首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The potential for pheromone-based mating disruption (MD) of Ephestia kuehniella (Walker) and Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) was investigated in two flour mills and a pet food distributor. Plastic sachets emitting 2-3 mg per d (Z,E)-9,12-tetradecadienyl acetate, the major pheromone component of both moth species, were used as MD dispensers, which were applied in grid systems resulting in one dispenser per 100 m(3) of air volume. Pheromone traps with sticky inserts were used to monitor moth population fluctuations. To monitor pheromone levels in the air before, during, and after the treatment, electroantennographic (EAG) measurements were performed using a portable device. All localities showed decreased trap catches after application of MD. In two localities with low initial population densities, trap catches were reduced immediately after application of MD and remained very low, even several months after the MD treatment was terminated. In contrast, in a locality with a higher initial population density the reduction in trap catches was slower, and trap catches increased again soon after the termination of the MD treatment. Electrophysiological data showed not only increased aerial levels of pheromone during the treatment period but also levels that were higher than during pretreatment, even 12 mo after removal of MD dispensers. The localities had good ventilation, and the memory effect observed indicates that the pheromone adhered to surfaces that subsequently functioned as secondary dispensers. Customer complaints registered by one of the mills were 49% less in 2004, after 2 yr of MD compared with 2002, the year before the treatments began.  相似文献   

2.
Optimization of pheromone dosage for gypsy moth mating disruption   总被引:3,自引:0,他引:3  
The effect of aerial applications of the pheromone disparlure at varying dosages on mating disruption in low‐density gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), populations was determined in field plots in Virginia, USA during 2000 and 2002. Six dosages [0.15, 0.75, 3, 15, 37.5, and 75 g active ingredient (AI)/ha] of disparlure were tested during the 2‐year study. A strongly positive dose–response relationship was observed between pheromone dosages and mating disruption, as measured by the reduction in male moth capture in pheromone‐baited traps and mating successes of females. Dosages of pheromone 15 g AI/ha (15, 37.5, and 75 g AI/ha) reduced the mating success of females by >99% and significantly reduced male moth catches in pheromone‐baited traps compared to untreated plots. Pheromone dosages <15 g AI/ha also reduced trap catch, but to a lesser extent than dosages 15 g AI/ha. Furthermore, the effectiveness of the lower dosage treatments (0.15, 0.75, and 3 g AI/ha) declined over time, so that by the end of the study, male moth catches in traps were significantly lower in plots treated with pheromone dosages 15 g AI/ha. The dosage of 75 g AI/ha was initially replaced by a dosage of 37.5 g AI/ha in the USDA Forest Service Slow‐the‐Spread (STS) of the Gypsy Moth management program, but the program is currently making the transition to a dosage of 15 g AI/ha. These changes in applied dosages have resulted in a reduction in the cost of gypsy moth mating disruption treatments.  相似文献   

3.
The leopard moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae), is a damaging pest for many fruit trees (e.g., apple [Malus spp.], pear [Pyrus spp.] peach [Prunus spp.], and olive [Olea]). Recently, it caused serious yield losses in newly established olive orchards in Egypt, including the death of young trees. Chemical and biological control have shown limited efficiency against this pest. Field tests were conducted in 2005 and 2006 to evaluate mating disruption (MD) for the control of the leopard moth, on heavily infested, densely planted olive plots (336 trees per ha). The binary blend of the pheromone components (E,Z)-2,13-octadecenyl acetate and (E,Z)-3,13-octadecenyl acetate (95:5) was dispensed from polyethylene vials. Efficacy was measured considering reduction of catches in pheromone traps, reduction of active galleries of leopard moth per tree and fruit yield in the pheromone-treated plots (MD) compared with control plots (CO). Male captures in MD plots were reduced by 89.3% in 2005 and 82.9% in 2006, during a trapping period of 14 and 13 wk, respectively. Application of MD over two consecutive years progressively reduced the number of active galleries per tree in the third year where no sex pheromone was applied. In all years, larval galleries outnumbered moth captures. Fruit yield from trees where sex pheromone had been applied in 2005 and 2006 increased significantly in 2006 (98.8 +/- 2.9 kg per tree) and 2007 (23 +/- 1.3 kg per tree) compared with control ones (61.0 +/- 3.9 and 10.0 +/- 0.6 kg per tree, respectively). Mating disruption shows promising for suppressing leopard moth infestation in olives.  相似文献   

4.
Abstract:  The study was conducted during 2001 and 2002 in forested areas in Virginia, US to examine the effects of gaps in coverage of pheromone on gypsy moth, Lymantria dispar (L.) (Lep., Lymantriidae), mating disruption. Gypsy moth male moth catches in pheromone-baited traps were significantly reduced in plots treated with the gypsy moth sex pheromone, disparlure, at an overall application rate of 37.5 g of active ingredient (AI)/ha but with untreated gaps of 30 or 90 m between 30-m wide treated swaths. In one of the two plots with 90 m gaps, significantly more males were captured in traps in the untreated areas compared with the treated areas within the plot. However, in another plot, significant differences in trap catches between treated and untreated areas were not observed. No difference in male moth catches in the pheromone-baited traps was observed between treated and untreated areas within the plots treated with 30 m gaps. Female mating success did not differ significantly between treated and untreated areas within the one plot in which it was measured. These results suggest that it may be possible to lower costs associated with gypsy moth mating disruption applications by alternating treated and untreated swaths, which would reduce flight time and fuel costs, without a reduction in efficacy.  相似文献   

5.
We appraised mating disruption (MD) to control pea moth, Cydia nigricana (Fabricius) (Lepidoptera: Tortricidae), by assessing male attraction to monitor traps, larval pod infestation, and larval age structure in pheromone‐treated and untreated grain pea fields [Pisum sativum L. (Fabaceae)], over a 5‐year period. Cellulose pheromone dispensers were manually attached to the top shoots of pea plants and released 540 mg ha?1 day?1 synthetic pheromone E8,E10‐dodecadien‐1‐yl acetate in a first test series (2000–2001) and ca. 4 200 mg pheromone ha?1 day?1 in a second series (2004–2006). The dispensers had a half‐life of about 30 days. Although male attraction to pheromone monitoring traps was largely suppressed at the edges and within MD fields in both test series, MD treatments did not reduce pod infestation in the open field in 2000 and 2001. In the 2004–2006 series, larval damage reduction was achieved in the majority of the trials but overall MD efficacy in the open field was only 61% and not significant. In contrast, in field cages placed within the experimental sites and supplied with unmated pea moths, MD control was consistently high and significant. There were no obvious differences in the larval age distribution in all MD and control treatments, suggesting that infestations started and developed further similarly. As a univoltine species, C. nigricana larvae stay in the soil of pea fields for hibernation and pupate. The following year, emerging adults disperse and fly to the closest pea crop. Combined emergence site and pea crop treatments were conducted over 2 years to include this early migration phase of C. nigricana adults. However, the emergence site treatments did not enhance MD‐control efficacy. We conclude that mating activity was only prevented in cage tests, whereas substantial mating occurred during the transit phase outside the pheromone‐treated fields either within non‐crop vegetation and/or at the edges of pheromone‐treated pea fields orientated upwind. Thus, resulting gravid female entry can be regarded as the major constraint to reliable MD control.  相似文献   

6.
The Mediterranean flour moth, Ephestia kuehniella, is infected with A-group Wolbachia (wKue), and the almond moth, Cadra cautella, is doubly infected with A- and B-group Wolbachia, which are designated as wCauA and wCauB, respectively. In both insects, the Wolbachia populations increased greatly during embryonic and larval stages. The Wolbachia population doubled every 3.6 days on average in E. kuehniella larvae, whereas those of wCauA and wCauB doubled every 2.1 days in C. cautella larvae. The populations of wCauA and wCauB that had been transferred into the E. kuehniella background increased at similar rates to that of wKue in the natural host E. kuehniella, suggesting that the host genetic background influences Wolbachia proliferation. To examine whether the populations of the two Wolbachia variants in double infection is regulated collectively or independently, we measured the infection load in the ovaries of three transfected E. kuehniella lines in different infection states: single infection with wCauA, single infection with wCauB, and double infection. The density of each Wolbachia variant did not differ significantly between the singly and doubly transfected hosts, suggesting independent regulation.  相似文献   

7.
In forest plots treated aerially with a plastic laminated flake formulation (Disrupt® II) of the gypsy moth sex pheromone disparlure to disrupt gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), mating was monitored the year of treatment and 1–2 years after treatment to determine the effects of the treatment on suppression of trap catch and mating success. In the year of treatment, there was a greater than 95% reduction in trap catch and a greater than 98% reduction in mating success compared to controls. One year after treatment at a dosage of 37.5 g active ingredient (a.i.) ha?1, trap catch was reduced by 46–56% and mating success was reduced by 60–79%. Both trap catch and mating success were significantly reduced compared to controls in plots treated 1 year previously at 15 g a.i. ha?1. Trap catch, but not mating success, was significantly reduced 2 years after treatment at 37.5 g a.i. ha?1. The efficacy of mating disruption (MD) treatments in the Slow‐the‐Spread of the Gypsy Moth program was significantly reduced 2 years compared to 1 year after treatment. No such reduction was observed in plots treated with aerial applications of Bacillus thuringiensis kurstaki. The higher apparent efficacy of MD treatments 1 year after application may result to some extent from the suppression of moth capture in pheromone traps from the persistent effects of the previous year's treatment.  相似文献   

8.
Field trials were carried out to evaluate the use of the pheromone (9Z,12E)‐tetradecadienyl acetate (TDA/ZETA) for mating disruption (MD) of Pyralidae moths associated with stored products, in most cases the Raisin moth, Ephestia cautella (Walker), Mediterranean flour moth, Ephestia kuehniella Zeller and Indianmeal moth, Plodia interpunctella (Hübner). The experiments were conducted in the Czech Republic, Greece and Italy during 2007 and 2008 in storage facilities that varied in their size and type, and included flour mills, retail stores, storage rooms with currants and raw grain stores. After a summer pre‐treatment monitoring period to assess moth population in, dispensers containing TDA were placed in the fall. Adjacent facilities without dispensers were used as control units. Pheromone‐baited traps were used to monitor the population fluctuation of the pyralid moths during the entire experimental periods. The presence of MD dispensers notably reduced the number of adults found in the traps in comparison with control rooms. Monitoring of female oviposition, measured as number of hatched larvae in cups containing food, indicated that there was a reduction in the number of larvae in the areas with MD dispensers. The results of the present work indicate that the use of mating disruption is feasible against pyralid moths in storage facilities, and should be further evaluated as a component of an integrated pest management based control strategy.  相似文献   

9.
Gypsy moth mating disruption in open landscapes   总被引:1,自引:0,他引:1  
1 Aerial applications of Disrupt II, a plastic laminated flake formulation containing a racemic form of the gypsy moth sex pheromone, disparlure, achieved > 99% reduction of mating among females on individual, isolated trees surrounded by an area cleared of trees.
2 These results support the use of mating disruption to eradicate isolated gypsy moth populations in open landscapes, such as parks, residential areas and commercial settings.
3 Mating success in both treated and untreated areas varied with the initial distance between males and females. When the initial distance between males and females was < 5 cm in an area receiving a dosage of 37.5 g of racemic disparlure per ha, mating success was reduced by 27% compared with a similar deployment in an untreated area. Mating was eliminated in areas treated at the same dosage when males and females were initially deployed 1 m apart but on separate trees.
4 This suggests that mating disruption may not be an effective tactic for gypsy moth eradication in cases where the infestation is concentrated on a small number of trees and males and females are in close proximity in space and time.  相似文献   

10.
Abstract Field trials were conducted in China in 2008 and 2009 to evaluate the efficacy of mating disruption (MD) on diamondback moth, Plutella xylostella, in cabbage, Brassica oleracea var. capitata. Effectiveness was positively correlated with the MD dispenser density in the field. A density of 167 MD dispensers per ha produced an average population decrease of about 50% compared to the conventional‐practice field. Significant fewer males were captured in pheromone‐treated and conventional‐practice fields than in the blank control field, but the difference was not significant between the pheromone‐treated and conventional‐practice fields. In addition, fewer eggs and larvae were observed in pheromone‐treated fields. Our results suggest mating disruption coupled with minimal insecticidal supplements is a promising solution for resistance management and control of diamondback moth infestation.  相似文献   

11.
Studies were conducted at two flour mills where male Indian meal moths, Plodia interpunctella (Hübner), were captured using pheromone-baited traps. Objectives were to determine the distribution of male P. interpunctella at different locations in and around the mills throughout the season, and to monitor moth activity before and after one of the mills was fumigated with methyl bromide to assess efficacy of treatment. Commercially available sticky traps baited with the P. interpunctella sex pheromone were placed at various locations outside and within the larger of the two mills (mill 1). Moths were captured inside mill 1 after methyl bromide fumigations. The highest numbers of P. interpunctella were caught outside the facility and at ground floor locations near outside openings. Additional traps placed in the rooms above the concrete stored-wheat silos at mill 1 during the second year captured more moths than did traps within the mill's production and warehouse areas. In another study, moths were trapped at various distances from a smaller flour mill (mill 2) to determine the distribution of moths outdoors relative to the mill. There was a negative correlation between moth capture and distance from the facility, which suggested that moth activity was concentrated at or near the flour mill. The effectiveness of the methyl bromide fumigations in suppressing moth populations could not be assessed with certainty because moths captured after fumigation may have immigrated from outside through opened loading bay warehouse doors. This study documents high levels of P. interpunctella outdoors relative to those recorded inside a food processing facility. Potential for immigration of P. interpunctella into flour mills and other stored product facilities from other sources may be greater than previously recognized. Moth entry into a food processing facility after fumigation is a problem that should be addressed by pest managers.  相似文献   

12.
Abstract:  The spruce seed moth, Cydia strobilella (L.), is a serious and widely distributed pest of spruce seed orchards in North America and Europe. Current pest management activities in seed orchards rely mainly on chemical pesticides for insect control. Mating disruption with sex pheromone is a potential alternative pest management tool for C. strobilella . In 2002, field tests confirmed that sticky traps baited with 3  μ g of (E) -8-dodencenyl acetate ( E 8-12:Ac), the sex pheromone of C. strobilella , could capture males in Quebec, a region of Canada not previously monitored for this insect. In the following years (2003–2005), grey rubber septa loaded with 0.75, 1.5, or 2.0 mg of E 8-12:Ac were deployed separately in two white spruce seed orchards at a density of 40 and 60 dispensers/ha to test the potential for mating disruption. The results showed that the captures of male C. strobilella in the pheromone-treated plots were reduced by up to 98%. Furthermore, at the end of the experiment in 2005, 17.3% of cones were damaged by C. strobilella in the treated plot, compared with a significantly (P < 0.0001) higher 56.4% in the control plot. The results suggest that mating disruption has potential for controlling C. strobilella to protect seed cones in white spruce seed orchards.  相似文献   

13.
Abstract:  A portable electroantennogram (EAG) sensor was used to measure relative atmospheric pheromone concentration in forest plots treated with aerial and ground applications of gypsy moth, Lymantria dispar (L.) (Lep., Lymantriidae), mating-disruption formulations. Five treatments (Disrupt II flakes with sticker, Disrupt II flakes without sticker, Disrupt II flakes in a sticker slurry, microcapsules and hand-applied Luretape), all applied at 75 g active ingredient per hectare and an untreated control were evaluated. Gypsy moth male catch in pheromone-baited traps and fertilization of deployed females were suppressed in all treatments, and no females deployed in treated plots produced more than 5% fertile eggs. Relative pheromone concentrations were significantly higher in the two treatments in which flakes were aerially applied with sticker and in the microcapsule treatment. Pheromone concentration measurements in the flakes without sticker and hand-applied treatments were not significantly different from those in the control. Mating success was negatively correlated with relative pheromone concentration. The ability of the EAG to detect differences in pheromone concentration that are correlated with mating success suggests that this could be a useful method for predicting the effectiveness of mating-disruption treatments.  相似文献   

14.
Monitoring adult codling moth, Cydia pomonella (L.), is a crucial component in implementing effective integrated management programmes in apple, Malus domestica Borkhausen. Use of sex pheromone lures to track male populations has been the traditional approach, but their use in orchards treated with sex pheromone for mating disruption (MD) has been problematic. Development of kairomone and kairomone–pheromone combination lures has allowed the catch of female moths and has benefited several aspects of codling moth management through improved spray timings and action thresholds. Recently, a new four‐component volatile blend (4‐K) comprised of pear ester, (E,Z)‐2,4‐ethyl decadienoate (PE), (E)‐11 4,8‐dimethyl‐1,3,7‐nonatriene, all isomers of pyranoid linalool oxide and acetic acid (AA) has been characterized that has increased female moth catch threefold versus any previous blend. Field trapping studies were conducted to compare moth catches in traps baited with 4‐K versus the use of sex pheromone, (E,E)‐8,10‐dodecadien‐1‐ol (PH) in combination with PE and AA. Trials were conducted in orchards left either untreated, or treated with PH or PH + PE. Traps baited with 4‐K and 4‐K + PH lures caught significantly more females than traps baited with PH + PE + AA lures. Traps baited with 4‐K + PH lures caught significantly more total moths than traps baited with PH + PE + AA lures in all three orchards. Adding a PH lure to traps with the 4‐K lure did not affect female catch, but significantly increased male and total moth catches. These studies demonstrate that codling moth can be trapped effectively in apple under MD without the use of sex pheromone lures. The significant increase in female codling moth catch with the 4‐K lure suggests that efforts to improve spray timings and action threshold determinations as well as mass trapping might be enhanced with this new lure.  相似文献   

15.
Females of the Indian meal moth, Plodia interpunctella, and females of the Mediterranean flour month, Ephestia kuehniella (both Lepidoptera: Pyralidae), exhibit daily rhythms in calling behavior. The peak in P. interpunctella calling occurs at dusk, whereas E. kuehniella calls preferentially at dawn. This behavior turned arrhythmic in P. interpunctella females in constant darkness (DD) and remained arrhythmic in constant light (LL), whereas E. kuehniella females showed a persistent rhythm in DD and suppression of the behavior in LL, indicating regulation by a circadian clock mechanism. The rhythm of male locomotor activity corresponded well with the sexual activity of females, reaching the peak at dusk in P. interpunctella and at dawn in E. kuehniella. An immunohistochemical study of the pheromone biosynthesis activating neuropeptide, corazonin, and pigment dispersing factor revealed distinct sets of neurons in the brain-subesophageal complex and in the neurohemal organs of the 2 species.  相似文献   

16.
Mating disruption of codling moth, Cydia pomonella, was studied in apple orchards treated with the main pheromone compound codlemone, (E,E)-8,10-dodecadienol, and a blend of codlemone and codlemone acetate, (E,E)-8,10-dodecadienyl acetate, a strong pheromone antagonist. Codlemone alone and the pheromone/antagonist-blend had a similar effect on the behavior of males emerging into air-permeated orchards. Male flights within tree canopy and upwind orientation along tree rows were strongly enhanced by both formulations, compared to untreated plots. However, the codlemone/codlemone acetate-blend increased the rate of cross-wind and downwind flights within the orchard, compared to codlemone alone. The major difference between these two formulations was that males from nearby, untreated orchards were attracted towards orchards treated with codlemone, but not towards treatments with codlemone/codlemone acetate. Additional tests were done with an equilibrium blend of codlemone and its geometric isomers. Aerial pheromone concentrations in the orchards were recorded by the field electroantennogram technique. Decreasing pheromone concentrations towards the upper part of the tree canopy, together with the stimulation of male flight activity by synthetic pheromone explains failures to control codling moth at high population densities with current dispenser formulations.  相似文献   

17.
Abstract:  Oriental fruit moth Grapholita molesta (Busck) (Lep., Tortricidae) has recently become a key pest of apples throughout the eastern USA. Pheromone-mediated mating disruption of Oriental fruit moth was successfully used in North Carolina apple orchards in the past few years. However, low levels of late-season fruit damage occurred in some orchards treated in late May with hand-applied pheromone dispensers because of inadequate dispenser longevity. To investigate alternative pheromone application schedules for extended mating disruption control, the following pheromone treatments were compared with conventional insecticides in Henderson County (NC) in 2002: late May application of hand-applied dispensers; late June application of hand-applied dispensers; late May application of hand-applied dispensers supplemented with a late August application of sprayable pheromone dispensers; late May application of hand-applied dispensers which have a longer activity period; and conventional insecticides as a control. All treatments were sprayed with an insecticide at petal fall in late April for thinning and for control of the first generation Oriental fruit moth adults. Pheromone trap catches were significantly reduced in all mating disruption blocks compared with conventional insecticide blocks. Among pheromone treatments, the highest trap captures were recorded in the delayed hand-applied dispenser treatment in June before treatment. However, the mean percentage fruit damage did not vary with timing of application of hand-applied dispensers and the type of pheromone dispenser used. Clearly, the combination of each mating disruption treatment with insecticide application against first generation Oriental fruit moth was as effective as the conventional insecticide treatment under moderate population pressure.  相似文献   

18.
An attracticide formulation, LastCall?OFM, was tested against the Oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae) in replicated small plot field trials in apple, Malus domestica (Borkhausen), orchards in South‐eastern Pennsylvania, USA. Attracticide treatments were applied using a calibrated hand pump, and treated plots were compared to similar untreated plots. Male moth activity was monitored using virgin female‐baited traps, and the potential for reduction in mating activity was assessed using sentinel virgin females. A comparison of application rates showed that 1500 droplets per ha of the attracticide formulation was as effective as 3000 droplets per ha, and both application rates reduced captures in synthetic pheromone‐baited traps for prolonged periods. Droplets placed either at high or low positions within the canopy significantly reduced trap capture and mating with sentinel females. In addition, the only sentinel females that mated in the treated plots were located in the untreated portion of the tree canopy. Mate finding behaviour was equally disrupted by formulations with and without insecticide. Therefore, under the test conditions, the mechanism by which the attracticide formulation worked was by disruption of male orientation, and not by the removal of males due to insecticide poisoning. Two field cage experiments tested the impact of population density on the competitiveness of the attracticide formulation compared to virgin females. A significant proportion of males were captured in female‐baited traps at the highest female‐to‐droplet ratio tested. Equal proportions of males were captured in attracticide‐baited traps at male moth densities of 10, 20, 40, and 80 males per cage. These results clarify some of the factors influencing the effectiveness and possible mechanisms of an attracticide management tactic against the Oriental fruit moth.  相似文献   

19.
Communicational disruption mechanisms for Oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), were determined using a suite of mathematical tools and graphical operations that enable differentiation between competitive attraction and non‐competitive mechanisms of disruption. Research was conducted in 20 field cages, each covering 12 mature apple trees. Commercial monitoring lures releasing Oriental fruit moth pheromone at a rate of 0.04 μg h?1 and distributed at densities of 0, 1, 2, 4, 8, and 17 per cage were used to evaluate the effect of low‐releasing dispensers on the disruption of sexual communication. Graphical analyses revealed that near‐female‐equivalent pheromone dispensers disrupted Oriental fruit moth competitively. Commercial mating disruption dispensers releasing Oriental fruit moth pheromone at 60 μg h?1 and deployed at 0, 4, 6, 10, 15, 20, and 30 per cage were used to evaluate the effect of high‐releasing dispensers on the disruption of sexual communication. Oriental fruit moth disruption shifted to a non‐competitive mechanism for high‐releasing dispensers. This is the first time such a shift in disruption mechanism has been demonstrated against a background of otherwise identical experimental conditions. Near‐female‐equivalent pheromone dispensers were also used to quantify the additive effect of an attract‐and‐remove control strategy compared with competitive mating disruption. We report a five‐fold reduction in Oriental fruit moth captures under attract‐and‐remove compared to mating disruption using near‐female‐equivalent dispensers. Surprisingly, release of female Oriental fruit moths into these large‐cage disruption studies had no measurable impact on male trapping.  相似文献   

20.
We evaluated the effectiveness of 2‐phenylethanol (PET) in combination with acetic acid (AA) as a binary lure for monitoring male and female obliquebanded leafroller, Choristoneura rosaceana (Harris). Studies were conducted in apple, Malus domestica Borkhausen, orchards treated with or without sex pheromone dispensers for mating disruption (MD). Open polypropylene vials, closed membrane cups, and rubber septa loaded with AA and/or PET in varying amounts were first evaluated in a series of trapping experiments. Membrane cups loaded with 800 mg of PET were as effective as 10‐mg septa, but longer lasting, and were comparable to the open vials. A membrane cup AA lure was effective in tests, but further work is needed to increase its release rate and extend its activity. Catches of codling moth, Cydia pomonella (L.), and C. rosaceana were unaffected by combining PET with (E,E)‐8,10‐dodecadien‐1‐ol, the sex pheromone of codling moth, pear ester, (E,Z)‐2,4‐ethyl‐decadienoate and AA lures. Adding (E)‐4,8‐dimethyl‐1,3,7‐nonatriene to this blend to enhance codling moth catch significantly reduced catches of C. rosaceana. PET + AA was a more attractive binary lure than AA plus phenylacetonitrile (PAN) for C. rosaceana. The addition of PET or PAN to traps already baited with the sex pheromone of C. rosaceana significantly reduced male catches. Traps baited with PET + AA placed in blocks not treated with MD caught significantly fewer C. rosaceana than traps baited with sex pheromone. In comparison, sex pheromone‐baited traps in MD blocks caught ≤1 male moth per season which was significantly lower than total moth (>10) or female moth (≥3) catch in these blocks with PET + AA. A high proportion (>70%) of trapped females were mated in both untreated and MD‐treated orchards. Further refinement of this binary, bisexual lure using membrane cup technology may allow the establishment of action thresholds and improve management timings for C. rosaceana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号