be due to several factors including increased insect/disease infestations, reduced photosynthesis and a change in root/leaf carbon allocation in response to warmer and drier growing season climate. Main conclusions There was a contrast in trends of 1982–2003 annual maximum NDVI, with cold arctic tundra significantly increasing in NDVI and relatively warm and dry interior boreal forest areas consistently decreasing in NDVI. The annual maximum NDVI from arctic tundra areas was strongly related to a summer warmth index, while there were no significant relationships in boreal areas between annual maximum NDVI and precipitation or temperature. Annual maximum NDVI was not related to spring NDVI in either arctic tundra or boreal buffers.  相似文献   

3.
Question: How does willow‐characterised tundra vegetation of western Eurasia vary, and what are the main vegetation types? What are the ecological gradients and climatic regimes underlying vegetation differentiation? Location: The dataset was collected across a wide spectrum of tundra habitats at 12 sites in subarctic and arctic areas spanning from NW Fennoscandia to West Siberia. Methods: The dataset, including 758 vegetation sample plots (relevés), was analysed using a TWINSPAN classification and NMDS ordination that also included analyses of vegetation‐environment correlations. Results: Based on the TWINSPAN classification, eight vegetation types characterised by willow (cover of upright willows >10%) were discerned: (1) Salix glaucaCarex aquatilis type, (2) AulacomniumTomentypnum type, (3) SalixBetulaHylocomium type, (4) Salix lanataBrachythecium mildeanum type, (5) SalixPachypleurum type, (6) S. lanataMyosotis nemorosa type, (7) Salix‐Trollius‐Geranium type and (8) SalixComarum palustreFilipendula ulmaria type. Willow‐characterised vegetation types were compositionally differentiated from other tundra vegetation and were confined to relatively moist valley and sloping tundra sites, from mire to mineral soils. These vegetation types were encountered across a broad latitudinal zone in which July mean temperature ranged from 6 to 10°C. Conclusions: Willow‐characterised tundra vegetation forms a broad category of ecologically and geographically differentiated vegetation types that are linked to dwarf shrub tundra, shrub tundra or mire. Because of complex ecological gradients underlying compositional differentiation, predicting the responses of willow‐characterised tundra vegetation to a warming climate may be complicated.  相似文献   

4.
Abstract. Vegetation changes in a semi‐natural grassland of wooded meadow type that had been grazed for centuries are described following the introduction of various management regimes: mowing each year, mowing every third year, burning, mechanical removal of woody plants, chemical treatment of woody plants, continuous grazing and abandonment. The experiment was established in southern Sweden in 1972 and has been in progress for 15 years. In 1972, 1980 and 1986 the botanical composition in these plots was investigated in permanent subplots. The study clearly demonstrates that mowing or grazing is necessary to preserve community structure and that mowing is to be preferred in cases where maintaining species richness is of primary concern. Mowing every third year delayed vegetation change and prevented woody species from spreading. Therefore, periodic mowing might be an alternative way to preserve the flora. In contrast, yearly burning does not seem to be a viable management in this type of semi‐natural grassland. To preserve the open landscape regeneration of woody plants has to be prevented. However, in plots where woody plants were removed the typical grassland flora declined. Abandonment resulted in closed forest.  相似文献   

5.
Aims Clarifying the spatiotemporal variations in precipitation‐use efficiency (PUE), the ratio of vegetation above‐ground productivity to annual precipitation, will advance our understanding of how ecosystems' carbon and water cycles respond to climate change. Our goal is to investigate the variations in PUE at both regional and site scales along a 4500‐km climate‐related grassland transect. Location The Inner Mongolian Plateau in northern China and the Qinghai‐Tibetan Plateau. Methods We collected data on 580 sites from four data sources. The data were acquired through field surveys and long‐term in situ observations. We investigated the relationships between precipitation and PUE at both regional and site scales, and we evaluated the effects of the main biotic and climatic factors on PUE at both spatial scales. Results PUE decreased with decreasing mean annual precipitation (MAP), except for a slight rise toward the dry end of the gradient. The maximum PUE showed large site‐to‐site variation along the transect. Vegetation cover significantly affected the spatial variations in PUE, and this probably accounts for the positive relationship between PUE and MAP. However, there was no significant relationship between inter‐annual variations in precipitation or vegetation cover and PUE within given ecosystems along the transect. Conclusions The findings of this research contradict the prevailing view that a convergent maximum PUE exists among diverse ecosystems, as presented in previous reports. Our findings also suggest the action of distinct mechanisms in controlling PUE at different spatial scales. We propose the use of a conceptual model for predicting vegetation productivity at continental and global scales with a sigmoid function, which illustrates an increasing PUE with MAP in arid regions. Our approach may represent an improvement over use of the popular Miami model.  相似文献   

6.
Aim Many high‐latitude floras contain more calcicole than calcifuge vascular plant species. The species pool hypothesis explains this pattern through an historical abundance of high‐pH soils in the Pleistocene and an associated opportunity for the evolutionary accumulation of calcicoles. To obtain insights into the history of calcicole/calcifuge patterns, we studied species richness–pH–climate relationships across a climatic gradient, which included cool and dry landscapes resembling the Pleistocene environments of northern Eurasia. Location Western Sayan Mountains, southern Siberia. Methods Vegetation and environmental variables were sampled at steppe, forest and tundra sites varying in climate and soil pH, which ranged from 3.7 to 8.6. Species richness was related to pH and other variables using linear models and regression trees. Results Species richness is higher in areas with warmer winters and at medium altitudes that are warmer than the mountains and wetter than the lowlands. In treeless vegetation, the species richness–pH relationship is unimodal. In tundra vegetation, which occurs on low‐pH soils, richness increases with pH, but it decreases in steppes, which have high‐pH soils. In forests, where soils are more acidic than in the open landscape, the species richness–pH relationship is monotonic positive. Most species occur on soils with a pH of 6–7. Main conclusions Soil pH in continental southern Siberia is strongly negatively correlated with precipitation, and species richness is determined by the opposite effects of these two variables. Species richness increases with pH until the soil is very dry. In dry soils, pH is high but species richness decreases due to drought stress. Thus, the species richness–pH relationship is unimodal in treeless vegetation. Trees do not grow on the driest soils, which results in a positive species richness–pH relationship in forests. If modern species richness resulted mainly from the species pool effects, it would suggest that historically common habitats had moderate precipitation and slightly acidic to neutral soils.  相似文献   

7.
Recent climate warming in the Arctic has caused advancement in the timing of snowmelt and expansion of shrubs into open tundra. Such an altered climate may directly and indirectly (via effects on vegetation) affect arctic arthropod abundance, diversity and assemblage taxonomic composition. To allow better predictions about how climate changes may affect these organisms, we compared arthropod assemblages between open and shrub‐dominated tundra at three field sites in northern Alaska that encompass a range of shrub communities. Over ten weeks of sampling in 2011, pitfall traps captured significantly more arthropods in shrub plots than open tundra plots at two of the three sites. Furthermore, taxonomic richness and diversity were significantly greater in shrub plots than open tundra plots, although this pattern was site‐specific as well. Patterns of abundance within the five most abundant arthropod orders differed, with spiders (Order: Araneae) more abundant in open tundra habitats and true bugs (Order: Hemiptera), flies (Order: Diptera), and wasps and bees (Order: Hymenoptera) more abundant in shrub‐dominated habitats. Few strong relationships were found between vegetation and environmental variables and arthropod abundance; however, lichen cover seemed to be important for the overall abundance of arthropods. Some arthropod orders showed significant relationships with other vegetation variables, including maximum shrub height (Coleoptera) and foliar canopy cover (Diptera). As climate warming continues over the coming decades, and with further shrub expansion likely to occur, changes in arthropod abundance, richness, and diversity associated with shrub‐dominated habitat may have important ecological effects on arctic food webs since arthropods play important ecological roles in the tundra, including in decomposition and trophic interactions.  相似文献   

8.
Abstract. This study explored the validity of three responses of vegetation to increased soil erosion: reduction of vegetation cover, number of species and reduced substitution of species. 201 relevés, including edaphic and geomorphological data, were surveyed in the intensely eroded Eocene marls of the Prepyrenees (NE Spain). Changes in plant species’ presence in relevés from different degradation stages were compared. The level of vegetation degradation was defined as the total phanerogam cover which, in the studied area, was correlated to the degree of soil erosion. The considered trends were validated. Reduction of phanerogam cover and species number were gradual from low to high‐eroded areas. Vegetation degradation explained 48% of the species number variance. In the later stages of degradation a significant substitution of species was not observed, only a lower frequency of occurrence of several species that appeared in the whole set of relevés. Through the process of degradation, 47% of species displayed significantly reduced frequencies as degradation increased, none showed a significant increase in frequency. It is concluded that there are no characteristic species in these plant communities that survive in the severely eroded marls. Among the few species that had increased in frequency, most only colonised favourable micro‐environments.  相似文献   

9.
Changes in climate and in browsing pressure are expected to alter the abundance of tundra shrubs thereby influencing the composition and species richness of plant communities. We investigated the associations between browsing, tundra shrub canopies and their understory vegetation by utilizing a long‐term (10–13 seasons) experiment controlling reindeer and ptarmigan herbivory in the subarctic forest tundra ecotone in northwestern Fennoscandia. In this area, there has also been a consistent increase in the yearly thermal sum and precipitation during the study period. The cover of shrubs increased 2.8–7.8 fold in exclosures and these contrasted with browsed control areas creating a sharp gradient of canopy cover of tundra shrubs across a variety of vegetation types. Browsing exclusions caused significant shifts in more productive vegetation types, whereas little or no shift occurred in low‐productive tundra communities. The increased deciduous shrub cover was associated with significant losses of understory plant species and shifts in functional composition, the latter being clearest in the most productive plant community types. The total cover of understory vegetation decreased along with increasing shrub cover, while the cover of litter showed the opposite response. The cover of cryptogams decreased along with increasing shrub cover, while the cover of forbs was favoured by a shrub cover. Increasing shrub cover decreased species richness of understory vegetation, which was mainly due to the decrease in the cryptogam species. The effects were consistent across different types of forest tundra vegetation indicating that shrub increase may have broad impacts on arctic vegetation diversity. Deciduous shrub cover is strongly regulated by reindeer browsing pressure and altered browsing pressure may result in a profound shrub expansion over the next one or two decades. Results suggest that the impact of an increase in shrubs on tundra plant richness is strong and browsing pressure effectively counteracts the effects of climate warming‐driven shrub expansion and hence maintains species richness.  相似文献   

10.
Questions : What is the variability of succession over a large geographical area? What is the relative importance of (1) local site factors and (2) landscape factors in determining spontaneous vegetation succession? Location : Various regions of the Czech Republic, Central Europe. The regions represent two categories characterized by agrarian lowlands, with a relatively warm and dry climate, and predominant woodland uplands with a relatively cold and wet climate. Methods : Gravel‐sand pits ranged in age from 1–75 years since abandonment. Three types of sites were distinguished: dry, wet and hydric in shallow flooded sites. Vegetation relevés were recorded with species cover (%) visually estimated using the space‐for‐time substitution approach. Local site factors, such as water table and soil characteristics, and landscape characteristics, namely climatic parameters, presence of nearby (semi‐) natural plant communities and main land cover categories in the wider surroundings, were evaluated. Results : Ordination analyses showed that water table was the most important local site factor influencing the course of spontaneous vegetation succession. Succession was further significantly influenced by soil texture, pH, macroclimate, the presence of some nearby (semi‐) natural communities and some land cover categories in the wider surroundings. Spontaneous vegetation succession led to the formation of either shrubby grassland, deciduous woodland, alder and willow carrs, and tall sedge or reed and Typha beds in later stages depending predominantly on the site moisture conditions. Conclusions: Although the water table was the most influential on the course of vegetation succession, the landscape factors together explained more vegetation variability (44%) than local site factors (23%).  相似文献   

11.
Abstract. The floristic effects of river‐borne litter that accumulates in riparian zones may vary in space and time depending on variations in mass and particle size of the deposited litter. To analyse the effects of litter mass and size we applied differentsized litter (natural uncut pieces and powder) to riparian vegetation at different quantities. Vegetation responses were analysed after one season at the community level (total biomass or richness for all species) and species traits (biomass or richness for groups of species). At the community level uncut litter, but not powder, reduced species richness and both uncut and ground litter reduced above‐ground biomass. At the species trait level uncut litter had a stronger effect than powder on species richness and biomass. The only positive effect of litter addition was that powder increased graminoid species richness. The topsoil conditions indicated that the major impact of deposited, river‐borne litter was that it acted as a physical barrier directly preventing established plants from penetrating the litter layer and reducing light and soil temperature.  相似文献   

12.
Question: What is the disturbance response of low‐arctic plant communities two to three decades after seismic exploration. Location: Mackenzie River Delta, low‐arctic, northwestern Canada. Methods: Plant communities in two upland tundra vegetation types were compared between winter seismic lines, created between 1970 and 1986, and adjacent “reference” tundra. Also, we used aerial surveys to quantify the total area impacted by visible linear features. Results: Vascular plant cover was significantly higher, and lichen cover significantly lower, on seismic lines than in reference tundra. The increase in vascular plant cover was attributable to deciduous shrubs and graminoids. There were significant differences in plant community composition between seismic lines and reference tundra but no differences in species diversity or richness. Betula glandulosa and Arctagrostis latifolia were significant indicator species for seismic lines, while Saussurea angustifolia was a significant indicator for reference tundra. Based on the aerial surveys, these effects apply to at least 90% of seismic lines from two‐dimensional programs in these habitat types during the 1970s. Conclusions: Vegetation composition and structure on 20‐30‐year‐old seismic lines differs from reference upland tundra despite no persistent differences in organic layer depth or depth to permafrost. We propose that this reflects: (1) successional redevelopment following changes in soil conditions and nutrient availability arising from the disturbance, and/or (2) disturbance‐initiated succession towards a community reflecting current climatic conditions.  相似文献   

13.
Productivity has long been argued to be a major driver of species richness patterns. In the present study we test alternative productivity–diversity hypotheses using vegetation data from the vast Eurasian tundra. The productivity–species pool hypothesis predicts positive relationships at both fine and coarse grain sizes, whereas the productivity–interaction hypothesis predicts unimodal patterns at fine grain size, and monotonic positive patterns at coarse grain size. We furthermore expect to find flatter positive (productivity–species pool hypothesis) or more strongly negative (productivity–interaction hypothesis) relationships for lichens and bryophytes than for vascular plants, because as a group, lichens and bryophytes are better adapted to extreme arctic conditions and more vulnerable to competition for light than the taller‐growing vascular plants. The normalised difference vegetation index (NDVI) was used as a proxy of productivity. The generally unimodal productivity–diversity patterns were most consistent with the productivity–interaction hypothesis. There was a general trend of decreasing species richness from moderately to maximally productive tundra, in agreement with an increasing importance of competitive interactions. High richness of vascular plants and lichens occurred in moderately low productive tundra areas, whereas that of bryophytes occurred in the least productive tundra habitats covered by this study. The fine and coarse grain richness trends were surprisingly uniform and no variation in beta diversity along the productivity gradient was seen for vascular plants or bryophytes. However, lichen beta diversity varied along the productivity gradient, probably reflecting their sensitivity to habitat conditions and biotic interactions. Overall, the results show evidence that productivity–diversity gradients exist in tundra and that these appear to be largely driven by competitive interactions. Our results also imply that climate warming‐driven increases in productivity will strongly affect arctic plant diversity patterns.  相似文献   

14.
Question: What is the impact of grazing and/or afforestation on grassland diversity, species composition and cover parameters? Location: Semi‐arid Mediterranean grasslands of Jordan. Methods: Vegetation, litter, bare soil and rock cover were compared among four management types – free grazing and protected from grazing with three levels of tree cover. Species composition, plant cover, species richness and evenness were used to evaluate differences in vegetation among management types. Species composition differences among management types were also investigated. Results: Semi‐arid Mediterranean grasslands harbour appreciable levels of plant biodiversity. Grazing did not affect plant diversity, indicating the high resilience against and adaptation to grazing; however,grazing affected species composition and cover parameters. Afforestation seems to protect soil through higher litter cover but its impact on plant biodiversity was negative and markedly affected species composition. Conclusions: Neither protection from grazing or massive afforestation alone are sufficient for conserving biodiversity in this system. A management model is suggested where the landscape should be maintained as a mosaic of four management types: complete protection from grazing, grazing rotation, planting sparse trees in eroded areas and revegetating degraded areas using native, herbaceous and grazing tolerant species.  相似文献   

15.
Abstract. We studied the relationship between plant N:P ratio, soil characteristics and species richness in wet sedge and tussock tundra in northern Alaska at seven sites. We also collected data on soil characteristics, above‐ground biomass, species richness and composition. The N:P ratio of the vegetation did not show any relationship with species richness. The N:P ratio of the soil was related with species richness for both vegetation types. Species richness in the tussock tundra was most strongly correlated with soil calcium content and soil pH, with a strong correlation between these two factors. N:P ratio of the soil was also correlated with soil pH. Other factors correlated with species richness were soil moisture and Sphagnum cover. Organic matter content was the factor most strongly correlated with species richness in the wet sedge vegetation. N:P ratio of the soil was strongly correlated with organic matter content. We conclude that N:P ratio in the vegetation is not an important factor determining species richness in arctic tundra and that species richness in arctic tundra is mainly determined by pH and flooding. In tussock tundra the pH, declining with soil age, in combination with Sphagnum growth strongly decreases species richness, while in wet sedge communities flooding over long periods of time creates less favourable conditions for species richness.  相似文献   

16.
Abstract. Elenberg's bio‐indication system for soil moisture (F), soil nitrogen (N) and soil reaction (R) was examined, based on 559 vegetation samples and environmental characteristics (vegetation cover, soil depth, soil moisture, chemical soil properties) from four Faroe islands. The original indicator values from central Europe were used for the calculation of weighted community indicator values of F, N and R. These were regressed with respect to environmental data, applying standard curvilinear regression and generalized linear modelling (GLM) and new predicted values of community indicator values were obtained from the best model. Faroe species optima values of 162 taxa for one or more of the three EUenberg scales were derived from fitting Huisman‐Olff‐Fresco (HOF) models of species abundance with respect to predicted community indicator values and are proposed as new EUenberg species indicator values to be used in the Faroe Islands. F was best correlated with a GLM model containing soil moisture, organic soil fraction, soil depth and total vegetation cover, R with a GLM model containing pH and calcium in % organic soil fraction, N with total phosphorus in % organic soil fraction. The calibrated species indicator scales are much truncated, as compared with the original values, resulting in significantly different overall distributions of the original and new species indicator values. The recalculated community indicator values are much better correlated to environmental measurements. Several species do not have clear optima, but linear or monotone relationships to the examined indicator scales. This probably indicates that the occurrence of some species in the Faroe Islands are either determined by factors other than moisture, pH or soil nutrient status or, given the young age and environmental instability of the islands, are governed by stochastic mechanisms. Extension of Ellenberg indicator values outside central Europe should always be carefully calibrated by means of adequate environmental data and adequate statistical models, such as HOF models, should be applied.  相似文献   

17.
Abstract. We studied the germinable soil seed bank of tall‐tussock grasslands along an altitudinal gradient in the mountains of central Argentina. We selected 10 sampling plots at three altitudinal levels (1200 m, 1600 m and 2200 m). We assessed the composition of the established vegetation and took ten compound soil samples (0 ‐ 5 cm depth) at each plot in autumn and spring. The soil samples were sieved, chilled, and incubated in a glasshouse to assess the composition of the seed bank. The similarity between the composition of the seed bank flora and that of the established vegetation was low throughout the gradient. Most species did not change their seed bank strategy along the gradient. Seed bank richness and density increased with altitude. Most species had a persistent seed bank at all altitudinal levels, and the proportion of such species increased with altitude. These results suggest that a cold climate directly and/or indirectly favours the formation of seed banks and seed persistence in the soil.  相似文献   

18.
Abstract. A 44‐yr record of herbaceous vegetation change was analysed for three contrasting grazing regimes within a semi‐arid savanna to evaluate the relative contribution of confined livestock grazing and climatic variability as agents of vegetation change. Grazing intensity had a significant, directional effect on the relative composition of short‐ and mid‐grass response groups; their composition was significantly correlated with time since the grazing regimes were established. Interannual precipitation was not significantly correlated with response group composition. However, interannual precipitation was significantly correlated with total plant basal area while time since imposition of grazing regimes was not, but both interannual precipitation and time since the grazing regimes were established were significantly correlated with total plant density. Vegetation change was reversible even though the herbaceous community had been maintained in an altered state for ca. 60 yr by intensive livestock grazing. However, ca. 25 yr were required for the mid‐grass response group to recover following the elimination of grazing and recovery occurred intermittently. The increase in mid‐grass composition was associated with a significant decrease in total plant density and an increase in mean individual plant basal area. Therefore, we failed to reject the hypotheses based on the proportional change in relative response group composition with grazing intensity and the distinct effects of grazing and climatic variability on response group composition, total basal area and plant density. Long‐term vegetation change indicates that grazing intensity established the long‐term directional change in response group composition, but that episodic climate events defined the short‐term rate and trajectory of this change and determines the upper limit on total basal area. The occurrence of both directional and non‐directional vegetation responses were largely a function of (1) the unique responses of the various community attributes monitored and (2) the distinct temporal responses of these community attributes to grazing and climatic variation. This interpretation supports previous conclusions that individual ecosystems may exist in equilibrial and non‐equilibrial states at various temporal and spatial scales.  相似文献   

19.
In oceanic, nutrient-rich Fennoscandian arctic-alpine tundra heaths, grazing by reindeer has been found to increase herbs and graminoids in relation to dwarf shrubs. In continental lichen heaths in the inland with nutrient-poor conditions, however, slowly decomposable dwarf shrubs are favoured by grazing. According to a hypothesis, by favouring easily decomposing plants in nutrient-rich conditions and slowly decomposing plants in nutrient-poor conditions, herbivory enhances soil nutrient cycling in nutrient-rich and retards it in nutrient-poor areas. We tested this hypothesis by comparing the impact of reindeer grazing on soil C and N mineralization between two oceanic and two continental arctic-alpine tundra heaths.
Although soil respiration and microbial metabolic activity were enhanced by grazing in the suboceanic but not in the subcontinental tundra heaths, gross N mineralization rates were higher in the grazed areas in soils from all study sites, indicating that reindeer grazing leads to increased rates of nutrient cycling in both nutrient-poor and nutrient-rich tundra heaths. Thus, in the subcontinental tundra heaths, the increase in soil N concentrations due to mammalian waste products enhances N mineralization rates, even though the organic C quality is not improved by reindeer grazing. There was some site-specific variation in the strength of the reindeer effects on various microbial processes and soil properties, which can be related to spatial variation in grazing intensity and timing, as these factors in turn affect the nutrient sink strength of the vegetation.  相似文献   

20.
Questions: Which environmental and management factors determine plant species composition in semi‐natural grasslands within a local study area? Are vegetation and explanatory factors scale‐dependent? Location: Semi‐natural grasslands in Lærdal, Sognog Fjordane County, western Norway. Methods: We recorded plant species composition and explanatory variables in six grassland sites using a hierarchically nested sampling design with three levels: plots randomly placed within blocks selected within sites. We evaluated vegetation‐environment relationships at all three levels by means of DCA ordination and split‐plot GLM analyses. Results: The most important complex gradient determining variation in grassland species composition showed a broad‐scale relationship with management. Soil moisture conditions were related to vegetation variation on block scale, whereas element concentrations in the soil were significantly related to variation in species composition on all spatial scales. Our results show that vegetation‐environment relationships are dependent on the scale of observation. We suggest that scale‐related (and therefore methodological) issues may explain the wide range of vegetation‐environment relationships reported in the literature, for semi‐natural grassland in particular but also for other ecosystems. Conclusions: Interpretation of the variation in species composition of semi‐natural grasslands requires consideration of the spatial scales on which important environmental variables vary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号