首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous venous (pre-branchial) and arterial (post-branchial) extracorporeal blood circulations were utilized to monitor continuously the rapid and progressive effects of acute environmental hypercapnia (water partial pressure of CO2 4.8±0.2 torr) or hypoxia (water partial pressure of O2 25±2 torr) on oxygen and carbon dioxide tensions and pH in the blood of rainbow trout (Oncorhynchus mykiss). During hypercapnia, the CO2 tension in the arterial blood increased from 1.7±0.1 to 6.2±0.2 torr within 20 min and this was associated with a decrease of arterial extracellular pH from 7.95±0.03 to 7.38±0.03; the acid-base status of the mixed venous blood changed in a similar fashion. The decrease in blood pH in vivo was greater than in blood equilibrated in vitro with a similar CO2 tension indicating a significant metabolic component to the acidosis in vivo. Under normocapnic conditions, venous blood CO2 tension was slightly higher than arterial blood CO2 tension difference was abolished or reversed during the initial 25 min of hypercapnia indicating that CO2 was absorbed from the water during this period. Arterial O2 tension remained constant during hypercapnia; however, venous blood O2 tension decreased significantly (from 22.0±2.6 to 9.0±1.0 torr) during the initial 10 min. Hypercapnia elicited the release of catecholamines (adrenaline and noradrenaline) into the blood. The adrenaline concentration increased from 6±3 to 418±141 nmol · l-1 within 25 min; noradrenaline concentration increased from 3±0.5 to 50±21 nmol · l-1 within 15 min. During hypoxia arterial blood O2 tension declined progressively from 108.4±9.9 to 12.8±1.7 torr within 30 min. Venous blood O2 tension initially was stable but then decreased abruptly as catecholamines were released into the circulation. The release of catecholamines occurred concomitantly with a sudden metabolic acidosis in both blood compartments and a rise in CO2 tension in the mixed venous blood only.Abbreviations CCO2 plasmatotal carbondioxide - CtO2 blood oxygen content - PO2 partial pressure of oxygen - PCO2 partial pressure of carbon dioxide - PaO2 arterial bloodPO2 - PaCO2 arterial bloodPCO2 - PvCO2 venous bloodPCO2 - PwO2 waterPO2 - PwCO2 waterPCO2 - Hb haemoglobin - SHbO2 haemoglobin oxygen saturation - HPLC high-performance liquid chromatography - rbc red blood cell(s) - Hct haematocrit  相似文献   

2.
3.
Oxygen consumption, air cell gases, hematology, blood gases and pH of Puna teal (Anas versicolor puna) embryos were measured at the altitude at which the eggs were laid (4150 m) in the Peruvian Andes. In contrast to the metabolic depression described by other studies on avian embryos incubated above 3700 m, O2 consumption of Puna teal embryos was higher than even that of some lowland avian embryos at equivalent body masses. Air cell O2 tensions dropped from about 80 toor in eggs with small embryos to about 45 toor in eggs containing a 14-g embryo; simultaneously air cell CO2 tension rose from virtually negligible amounts to around 26 torr. Arterial and venous O2 tensions (32–38 and 10–12 toor, respectively, in 12- to 14-g embryos) were lower than described previously in similarly-sized lowland wild avian embryos or chicken embryos incubated in shells with restricted gas exchange. The difference between air cell and arterial O2 tensions dropped significantly during incubation to a minimum of 11 torr, the lowest value recorded in any avian egg. Blood pH (mean 7.49) did not vary significantly during incubation. Hemoglobin concentration and hematocrits rose steadily throughout incubation to 11.5 g · 100 ml-1 and 39.9%, respectively, in 14-g embryos.Abbreviations PO2 partial pressure gradient of O2 - BM body mass - D diffusion coefficient - G gas conductance (cm3·s-1·torr-1) - conductance to water vapor - IP internal pipping of embryos - P ACO2 partial pressure of carbon dioxide in air cell - P AO2 partial pressure of oxygen in air cell - P aCO2 partial pressure of carbon dioxide in arterial blood - P aCO2 partial pressure of oxygen in arteries - P H barometric pressure (torr) - PCO2 partial pressure of carbon dioxide - P IO2 partial pressure in ambiant air - PO2 partial pressure of oxygen - P VCO2 venous carbon dioxide partial pressure - P VO2 mixed venous oxygen partial pressure - SE standard error - VO 2 oxygen consumption  相似文献   

4.
In order to establish whether the blood gas respiratory disturbances noted with exposure to chloramine-T are due to differences in the rates of uptake of O2 and excretion of CO2 or gill blood flow, adult rainbow trout (Oncorhynchus mykiss) were fitted with dorsal aorta and bulbus arteriosus catheters to facilitate blood pressure recordings, an ultrasonic blood flow probe and opercular impedance electrodes. Fish received either a 45-min static exposure to 9 mg l−1 chloramine-T or tap water (control) and continuous recordings of blood pressure, and ventilation frequency and amplitude were made. Pre- and post-exposure arterial and venous blood samples were taken and analyzed for O2 and CO2 content, hemoglobin concentration and hematocrit. Chloramine-T exposure had no effect on any of the continuously recorded parameters. However, individual measurements (made immediately prior to and following exposure) of cardiac output and O2 uptake rates increased significantly following exposure to chloramine-T compared to before exposure. CO2 excretion rates were unaffected by chloramine-T exposure. Calculation of the perfusion convection requirement showed a significant increase for CO2 but not for O2. It was concluded that increases in O2 uptake resulted from increased cardiac output but that CO2 excretion, a diffusion-limited process, was not increased due to additional diffusive limitations caused by the irritant effect of chloramine-T.  相似文献   

5.
In order to investigate the mechanism behind ventilation-induced pulmonary prostacyclin production at birth, chloralose anesthetized, exteriorized, fetal lambs were ventilated with a gas mixture that did not change blood gases (fetal gas) and unventilated fetal lungs were perfused with blood containing increased O2 and decreased CO2. Ventilation with fetal gas (3%O2, 5%CO2) increased net pulmonary prostacyclin (as 6-keto-PGF production from −5.1 ± 4.4 to +12.6 ± 7.6 ng/kg·min. When ventilation was stopped, net pulmonary prostacyclin production returned to nondetectable levels. Ventilation with gas mixtures which increased pulmonary venous PO2 and decreased PO2 also stimulated pulmonary prostacyclin production, but did not have greater effects than did ventilation with fetal gas. In order to determine if increasing PO2 or decreasing PCO2 could stimulate pulmonary prostacyclin production independently from ventilation, unventilated fetal lamb lungs were perfused with blood that had PO2 and PCO2 similar to fetal blood, blood with elevated O2, and blood that had PO2 and PCO2 values similar to arterial blood of newborn animals. Neither increased O2 nor decreased CO2 in the blood perfusing the lungs stimulated pulmonary prostacyclin synthesis. We conclude that the mechanism responsible for the stimulation of pulmonary prostacyclin with the onset of ventilation at birth is tissue stress during establishment of gaseous ventilation and rhythmic ventilation.  相似文献   

6.
The present paper attempts an examination of different changes of blood respiratory properties when Tilapia zilli is exposed to ammonia in three sublethal concentrations (1.1, 2.2 and 3.3 mg NH3 l−1) for 2 weeks. The results revealed that oxygen and carbon dioxide partial pressures (PO2 and PCO2) were changed differently and irregularly both in the caudal artery and in the heart. The acid–base status (pH, HCO3, TCO2 and base excess) of arterial and venous blood changed towards alkalosis during the first week. These changes were exaggerated during the second week of ammonia exposure. O2 saturation of arterial blood was decreased, while that of venous blood was increased due to the disturbances in blood gas transport and exchange mechanisms and in the acid–base status. The oxygen equilibrium curve was shifted to the left and P50 was decreased during most of the experimental periods.  相似文献   

7.
The changes in the partial pressures of oxygen and carbon dioxide (PO2 and PCO2) during blood circulation alter erythrocyte metabolism, hereby causing flux changes between oxygenated and deoxygenated blood. In the study we have modeled this effect by extending the comprehensive kinetic model by Mulquiney and Kuchel [P.J. Mulquiney, and P.W. Kuchel. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement, Biochem. J. 1999, 342, 581–596.] with a kinetic model of hemoglobin oxy-/deoxygenation transition based on an oxygen dissociation model developed by Dash and Bassingthwaighte [R. Dash, and J. Bassingthwaighte. Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels, Ann. Biomed. Eng., 2004, 32(12), 1676–1693.]. The system has been studied during transitions from the arterial to the venous phases by simply forcing PO2 and PCO2 to follow the physiological values of venous and arterial blood. The investigations show that the system passively follows a limit cycle driven by the forced oscillations of PO2 and is thus inadequately described solely by steady state consideration. The metabolic system exhibits a broad distribution of time scales. Relaxations of modes with hemoglobin and Mg2+ binding reactions are very fast, while modes involving glycolytic, membrane transport and 2,3-BPG shunt reactions are much slower. Incomplete slow mode relaxations during the 60 s period of the forced transitions cause significant overshoots of important fluxes and metabolite concentrations – notably ATP, 2,3-BPG, and Mg2+. The overshoot phenomenon arises in consequence of a periodical forcing and is likely to be widespread in nature – warranting a special consideration for relevant systems.  相似文献   

8.
Summary The physiological consequences of prolonged air-exposure on blood respiratory and acid-base properties were examined in the American eel (Anguilla rostrata). Eels displayed a low capacity for aerial gas transfer as indicated by pronounced increases and decreases in arterial CO2 and O2 tensions, respectively. The increase in arterial CO2 tension contributed to severe extracellular acidosis. The decrease in arterial O2 tension, combined with a marked reduction in red blood cell pH and concomitant Bohr and Root effects, caused arterial O2 content to decline to levels that were insufficient to support metabolic requirements, aerobically. Consequently, the rate of anaerobic glycolysis increased during air-exposure as suggested by a gradual elevation of blood lactate levels after 12 h. Increased anaerobic glycolysis and associated ATP hydrolysis and/or degradation of internal ATP stores further depressed blood pH as metabolic acid, produced by these processes, entered the circulation. Unlike other fishes previously examined, red blood cell pH was not regulated preferentially during the extracellular acidosis but simply conformed to the in vitro relationship between red blood cell and whole blood pH. Although capable of surviving prolonged air-exposure, the results demonstrate nevertheless and perhaps not surprisingly that eels, unlike true amphibious fishes that utilize gills or buccal epithelia for gas transfer, are not particularly well-adapted for gas exchange in air but do display an unusual tolerance to hypoxemia.Symbols and abbreviations B buffer value - Hct hematocrit - RBC red blood cell  相似文献   

9.
The study deals with the mechanisms of the changes in the sensitivity of the respiratory center during a 21-h bed rest with an orthopedic table tilted at an angle of ?15 degrees combined with liquid loss (lasix, 20 mL) and fluid recovery (intravenous injections of infukoll and glucose). The maximal breath-holding times, as well as capillary and venous tensions of O2 and CO2, were measured in the background period, during the bed rest, and shortly after the bed rest. Our data showed a statistically significant increase in both inspiratory and expiratory maximal breath-hold times during the initial 10 min of tilting. The comparison of data on breath-holding during different experimental series showed that infusions of neither glucose nor infukoll affected the duration of voluntary expiratory and inspiratory apnea. Since hour 17 of bed rest, there was a significant increase in the partial tension of O2 in the venous blood, while, in the same samples, there was a significant decrease in the partial tension of CO2. We assume that a decrease in the sensitivity of the respiratory center is triggered by the redistribution of blood to the upper part of the body and the changes in the pressure on the baroreceptors.  相似文献   

10.
Despite the widespread use of inhalational anesthesia with spontaneous ventilation in many studies of otariid pinnipeds, the effects and risks of anesthetic‐induced respiratory depression on blood gas and pH regulation are unknown in these animals. During such anesthesia in California sea lions (Zalophus californianus), blood gas and pH analyses of opportunistic blood samples revealed routine hypercarbia (highest PCO2 = 128 mm Hg [17.1 kPa]), but adequate arterial oxygenation (PO2 > 100 mm Hg [13.3 kPa] on 100% inspiratory oxygen). Respiratory acidosis (lowest pH = 7.05) was limited by the increased buffering capacity of sea lion blood. A markedly widened alveolar‐to‐arterial PO2 difference was indicative of atelectasis and ventilation‐perfusion mismatch in the lung secondary to hypoventilation during anesthesia. Despite the generally safe track record of this anesthetic regimen in the past, these findings demonstrate the value of high inspiratory O2 concentrations and the necessity of constant vigilance and caution. In order to avoid hypoxemia, we emphasize the importance of late extubation or at least maintenance of mask ventilation on O2 until anesthetic‐induced respiratory depression is resolved. In this regard, whether for planned or emergency application, we also describe a simple, easily employed intubation technique with the Casper “zalophoscope” for sea lions.  相似文献   

11.
Summary An extracorporeal circulation of rainbow trout (Oncorhynchus mykiss) was utilized to continuously monitor the rapid and progressive effects of endogenous or exogenous catecholamines on blood respiratory/acid-base status, and to provide in vivo evidence for adrenergic retention of carbon dioxide (CO2) in fish blood (cf. Wood and Perry 1985). Exposure of fish to severe aquatic hypoxia (final P wO2=40–60 torr; reached within 10–20 min) elicited an initial respiratory alkalosis resulting from hypoxia-induced hyperventilation. However, at a critical arterial oxygen tension (P aO2) between 15 and 25 torr, fish became agitated for approximately 5 s and a marked (0.2–0.4 pH unit) but transient arterial blood acidosis ensued. This response is characteristic of abrupt catecholamine mobilization into the circulation and subsequent adrenergic activation of red blood cell (RBC) Na+/H+ exchange (Fievet et al. 1987). Within approximately 1–2 min after the activation of RBC Na+/H+ exchange by endogenous catecholamines, there was a significant rise in arterial PCO2 (P aCO2) whereas arterial PO2 was unaltered; the elevation of P aCO2 could not be explained by changes in gill ventilation. Pre-treatment of fish with the -adrenoceptor antagonist phentolamine did not prevent the apparent catecholamine-mediated increase of P aCO2. Conversely, pre-treatment with the -adrenoceptor antagonist sotalol abolished both the activation of the RBC Na+/H+ antiporter and the associated rise in P aCO2, suggesting a causal relationship between the stimulation of RBC Na+/H+ exchange and the elevation of P aCO2. To more clearly establish that elevation of plasma catecholamine levels during severe hypoxia was indeed responsible for causing the elevation of P aCO2, fish were exposed to moderate hypoxia (final P wO2=60–80 torr) and then injected intraarterially with a bolus of adrenaline to elicit an estimated circulating level of 400 nmol·l-1 immediately after the injection. This protocol activated RBC Na+/H+ exchange as indicated by abrupt changes in arterial pH (pHa). In all fish examined, P aCO2 increased after injection of exogenous adrenaline. The effects on P aO2 were inconsistent, although a reduction in this variable was the most frequent response. Gill ventilation frequency and amplitude were unaffected by exogenous adrenaline. Therefore, it is unlikely that ventilatory changes contributed to the consistently observed rise in P aCO2. Pretreatment of fish with sotalol did not alter the ventilatory response to adrenaline injection but did prevent the stimulation of RBC Na+/H+ exchange and the accompanying increases and decreases in P aCO2 and P aO2, respectively. These results suggest that adrenergic elevation of P aCO2, in addition to the frequently observed reduction of P aO2 are linked to activation of RBC Na+/H+ exchange. The physiological significance and the potential mechanisms underlying the changes in blood respiratory status after addition of endogenous or exogenous catecholamines to the circulation of hypoxic rainbow trout are discussed.Abbreviations P aCO2 arterial carbon dioxide tension - P aO2 arterial oxygen tension - P da dorsal aortic pressure - pHa arterial pH - P wO2 water oxygen tension - RBC red blood cell - V f breathing frequency  相似文献   

12.
Summary Responses to acute hypoxia were measured in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) (1–3 kg body weight). Fish were prevented from making swimming movements by a spinal injection of lidocaine and were placed in front of a seawater delivery pipe to provide ram ventilation of the gills. Fish could set their own ventilation volumes by adjusting mouth gape. Heart rate, dorsal and ventral aortic blood pressures, and cardiac output were continuously monitored during normoxia (inhalant water (PO 2>150 mmHg) and three levels of hypoxia (inhalant water PO 2130, 90, and 50 mmHg). Water and blood samples were taken for oxygen measurements in fluids afferent and efferent to the gills. From these data, various measures of the effectiveness of oxygen transfer, and branchial and systemic vascular resistance were calculated. Despite high ventilation volumes (4–71·min-1·kg-1), tunas extract approximately 50% of the oxygen from the inhalant water, in part because high cardiac outputs (115–132 ml·min-1·kg-1) result in ventilation/perfusion conductance ratios (0.75–1.1) close to the theoretically ideal value of 1.0. Therefore, tunas have oxygen transfer factors (ml O2·min-1·mmHg-1·kg-1) that are 10–50 times greater than those of other fishes. The efficiency of oxygen transfer from water in tunas (65%) matches that measured in teleosts with ventilation volumes and order of magnitude lower. The high oxygen transfer factors of tunas are made possible, in part, by a large gill surface area; however, this appears to carry a considerable osmoregulatory cost as the metabolic rate of gills may account for up 70% of the total metabolism in spinally blocked (i.e., non-swimming) fish. During hypoxia, skipjack and yellowfin tunas show a decrease in heart rate and increase in ventilation volume, as do other teleosts. However, in tunas hypoxic bradycardia is not accompanied by equivalent increases, in stroke volume, and cardiac output falls as HR decreases. In both tuna species, oxygen consumption eventually must be maintained by drawing on substantial venous oxygen reserves. This occurs at a higher inhalant water PO2 (between 130 and 90 mmHg) in skipjack tuna than in yellowfin tuna (between 90 and 50 mmHg). The need to draw on venous oxygen reserves would make it difficult to meet the oxygen demand of increasing swimming speed, which is a common response to hypoxia in both species. Because yellowfin tuna can maintain oxygen consumption at a seawater oxygen tension of 90 mmHg without drawing on venous oxygen reserves, they could probably survive for extended periods at this level of hypoxia.Abbreviations BPda, BPva dorsal, ventral aortic blood pressure - C aO2, C vO2 oxygen content of arterial, venous blood - DO2 diffusion capacity - Eb, Ew effectiveness of O2 uptake by blood, and from water, respectively - Hct hematocrit - HR heart rate - PCO2 carbon dioxide tension - P aCO2, P vCO2 carbon dioxide tension of arterial and venous blood, respectively - PO2 oxygen tension - P aO2, P vO2, P iO2, P cO2 oxygen tension of arterial blood, venous blood, and inspired and expired water, respectively - pHa, pHv pH of arterial and venous blood, respectively - Pw—b effective water to blood oxygen partial pressure difference - Pg partial pressure (tension) gradient - cardiac output - R vascular resistance - SV stroke volume - SEM standard error of mean - TO2 transfer factor - U utilization - g ventilation volume - O2 oxygen consumption  相似文献   

13.
The present study was conducted to understandbetter the mechanisms leading to the decrease in exercise capacityobserved in horses suffering from chronic obstructive pulmonary disease (COPD). Five COPD horses were submitted to a standardized submaximal treadmill exercise test while they were in clinical remission or inacute crisis. Respiratory airflow,O2 andCO2 fractions in the respired gas,pleural pressure changes and heart rate were recorded, and arterial andmixed venous blood were analyzed for gas tensions, hemoglobin, andplasma lactate concentrations. O2 consumption, CO2 production,expired minute ventilation, tidal volume, alveolar ventilation, cardiacoutput, total pulmonary resistance, and mechanical work of breathingwere calculated. The results showed that, whensubmaximally exercised, COPD horses in crisis were significantly morehypoxemic and hypercapnic and that their total pulmonary resistance andmechanical work of breathing were significantly higher and theirexpired minute ventilation significantly lower than when they were inremission. However, their O2consumption remained unchanged, which was probably due to theoccurrence of compensatory mechanisms, i.e., higher heart rate, cardiacoutput, and hemoglobin concentration. Last, their net anaerobicmetabolism seemed to be more important.

  相似文献   

14.
Summary Gas samples from various regions of the lung were obtained throughout the breathing cycle inPituophis melanoleucus. Changes in CO2 concentration during the interbreath period differed markedly along the length of the lung. In general, the largest and most rapid increases in CO2 tension were measured at the cranial end of the vascular lung. Further caudad in the vascular lung, the increase was slower and did not reach mixed venous CO2 tension before exhalation. In animals exhibiting the lowest breathing frequencies and presumably larger tidal volumes, the region of gas exchange extended into the cranial portion of the air sac. There was little or no change in gas tensions within the remaining caudal regions of the air sac. Measurement of exhaled CO2 and O2 tensions at the nares confirmed the longitudinal gradient in gas exchange and also demonstrated the sequential emptying of the lung. Large regional differences in the ratio of blood flow to alveolar volume are probably responsible for the gradients in lung gases.Interpretation of N2 clearance curves in terms of two freely communicating compartments demonstrated the presence of a ventilation inequality. Consistent with this was the lack of body wall contractions between breaths while animals were resting. However, just prior to and during activity body wall contractions not associated with breathing often occurred and resulted in pressure excursions in the lung of ca. five mm H2O. In addition, the heart beat results in a pressure change within the lung of ca. 0.2 mmH2O which may be significant in gas mixing.  相似文献   

15.
R. M. Cherniack  T. E. Cuddy 《CMAJ》1969,101(8):84-90
Arterial blood gases and pH were assessed in 115 patients who had suffered a myocardial infarction, with or without complicating cardiogenic shock or cardiac standstill. In 11 of the 78 uncomplicated cases and in 16 of the 37 complicated cases, the arterial O2 tension was much lower than would be expected on the basis of a three-fold drop in cardiac output, indicating considerable right to left shunting. The death rate in the patients with uncomplicated myocardial infarction was 32% and that of the complicated cases 65%. In both groups it was greatest when the arterial pH was low, indicating that correction of the acidosis is essential. In many instances administration of 100% oxygen is inadequate to restore the oxygen tension to normal levels, and controlled ventilation may be necessary to maintain adequate alveolar ventilation. The findings indicate the necessity for repeated assessment of the arterial blood gas tensions and pH in any patient who has suffered a myocardial infarction. If the management of such patients is designed to provide adequate oxygenation, to maintain adequate alveolar ventilation and to correct the acid-base disturbances, the patient may be tided over the stage of “cardiac pump failure”.  相似文献   

16.
Although the results we have recorded merely serve to indicate the possibilities of this interesting field of investigation, we have sufficient data to enable us to draw certain general conclusions. In the first place it is evident that the bloods of the more highly developed marine invertebrates, such as the active Crustacia and the Cephalopods, are specially adapted for the carriage of carbon dioxide. The quantity of carbon dioxide taken up by the blood of Maia, Palinurus, or Octopus at any given tension of the gas is, in general, about twice or three times as great as that which is taken up by sea water under the same conditions. On the other hand, the blood of a slow, creeping form, such as Aplysia, or of a sessile animal such as the ascidian Phallusia shows no more adaptation for the carriage of carbon dioxide than does sea water. But our estimations of the CO2 content of the blood as it circulates in the bodies of these more active invertebrates show that the conditions of transport of this gas differ considerably in some respects from those which obtain in mammals. For the invertebrate blood in the body contains only a relatively small quantity of carbon dioxide, averaging in the forms we examined from 3 to 10 cc. per 100 cc. of blood. This forms a marked contrast with the condition found in mammals where even the arterial blood contains about 50 cc. of CO2 per 100 cc. of blood. The invertebrate, therefore, works at a very low CO2 tension. There is a twofold significance in this circumstance. In the first place, it means that only the first portion of the carbon dioxide dissociation curve is in use in the respiratory mechanism. Now an inspection of our curves will show that at these low carbon dioxide tensions the dissociation curves tend to be steeper than at higher tensions. As we intend to show in a later paper it can be proved mathematically that, other things being equal, a blood with a carbon dissociation curve of moderate steepness, i.e. one in which the carbon dioxide content of the blood increases fairly rapidly with increase of carbon dioxide tension, is a more efficient carrier of the gas from the tissues to a respiratory surface than a blood in which the dissociation curve is either steeper or flatter. It would seem as if the active invertebrates avoid the use of too flat a part of their CO2 dissociation curves by working over the initial steeper portion. Furthermore, it is seen that over the range of this initial steep portion of the curves the changes of reaction produced by the uptake of carbon dioxide are much smaller than at higher tensions of the gas; for these initial portions of the curves are more nearly parallel to the lines of constant reaction calculated for a temperature of 15°C. according to Hasselbalch''s method (10) on the assumption that the whole of the combined CO2 is in the form of sodium bicarbonate. It is evident also that on this assumption the hydrogen ion concentration of the blood of invertebrates (with the exception of the tunicates) would appear to be practically the same as that of the warm-blooded vertebrates—a conclusion confirmed by the direct measurements of Quagliariello (9). On the other hand, our measurements do not lend support to the idea put forward by Collip (4) that in order to maintain an appropriate faintly alkaline reaction an invertebrate needs to retain carbon dioxide in its blood at a comparatively high tension. This idea was based on the observation that at comparatively high CO2 tensions the blood of invertebrates contains considerably more sodium bicarbonate than does sea water. But our curves show that this is no longer true at the lower values of carbon dioxide tension, the amount of sodium bicarbonate falling off more rapidly in the blood than in the sea water with diminution of the carbon dioxide tension so that in order to maintain an appropriate reaction in the blood only a comparatively small tension of CO2 is required. The largest amount of carbon dioxide that we found present in the circulating blood of any of the types examined was 9.7 cc. per 100 cc. of blood in the case of Maia, and in most cases the amount was considerably less. But even this lowest value corresponds to a tension of CO2 of only about 3 mm., so that the tension gradient across the gill membrane must be even less than this. We would emphasize rather the circumstances that as the portion of the dissociation curve over which the reaction is approximately constant is of but small extent, it is necessary that in an active form like Octopus the carbon dioxide produced should be removed rapidly lest an accumulation of it should cause the limits of normal reaction to be exceeded; and this need is correlated with the extreme efficiency of the respiratory apparatus in this animal. It is interesting to notice that the mammal which, in order to obtain an appropriate reaction in the blood, has to work at relatively high carbon dioxide tensions where the dissociation curve is comparatively flat, secures a steeper physiological CO2 dissociation curve in the body, and with it a more efficient carriage of carbon dioxide and a more constant reaction in the circulating fluid, in virtue of the effect of oxygenation on the carbon dioxide-combining power of its blood (3, 6). Returning now to the consideration of the actual form of the dissociation curves we have obtained—it is a significant fact that it is in those forms such as Maia, Palinurus, and Octopus whose bloods are rich in proteins—particularly hemocyanine—that the initial steep portion of the curve is observed. This suggests that in these forms the blood proteins act as weak acids and expel carbon dioxide from the blood at the low tensions which include the physiological range, just as in vertebrates the hemoglobin similarly displaces carbonic acid from its combination with alkali metal. On the other hand the cœlomic fluid of Aplysia contains no pigment and only 0.00672 per cent of protein nitrogen (Bottazzi (11)) and shows no initial rapidly ascending portion of the CO2 dissociation curve. This is supported by the observation of Quagliariello (9) that the acid-neutralising power of the blood of an invertebrate is roughly proportional to its protein content. It seems as if the proteins of invertebrate blood like the blood proteins of vertebrates, exist in the form of sodium salts which are capable of giving up sodium for the transport of carbon dioxide as sodium bicarbonate. That this is so in the case of hemocyanine follows from the fact that the isoelectric point of this pigment occurs at a hydrogen ion concentration of 2.12 x 10–5 N, i.e. at a pH of 4.67 (Quagliariello (12)) so that in the alkaline blood of the invertebrates possessing it, hemocyanine will act as a weak acid. It is probable that the initial steep portion of the carbon dioxide dissociation curves which we have found to be of such importance in the respiration physiology of Octopus, Palinurus, and Maia is produced by the competition of this acid with carbonic acid for the available sodium of the blood.  相似文献   

17.
Haemoglobin function and respiratory status of sub-adult sharks, Heterodontus portusjacksoni was investigated for up to 1 week following transfer from 100% to either 75% or 50% seawater. Metabolic rates were unusually low and arterial–venous differences in blood O2 small. Haemodilution from osmotic inflow lowered haematocrit and reduced blood O2 content by up to 50%. There was no change in O2 consumption rate, blood O2 partial pressure, cardiac output, or the arterial-venous O2 content difference, and thus O2 delivery was maintained. Ventilation was acutely elevated but returned to normal within 24 h. The O2 delivery to the tissues was facilitated by decreased blood O2-affinity that could not be simply ascribed to changes in the osmolyte concentration. The Hb was unaffected by changes in intra-erythrocyte fluid urea or trimethylamine-N-oxide (TMAO) but was sensitive to changes in NaCl. The Bohr shifts in whole blood were low and there was little role for pH in modulating O2 transport. Venous Hb saturation remained close to 65%, at the steepest part of the in vivo O2 equilibrium curve, such that O2 unloading could be facilitated by small reductions in pressure without increasing cardiac or ventilatory work. H. portusjacksoni tolerated 50% seawater for at least 1 month, but there was little evidence of respiratory responses being adaptive which instead appeared to be consequential on changes in osmotic and ionic status.Abbreviations a–v arterial–venous - CO 2 CO2 content - C a O 2 content of O2 in arterial blood - C v O 2 content of O2 in venous blood - %E branchial O2 extraction efficiency - f v ventilatory frequency - GTP guanosine triphosphate - Hct haematocrit - [Hb] haemoglobin concentration - ITP inosine triphosphate - met[Hb] methaemoglobin - oxygen consumption - NTP nucleoside triphosphate - OEC oxygen equilibrium curve - P a O 2 partial pressure of O2 in arterial blood - P e O 2 partial pressure of expired O2 - P i O 2 partial pressure of inspired O2 - P in O 2 inflow partial pressure of O2 - PO 2 partial pressure of O2 - P out O 2 outflow partial pressure of O2 - pH a arterial blood pH - pH pl whole blood pH - PV plasma volume - P v CO 2 partial pressure of CO2in venous blood - P v O 2 partial pressure of O2in venous blood - cardiac output - SW seawater - TMAO trimethylamine-N-oxide - ventilation volume Communicated by G. Heldmaier  相似文献   

18.
A mathematical analysis of the process of gas exchange in the lung is presented taking into account the transport mechanisms of molecular diffusion, convection and facilitated diffusion of the species due to haemoglobin. Since the rate at which blood gets oxygenated in the pulmonary capillaries is very fast, it is difficult to set up an experimental study to determine the effects of various parameters on equilibration rate. The proposed study is aimed at determining the effects of various physiological parameters on equilibration rate in pathological conditions.Among the significant results are that 1. dissolved oxygen takes longer to achieve equilibration across the pulmonary membrane and carbon dioxide attains equilibration faster, 2. the equilibration length increases with increase in blood velocity, haemoglobin concentration, calibre of pulmonary capillaries and fall in alveolar PO2, 3. the alveolar PCO2 and forward and backward reaction rates of haemoglobin with CO2 do not materially affect the equilibration rate or length. 4. At complete equilibration, by the end of the pulmonary capillary 92% of the total haemoglobin has combined with oxygen and 8% free pigment is left which is present as carbamino haemoglobin, met haemoglobin, carboxy haemoglobin etc.These results are of some importance for anaemic conditions, muscular exercise, meditation, altitude physiology, hypo-ventilation, hyperventilation, etc.Symbols H+ hydrogen ion - O2 oxygen - CO2 carbondioxide - HbO2 oxyhaemoglobin - HbCO2 carbaminohaemoglobin - PO2 partial pressure of O2 - PCO2 partial pressure of CO2 - PaO2 O2 tension in arterial blood - PaCO2 CO2 tension in arterial blood - k1 forward rate constant for Eq. (1) - k2 backward rate constant for Eq. (1) - m1 forward rate constant for Eq. (2) - m2 backward rate constant for Eq. (2) - k equilibration rate - a radius of the capillary - Q velocity of blood - L length of the capillary - D0 diffusion coefficient of O2 - Dc diffusion coefficient of CO2 - DH diffusion coefficient of Hb - H total haemoglobin concentration - A matrix - c1 concentration of dissolved O2 in blood - c2 concentration of HbO2 in blood - c3 concentration of dissolved CO2 in blood - c4 concentration of HbCO2 in blood - c5 concentration of haemoglobin - c1alv concentration of O2 in the alveolar region - c3alv concentration of CO2 in the alveolar region - civen concentration of the ith species in venous blood - ciart concentrations of the ith species in arterial blood - F is concentrations of the species in dimensionless form - J0, I0 Bessel's functions - PalvO2 tension of O2 in alveolar region - PalvCO2 tension of CO2 in alveolar region.  相似文献   

19.
Summary Studies were conducted to determine regional pulmonary gas concentrations in the tegu lizard lung. Additionally, changes in pulmonary gas concentrations and ventilatory patterns caused by elevating venous levels of CO2 by gut infusion were measured.It was found that significant stratification of lung gases was present in the tegu and that dynamic fluctuations of CO2 concentration varied throughout the length of the lung. Mean was greater and less in the posterior regions of the lung. In the posterior regions gas concentrations remained nearly constant, whereas in the anterior regions large swings were observed with each breath. In the most anterior sections of the lung near the bronchi, CO2 and O2 concentrations approached atmospheric levels during inspiration and posterior lung levels during expiration.During gut loading of CO2, the rate of rise of CO2 during the breathing pause increased. The mean level of CO2 also increased. Breathing rate and tidal volume increased to produce a doubling ofV E.These results indicate that the method of introduction of CO2 into the tegu respiratory system determines the ventilatory response. If the CO2 is introduced into the venous blood a dramatic increase in ventilation is observed. If the CO2 is introduced into the inspired air a significant decrease in ventilation is produced. The changes in pulmonary CO2 environment caused by inspiratory CO2 loading are different from those caused by venous CO2 loading. We hypothesize that the differences in pulmonary CO2 environment caused by either inspiratory CO2 loading or fluctuations in venous CO2 concentration act differently on the IPC. The differing response of the IPC to the two methods of CO2 loading is the cause of the opposite ventilatory response seen during either venous or inspiratory loading.Abbreviations IPC intrapulmonary chemoreceptors - UAC upper airway chemoreceptors - V T inspiratory tidal volume - CO2 gas fraction - O2 gas fraction - V E minute ventilation  相似文献   

20.
Dichlorphenamide was administered to 13 patients with chronic respiratory failure, and the effects on gas exchange at rest and during exercise and on the acid-base state of CSF were observed. The ventilation for a given level of CO2 production was increased both at rest and during exercise, resulting in an increased arterial Po2 and decreased Pco2.The ventilatory stimulation paralleled the development of a metabolic acidosis but was not associated with tissue CO2 accumulation. Indeed, CSF Pco2 and the oxygenated mixed venous (rebreathing) Pco2 fell by the same amount as arterial Pco2. The level of CO2 elimination after two minutes of exercise was as great for a given work load after dichlorphenamide as before. These findings do not support the view that the drug impairs CO2 transport from tissues either at rest or during exercise. They are most consistent with the view that the primary locus of action of dichlorphenamide in therapeutic doses is the kidney. The metabolic acidosis which results is likely the basis of the respiratory stimulatin, perhaps by its effects on the CSF H2CO3-HCO3 - system. Inhibition of carbonic anhydrase in the red cell and choroid plexus are probably unimportant effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号