首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE) are common groundwater contaminants. One approach that has been used to manage these contaminants is in situ bioremediation, where an electron donor is added to contaminated groundwater to stimulate indigenous bacteria to degrade the chlorinated compounds. A technique that is increasingly being used to supply electron donor to the subsurface involves application of a commercial product with the trade name Hydrogen Release Compound (HRC). HRC is a viscous fluid that releases lactic acid, which subsequently is metabolized to provide molecular hydrogen as an electron donor. This study investigates application of HRC to remediate a site contaminated with TCE. A user-defined dual-Monod biodegradation reaction module was developed for the RT3D-reactive transport code to simulate in situ biodegradation of TCE by reductive dehalogenation stimulated by release of molecular hydrogen in the subsurface as a result of HRC injection. The model was used to show how a remediation system using HRC to stimulate reductive dehalogenation could be designed, and how mixing, as quantified by hydraulic conductivity and dispersivity, impacts the system design.  相似文献   

2.
Chemically enhanced solubilization (CES) is an advanced variant of pump‐andtreat that results in more effective and more rapid remediation of groundwater contaminated with organic solvents and other dense nonaqueous‐phase liquids (DNAPLs). Attempts to remediate DNAPL‐contaminated groundwater by pump‐and‐treat have generally not been successful, due to the low aqueous solubility of most DNAPLs. Regions of undissolved, organic liquids slowly release additional contamination to surrounding groundwater, in effect acting as in situ sources of contamination and hindering the progress of remediation attempts. Cleaning up an aquifer can take many decades or more of pump‐and‐treat. CES accelerates pump‐and‐treat by using surfactants at low concentration to increase the solubility of organic contaminants by up to three orders of magnitude, while maintaining hydraulic control. The surfactants are chosen to maximize contaminant solubilization while minimizing decreases in the DNAPL/ water interfacial tension in order to prevent mobilization of DNAPL to uncontaminated regions. The surfactants are also selected to be nontoxic and biodegradable (many are U.S. Food and Drug Administration‐ (FDA‐) approved food additives). After the contaminants have been solubilized, they are pumped to the surface and treated by air stripping and other methods as in traditional pump‐and‐treat operations. CES has had extensive laboratory development and is now being field tested at three sites. The first field test is at Canadian Forces Base Borden, a military facility in Ontario, Canada. The field test involves the controlled contamination of a shallow sand aquifer with approximately 240 L of tetrachloroethylene (PCE). CES increased the contaminant concentration in the extracted water to over 10,000 ppm of PCE, compared with an aqueous solubility of 200 ppm. At latest report, more than 80% of the residual PCE has been removed. A second field test is currently in preparation at a chlorinated solvent manufacturing facility in Texas and a third at a DOE site with PCE, 1,1,1‐trichloroethane (TCA), and trichloroethylene (TCE) contamination.  相似文献   

3.
The mutant methanotroph, Methylosinus trichosporium OB3b PP358, which constitutively expresses soluble methane monooxygenase (sMMO), was used to study the degradation kinetics of individual chlorinated solvents and binary solvent mixtures. Although sMMO's broad specificity permits a wide range of chlorinated solvents to be degraded, it creates the potential for competitive inhibition of degradation rates in mixtures because multiple chemicals are simultaneously available to the enzyme. To effectively design both ex-situ and in-situ groundwater bioremediation systems using strain PP358, kinetic parameters for chlorinated solvent degradation and accurate kinetic expressions to account for inhibition in mixtures are required. Toward this end, the degradation parameters for six prevalent chlorinated solvents and the verification of enzyme competition model for binary mixtures were the focus of this investigation. M. trichosporium OB3b PP358 degraded trichloroethylene (TCE), chloroform, cis-1,2-dichloroethylene (c-DCE), trans-1,2-dichloroethylene (t-DCE), and 1, 1-dichloroethylene (1,1-DCE) rapidly, with maximum substrate transformation rates of >20.8, 3.1, 9.5 24.8, and >7.5 mg/mg-day, respectively. 1,1,1-trichloroethane (TCA) was not significantly degraded. Half-saturation coefficients ranged from 1 to greater than 10 mg/L. Competition experiments were carried out to observe the effect of a second solvent on degradation rates and to verify the applicability of the Monod model adjusted for competitive inhibition. Binary mixtures of 0.3->0.5 mg/L TCE with up to 5 mg/L c-DCE and up to 7 mg/L 1,1,1-TCA were studied with 20 mM of formate and no growth substrate. No competition was observed at any of these concentrations. Additional competition experiments, using binary mixtures of t-DCE with TCE and t-DCE with c-DCE, were conducted at higher concentrations (i.e., 7-18 mg/L) and enzyme competition was observed. Predictions from a competitive inhibition model compared well with experimental data for these mixtures.  相似文献   

4.
Numerous studies presented in the general literature have shown that the key mechanism affecting the rate and extent of migration of a contaminant plume is biodegradation since it removes contaminant mass and reduces average plume concentrations. This paper attempts to address the importance of biodegradation for fuel and chlorinated solvent plumes and to present a comprehensive review of rates of biodegradation obtained from field and laboratory studies. Data from approximately 280 studies are statistically analyzed to determine ranges of biodegradation rates for various contaminants under different redox conditions. A review of 133 studies for fuel hydrocarbons has yielded first-order biodegradation coefficients up to 0.445 day-1 under aerobic conditions and up to 0.522-1 under anaerobic conditions in 90% of the cases. A median rate constant for benzene of 0.3% day-1 was estimated from all studies, while those for toluene, ethylbenzene, and xylenes were estimated to be 4, 0.3, and 0.4% day-1, respectively. On the other hand, data from 138 studies with chlorinated solvents show that the less chlorinated compounds biodegrade in the 90% of the cases with rate constants lower than 1.35 day-1 under aerobic conditions and that highly chlorinated compounds biodegrade with decay coefficients up to 1.28 day-1 in 90% of the anoxic experiments. Median decay coefficients derived from all studies were 4.9, 0.07, 0.42, 0.86, 1.02, 0.44, and 4.7 day-1 for carbon tetrachloride, dichloroethane (DCA), cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE), trichloroethane (TCA), trichloroethene (TCE), and vinyl chloride, respectively. The rate constants presented in this study can be used in screening and modeling studies and to guide the assessment of natural attenuation as a viable remedial technology at contaminated sites. represent a compilation of available literature data.  相似文献   

5.
Newell CJ  Aziz CE 《Biodegradation》2004,15(6):387-394
The sustainability of biodegradation reactions is of interest at Type 1 chlorinated solvent sites where monitored natural attenuation is being considered as a remedial alternative. Type 1 chlorinated solvent sites are sites undergoing reductive dechlorination where anthropogenic substrates (such as landfill leachate or fermentable organics in the waste materials) ferment to produce hydrogen, a key electron donor. A framework is provided that classifies Type 1 chlorinated solvent sites based on the relative amounts and the depletion rates of the electron donors and the electron acceptors (i.e., chlorinated solvents). Expressions are presented for estimating the total electron donor demand due to the presence of solvents and competing electron acceptors such as dissolved oxygen, nitrate, and sulfate. Finally, a database of 13 chlorinated solvent sites was analyzed to estimate the median and maximum mass discharge rate for dissolved oxygen, nitrate, and sulfate flowing into chlorinated solvent plumes. These values were then used to calculate the amount of hydrogen equivalents and potential for lost perchloroethylene (PCE) biodegradation represented by the inflow of these competing electron acceptors. The median and maximum mass of PCE biodegradation lost due to competing electron acceptors, assuming 100% efficiency, was 226 and 4621 kg year(-1), respectively.  相似文献   

6.
Mixed groundwater contaminations by chlorinated volatile organic compounds (VOC) cause environmental hazards if contaminated groundwater discharges into surface waters and river floodplains. Constructed wetlands (CW) or engineered natural wetlands provide a promising technology for the protection of sensitive water bodies. We adapted a constructed wetland able to treat monochlorobenzene (MCB) contaminated groundwater to a mixture of MCB and tetrachloroethene (PCE), representing low and high chlorinated model VOC. Simultaneous treatment of both compounds was efficient after an adaptation time of 2 1/2 years. Removal of MCB was temporarily impaired by PCE addition, but after adaptation a MCB concentration decrease of up to 64% (55.3 micromol L(-1)) was observed. Oxygen availability in the rhizosphere was relatively low, leading to sub-optimal MCB elimination but providing also appropriate conditions for PCE dechlorination. PCE and metabolites concentration patterns indicated a very slow system adaptation. However, under steady state conditions complete removal of PCE inflow concentrations of 10-15 micromol L(-1) was achieved with negligible concentrations of chlorinated metabolites in the outflow. Recovery of total dechlorination metabolite loads corresponding to 100%, and ethene loads corresponding to 30% of the PCE inflow load provided evidence for complete reductive dechlorination, corroborated by the detection of Dehalococcoides sp.  相似文献   

7.
In situ anaerobic bioremediation of chlorinated solvents such as perchloroethene (PCE) frequently faces the problem of accumulating toxic, lower chlorinated compounds such as dichloroethene (cis-DCE) and vinyl chloride (VC). In the present study, the efficacy of the sequential application of electron donors, supporting reductive dechlorination, and of humic acids, acting as extracellular electron shuttles facilitating the anaerobic oxidation of recalcitrant intermediates, was explored in microcosm studies. Upon one initial dose of lactose, supplied in a 1000-fold superstoichiometric electron equivalent ratio, PCE was completely converted into cis-DCE within 35 days. Repeated electron donor additions did not entail exhaustive cis-DCE degradation over incubation time (120 days). Although the electron donor was quickly converted into fatty acids, about 30% of added reducing equivalents were recovered as acetate after four months of operation, indicating the inhibition of acetoclastic methanogenesis. In the next step, the substoichiometric addition of anthraquinone-2,6-disulfonate, a humic acid model compound, effected the complete removal of the accumulated cis-DCE within 15 days, probably as a result of the participation of the quinone in the biotic or abiotic anaerobic oxidation of cis-DCE. Cis-DCE degradation was not connected to the accumulation of VC, rendering the proposed two-step treatment an efficient and environmentally compliant remedy for anaerobic groundwater bodies contaminated with chlorinated solvents.  相似文献   

8.
Chlorinated solvents such as perchloroethylene (PCE) and trichloroethylene (TCE) continue to be significant groundwater contaminants throughout the USA. In many cases efficient bioremediation of aquifers contaminated with these chemicals requires the addition of exogenous microorganisms, specifically members of the genus Dehalococcoides (DHC). This process is referred to as bioaugmentation. In this study a fed-batch fermentation process was developed for producing large volumes (to 3,200 L) of DHC-containing consortia suitable for treating contaminated aquifers. Three consortia enriched from three different sites were grown anaerobically with sodium lactate as an electron donor and PCE or TCE as an electron acceptor. DHC titers in excess of 1011 DHC/L could be reproducibly obtained at all scales tested and with all three of the enrichment cultures. The mean specific DHC growth rate for culture SDC-9™ was 0.036 ± 0.005 (standard error, SE)/h with a calculated mean doubling time of 19.3 ± 2.7 (SE) h. Finished cultures could be concentrated approximately tenfold by membrane filtration and stored refrigerated (4°C) for more that 40 days without measurable loss of activity. Dehalogenation of PCE by the fermented cultures was affected by pH with no measurable activity at pH <5.0.  相似文献   

9.
Reductive dechlorination of tetrachloroethene (perchloroethylene; PCE) was observed at 20 degrees C in a fixed-bed column, filled with a mixture (3:1) of anaerobic sediment from the Rhine river and anaerobic granular sludge. In the presence of lactate (1 mM) as an electron donor, 9 microM PCE was dechlorinated to ethene. Ethene was further reduced to ethane. Mass balances demonstrated an almost complete conversion (95 to 98%), with no chlorinated compounds remaining (less than 0.5 micrograms/liter). When the temperature was lowered to 10 degrees C, an adaptation of 2 weeks was necessary to obtain the same performance as at 20 degrees C. Dechlorination by column material to ethene, followed by a slow ethane production, could also be achieved in batch cultures. Ethane was not formed in the presence of bromoethanesulfonic acid, an inhibitor of methanogenesis. The high dechlorination rate (3.7 mumol.l-1.h-1), even at low temperatures and considerable PCE concentrations, together with the absence of chlorinated end products, makes reductive dechlorination an attractive method for removal of PCE in bioremediation processes.  相似文献   

10.
Reductive dechlorination of tetrachloroethene (perchloroethylene; PCE) was observed at 20 degrees C in a fixed-bed column, filled with a mixture (3:1) of anaerobic sediment from the Rhine river and anaerobic granular sludge. In the presence of lactate (1 mM) as an electron donor, 9 microM PCE was dechlorinated to ethene. Ethene was further reduced to ethane. Mass balances demonstrated an almost complete conversion (95 to 98%), with no chlorinated compounds remaining (less than 0.5 micrograms/liter). When the temperature was lowered to 10 degrees C, an adaptation of 2 weeks was necessary to obtain the same performance as at 20 degrees C. Dechlorination by column material to ethene, followed by a slow ethane production, could also be achieved in batch cultures. Ethane was not formed in the presence of bromoethanesulfonic acid, an inhibitor of methanogenesis. The high dechlorination rate (3.7 mumol.l-1.h-1), even at low temperatures and considerable PCE concentrations, together with the absence of chlorinated end products, makes reductive dechlorination an attractive method for removal of PCE in bioremediation processes.  相似文献   

11.
Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio‐electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio‐electrochemically active microorganisms in PCE‐contaminated groundwater. Lab‐scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS‐bioaugmentation (BS‐BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and γ and δ‐Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS‐BA samples and up to 11.5 μA of current being generated. The indigenous non‐Dehalococcoides community was found to contribute significantly to electron transfer with ~61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non‐Dehalococcoides bacterial community in bio‐electrochemically reducing PCE that could prove to be a cost‐effective and sustainable bioremediation practice.  相似文献   

12.
Hydrocarbons such as TCE, PCE, TCA, gasoline and kerosene which are widely used in the industry, enter soils and groundwater from chemical waste disposal sites and from accidents. These types of substances are the most commonly encountered groundwater contaminants nationwide. Biotransformation of dissolved chlorinated hydrocarbons can provide complete mineralization to harmless end products such as CO2. It is the objective of this work to investigate the biodegradation and biotransformation, and transport of hydrocarbons in groundwater. This will be achieved first by defining and identifying relevant physical and biological processes which contribute to the fate of hydrocarbon contaminants in unsaturated/saturated soils, and providing a conceptual framework for incorporating these processes into a mathematical formulation. The conservation principles expressed in terms of quantifications of the physical, chemical and microbial processes described above lead to a system governing the phenomenon which consists of nonlinear partial differential equations. Microbial transformation conducted by both anaerobic and aerobic bacteria are considered.  相似文献   

13.
《Process Biochemistry》2007,42(11):1498-1505
Batch reactors and microcosms were used to evaluate groundwater bioremediation potential of tetrachloroethene (PCE) in the presence of additional pollutants present at a site located in the Apulia Region (SE Italy). Reductive dechlorination of PCE was studied under anaerobic conditions by comparing the effectiveness of three inocula: (a) soil sampled at the contaminated site, (b) anaerobic sludge from a municipal wastewater plant, and (c) an enriched dehalogenating culture containing Dehalococcoides species. In order to enhance dehalogenation, reactors inoculated with sludge were also amended with selected electron donors. Aerobic reactors were also established to study oxidative degradation of vinyl chloride (VC), that may accumulate after incomplete dechlorination of PCE.Results showed that consortia derived from anaerobic sludge and amended with electron donors quantitatively and incompletely degraded PCE to cis-dichloroethylene, whereas in reactors augmented with a dehalogenating culture complete dechlorination of PCE occurred even in the presence of additional toxic contaminants. The presence of Dehalococcoides spp. in the dehalogenating culture and its absence in reactors inoculated with anaerobic sludge was confirmed using FISH community analyses. In all cases, prolonged incubation periods were necessary for dechlorination. On the other hand, oxidative degradation of VC in aerobic reactors occurred after short lag times.  相似文献   

14.
Le NB  Coleman NV 《Biodegradation》2011,22(6):1095-1108
Mycobacterium chubuense strain NBB4 can grow on both alkanes and alkenes as carbon sources, and was hypothesised to be an effective bioremediation agent for chlorinated aliphatic pollutants. In this study, the ability of NBB4 to biodegrade vinyl chloride (VC), cis-dichloroethene (cDCE) and 1,2-dichloroethane (DCA) was investigated under pure-culture conditions and in microcosms. Ethene-grown NBB4 cells were capable of biodegrading VC and cDCE, while ethane-grown cells could biodegrade cDCE and DCA. The stoichiometry of inorganic chloride release (1 mol/mol in each case) indicated that VC was completely dechlorinated, while cDCE and DCA were only partially dechlorinated, yielding chloroacetate in the case of DCA, and unknown metabolites in the case of cDCE. The apparent maximum specific activities (k) of whole cells against ethene, cDCE, ethane and DCA were 93 ± 4.6, 89 ± 18, 39 ± 5.5, and 4.8 ± 0.9 nmol/min/mg protein, respectively, while the substrate affinities (KS) of whole cells with the same substrates were 2.0 ± 0.15, 46 ± 11, 11 ± 0.33 and 4.0 ± 3.2 μM, respectively. In microcosms containing contaminated aquifer sediments and groundwater, NBB4 cells removed 85-95% of the pollutants (cDCE or DCA at 2 mM) within 24 h, and the cells remained viable for >1 month. Due to its favourable kinetic parameters, and robust survival and biodegradation activities, strain NBB4 is a promising candidate for bioremediation of chlorinated aliphatic pollutants.  相似文献   

15.
Dehalococcoides ethenogenes is the only known cultivated organism capable of complete dehalogenation of tetrachloroethene (PCE) to ethene. The prevalence of Dehalococcoides species in the environment and their association with complete dehalogenation of chloroethenes suggest that they play an important role in natural attenuation of chloroethenes and are promising candidates for engineered bioremediation of these contaminants. Both natural attenuation and bioremediation require reliable and sensitive methods to monitor the presence, distribution, and fate of the organisms of interest. Here we report the development of 16S rRNA-targeted oligonucleotide probes for Dehalococcoides species. The two designed probes together encompass 28 sequences of 16S rRNA genes retrieved from the public database. Except D. ethenogenes and CBDB1, all the others are environmental clones obtained from sites contaminated with chlorinated ethenes. They are all closely related and form a unique cluster of Dehalococcoides species. In situ hybridization of probe Dhe1259t with D. ethenogenes strain 195 and two enrichment cultures demonstrated the applicability of the probe to monitoring the abundance of active Dehalococcoides species in these enrichment samples.  相似文献   

16.
The brominated and mixed bromo‐chloro‐haloacetates, such as dibromoacetate (DBA), bromochloroacetate (BCA), and bromodichloroacetate (BDCA), are by‐products of water chlorination and are found at lower levels than the fully chlorinated acetates in the drinking water. The toxicities of the compounds were assessed in J774A.1 cells and were found to induce concentration‐dependent increases in cell death and superoxide anion and protein carbonyl compounds production. Compared to the previously tested concentrations of dichoroacetate (DCA) and trichloroacetate (TCA) in the same cell line, the tested haloacetates induced similar effects on cellular viability and superoxide anion production but at DBA and BCA concentrations that were approximately 40–160 times lower than those of DCA and TCA, and at BDCA concentrations that were 4–16 times lower than those of DCA and TCA. Also, production of super oxide anion, protein carbonyl compounds, and induction of phagocytic activation are suggested to play a role in their toxicity.  相似文献   

17.
Phytoscreening has been demonstrated at a variety of sites over the past 15 years as a low-impact, sustainable tool in delineation of shallow groundwater contaminated with chlorinated solvents. Collection of tree cores is rapid and straightforward, but low concentrations in tree tissues requires sensitive analytics. Solid-phase microextraction (SPME) is amenable to the complex matrix while allowing for solvent-less extraction. Accurate quantification requires the absence of competitive sorption, examined here both in laboratory experiments and through comprehensive examination of field data. Analysis of approximately 2,000 trees at numerous field sites also allowed testing of the tree genus and diameter effects on measured tree contaminant concentrations. Collectively, while these variables were found to significantly affect site-adjusted perchloroethylene (PCE) concentrations, the explanatory power of these effects was small (adjusted R2 = 0.031). 90th quantile chemical concentrations in trees were significantly reduced by increasing Henry's constant and increasing hydrophobicity. Analysis of replicate tree core data showed no correlation between replicate relative standard deviation (RSD) and wood type or tree diameter, with an overall median RSD of 30%. Collectively, these findings indicate SPME is an appropriate technique for sampling and analyzing chlorinated solvents in wood and that phytoscreening is robust against changes in tree type and diameter.  相似文献   

18.
Intrinsic bioremediation in a solvent-contaminated alluvial groundwater   总被引:1,自引:0,他引:1  
An industrial site contaminated with a mixture of volatile organic compounds in its subsurface differed from previously reported locations in that the contamination consisted of a mixture of chlorinated, brominated, and non-halogenated aromatic and aliphatic solvents in an alluvial aquifer. The source area was adjacent to a river. Of the contaminants present in the aquifer, benzene, toluene, and chlorobenzene (BTC) were of primary concern. Studies of the physical, chemical, and microbiological characteristics of site groundwater were conducted. The studies concentrated on BTC, but also addressed the fate of the other aquifer VOCs. Gas chromatographic analyses performed on laboratory microcosms demonstrated that subsurface microorganisms were capable of BTC degradation. Mineralization of BTC was demonstrated by the release of 14CO2 from radiolabelled BTC. In the field, distribution patterns of nutrients and electron acceptors were consistent with expression of in situ microbial metabolic activity: methane, conductivity, salinity and o-phosphate concentrations were all positively correlated with contaminant concentration; while oxidation-reduction potential, nitrate, dissolved oxygen and sulfate concentrations were negatively correlated. Total aerobes, aerotolerant anaerobes, BTC-specific degraders, and acridine orange direct microscopic microorganism counts were strongly and positively correlated with field contaminant concentrations. The relative concentrations of benzene and toluene were lower away from the core of the plume compared to the less readily metabolized compound, chlorobenzene. Hydrodynamic modeling of electron-acceptor depletion conservatively estimated that 450 kg of contaminant have been removed from the subsurface yearly. Models lacking a biodegradation term predicted that 360 kg of contaminant would reach the river annually, which would result in measurable contaminant concentrations. River surveillance, however, has only rarely detected these compounds in the sediment and then only at trace concentrations. Thus, the combination of field modeling, laboratory studies, and site surveillance data confirm that significant in situ biodegradation of the contaminants has occurred. These studies establish the presence of intrinsic bioremediation of groundwater contaminants in this unusual industrial site subsurface habitat. Received 01 December 1995/ Accepted in revised form 27 July 1996  相似文献   

19.
Cell-free extracts of Clostridium bifermentans DPH-1 catalyzed tetrachloroethylene (PCE) dechlorination. PCE degradation was stimulated by addition of a variety of electron donors. Ethanol (0.61 mM) was the most effective electron donor for PCE dechlorination. Maximum activity was recorded at 30 degrees C and pH 7.5. Addition of NADH as a cofactor stimulated enzymatic activity but the activity was not stimulated by addition of metal ions. When the cell-free enzyme extract was incubated in the presence of titanium citrate as a reducing agent, the dehalogenase was rapidly inactivated by propyl iodide (0.5 mM). The activity of propyliodide-reacted enzyme was restored by illumination with a 250 W lamp. The dehalogenase activity was also inhibited by cyanide. The substrate spectrum of activity included trichloroethylene (TCE), cis-1,2-dichloroethylene (cDCE), trans-dichloroethylene, 1,1-dichloroethylene, 1,2-dichloroethane, and 1,1,2-trichloroethane. The highest rate of degradation of the chlorinated aliphatic compounds was achieved with PCE, and PCE was principally degraded via TCE to cDCE. Results indicate that the dehalogenase could play a vital role in the breakdown of PCE as well as a variety of other chlorinated aliphatic compounds.  相似文献   

20.
Bioremediation of groundwater contaminated with chlorinated solvents, such as perchloroethylene (PCE) or carbon tetrachloride, can be accomplished by adding nutrients to stimulate a microbial community capable of reductive dechlorination. However, biotransformation of these solvents, especially PCE, typically occurs very slowly or not at all. Experiments were conducted to evaluate whether the addition of transition metal tetrapyrrole catalysts would increase the reductive transformation of PCE to trichloroethylene (TCE) by sulfate-reducing enrichment cultures. Batch assays were used to test vitamin B12 and two synthetic sulfonatophenyl porphine catalysts for the stimulation of reductive dechlorination of PCE by sulfate-reducing bacteria (SRB) enriched from aquifer sediments from two locations at Dover Air Force Base. Cells from the enrichments were concentrated and added to batch assay vials. Vials containing SRB cells amended with vitamin B12 exhibited enhanced transformation of PCE to TCE compared with reactors amended with either synthetic catalysts or reactors containing cells alone. Methane production was observed in reactors that exhibited maximum levels of dechlorination. Storage of aquifer sediments between enrichments led to decreased levels of PCE dechlorination in subsequent assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号