首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
Inland aquatic ecosystems play a critical role in the global carbon cycle, processing a great fraction of the organic matter coming from terrestrial ecosystems, and the microbial food web is crucial in this process. Thus, we aimed to evaluate whether the food resource of planktonic protozoa comes mainly from small primary producers or heterotrophic bacteria in tropical shallows lakes, assuming the hypothesis that, in general, picocyanobacteria would be the main food resource for protists. We also expected that the autotrophic fraction would be mainly related to protists at the surface of the environments, while the heterotrophic fraction would be more important at the lower strata of the water column. We performed size-fractionation experiments to evaluate the effects of predation of protists on heterotrophic bacteria and picocyanobacteria. We also sampled planktonic organisms at the subsurface and bottom of 20 lakes in a Neotropical floodplain. We found an herbivory preference of heterotrophic flagellates, while ciliates seem to exert a stronger impact on heterotrophic bacteria. We also found no relationship between heterotrophic bacteria and protists in the field data, whereas positive relationships between picocyanobacteria and protists were observed in environments where there was sunlight. Thus, both heterotrophic bacteria and picocyanobacteria were important components in the food webs of tropical shallow lakes. Moreover, the trophic cascade caused by zooplankton predation suggests that protists are efficient in transferring the energy from the base of microbial food webs to higher trophic levels.  相似文献   

3.
Effects of fish predation propagate through aquatic food webs, where the classical grazing food chain and microbial loop are interwoven by trophic interactions. The overall impact on aquatic food webs is further complicated because fish may also exert bottom-up controls through nutrient regeneration. Yet, we still have limited information about cascading effects among fish, zooplankton, phytoplankton, and microbes. In this study, we performed a mesocosm experiment to evaluate effects of fish introduction on plankton communities. Six plots were set in factorial combination with fish introduction and rice straw plowing in a paddy field, and the experiment was continued for 4 weeks. Introduction of fish significantly increased chlorophyll a concentrations in smaller size fractions (<15 μm) and abundances of filamentous bacteria (>5 μm in length) and heterotrophic nanoflagellates in 3–15 μm fraction. Microbes in 0.8–3 μm fraction showed increasing but not significant trends in response to fish introduction. These results indicate cascading effects of fish predation operating via two pathways, one through grazing food chain and the other through microbial food web. Phytoplankton community compositions shifted in similar fashion in all plots until 1 week after fish introduction, and then diverged between plots with and without fish thereafter. Bottom-up effects of fish introduction were suggested by increases of total chlorophyll a and inedible phytoplankton species in response to fish introduction. This study provides an example of how fish predation regulates biomass and structure of phytoplankton and microbial communities.  相似文献   

4.
The oxic realms of freshwater and marine environments are zones of high prokaryotic mortality. Lysis by viruses and predation by ciliated and flagellated protists result in the consumption of microbial biomass at approximately the same rate as it is produced. Protist predation can favour or suppress particular bacterial species, and the successful microbial groups in the water column are those that survive this selective grazing pressure. In turn, aquatic bacteria have developed various antipredator strategies that range from simply 'outrunning' protists to the production of highly effective cytotoxins. This ancient predator-prey system can be regarded as an evolutionary precursor of many other interactions between prokaryotic and eukaryotic organisms.  相似文献   

5.
Research on microbial loop organisms, heterotrophic bacteria and phagotrophic protists, has been stimulated in large measure by Pomeroy's seminal paper published in BioScience in 1974. We now know that a significant fate of bacterioplankton production is grazing by < 20-µm-sized flagellates. By selectively grazing larger, more rapidly growing and dividing cells in the bacterioplankton assemblage, bacterivores may be directly cropping bacterial production rather than simply the standing stock of bacterial cells. Protistan herbivory, however, is likely to be a more significant pathway of carbon flow in pelagic food webs than is bacterivory. Herbivores include both < 20-µm flagellates as well as > 20-µm ciliates and heterotrophic dinoflagellates in the microzooplankton. Protists can grow as fast as, or faster than their phytoplankton prey. Phototrophic cells grazed by protists range from bacterial-sized prochlorophytes to large diatom chains (which are preyed upon by extracellularly-feeding dinoflagellates). Recent estimates of microzooplankton herbivory in various parts of the sea suggest that protists routinely consume from 25 to 100% of daily phytoplankton production, even in diatom-dominated upwelling blooms. Phagotrophic protists should be viewed as a dominant biotic control of both bacteria and of phytoplankton in the sea.  相似文献   

6.
Understanding the formation of feeding links provides insights into processes underlying food webs. Generally, predators feed on prey within a certain body-size range, but a systematic quantification of such feeding niches is lacking. We developed a size-constrained feeding-niche (SCFN) model and parameterized it with information on both realized and non-realized feeding links in 72 aquatic and 65 terrestrial food webs. Our analyses revealed profound differences in feeding niches between aquatic and terrestrial predators and variation along a temperature gradient. Specifically, the predator–prey body-size ratio and the range in prey sizes increase with the size of aquatic predators, whereas they are nearly constant across gradients in terrestrial predator size. Overall, our SCFN model well reproduces the feeding relationships and predation architecture across 137 natural food webs (including 3878 species and 136,839 realized links). Our results illuminate the organisation of natural food webs and enables novel trait-based and environment-explicit modelling approaches.  相似文献   

7.
Grazing mortality of the marine phytoplankton Synechococcus is dominated by planktonic protists, yet rates of consumption and factors regulating grazer-Synechococcus interactions are poorly understood. One aspect of predator-prey interactions for which little is known are the mechanisms by which Synechococcus avoids or resists predation and, in turn, how this relates to the ability of Synechococcus to support growth of protist grazer populations. Grazing experiments conducted with the raptorial dinoflagellate Oxyrrhis marina and phylogenetically diverse Synechococcus isolates (strains WH8102, CC9605, CC9311, and CC9902) revealed marked differences in grazing rates-specifically that WH8102 was grazed at significantly lower rates than all other isolates. Additional experiments using the heterotrophic nanoflagellate Goniomonas pacifica and the filter-feeding tintinnid ciliate Eutintinnis sp. revealed that this pattern in grazing susceptibility among the isolates transcended feeding guilds and grazer taxon. Synechococcus cell size, elemental ratios, and motility were not able to explain differences in grazing rates, indicating that other features play a primary role in grazing resistance. Growth of heterotrophic protists was poorly coupled to prey ingestion and was influenced by the strain of Synechococcus being consumed. Although Synechococcus was generally a poor-quality food source, it tended to support higher growth and survival of G. pacifica and O. marina relative to Eutintinnis sp., indicating that suitability of Synechococcus varies among grazer taxa and may be a more suitable food source for the smaller protist grazers. This work has developed tractable model systems for further studies of grazer-Synechococcus interactions in marine microbial food webs.  相似文献   

8.
Lake Bonney is one of numerous permanently ice-covered lakes located in the McMurdo Dry Valleys, Antarctica. The perennial ice cover maintains a chemically stratified water column and unlike other inland bodies of water, largely prevents external input of carbon and nutrients from streams. Biota are exposed to numerous environmental stresses, including year-round severe nutrient deficiency, low temperatures, extreme shade, hypersalinity, and 24-hour darkness during the winter 1. These extreme environmental conditions limit the biota in Lake Bonney almost exclusively to microorganisms 2.Single-celled microbial eukaryotes (called "protists") are important players in global biogeochemical cycling 3 and play important ecological roles in the cycling of carbon in the dry valley lakes, occupying both primary and tertiary roles in the aquatic food web. In the dry valley aquatic food web, protists that fix inorganic carbon (autotrophy) are the major producers of organic carbon for organotrophic organisms 4, 2. Phagotrophic or heterotrophic protists capable of ingesting bacteria and smaller protists act as the top predators in the food web 5. Last, an unknown proportion of the protist population is capable of combined mixotrophic metabolism 6, 7. Mixotrophy in protists involves the ability to combine photosynthetic capability with phagotrophic ingestion of prey microorganisms. This form of mixotrophy differs from mixotrophic metabolism in bacterial species, which generally involves uptake dissolved carbon molecules. There are currently very few protist isolates from permanently ice-capped polar lakes, and studies of protist diversity and ecology in this extreme environment have been limited 8, 4, 9, 10, 5. A better understanding of protist metabolic versatility in the simple dry valley lake food web will aid in the development of models for the role of protists in the global carbon cycle.We employed an enrichment culture approach to isolate potentially phototrophic and mixotrophic protists from Lake Bonney. Sampling depths in the water column were chosen based on the location of primary production maxima and protist phylogenetic diversity 4, 11, as well as variability in major abiotic factors affecting protist trophic modes: shallow sampling depths are limited for major nutrients, while deeper sampling depths are limited by light availability. In addition, lake water samples were supplemented with multiple types of growth media to promote the growth of a variety of phototrophic organisms.RubisCO catalyzes the rate limiting step in the Calvin Benson Bassham (CBB) cycle, the major pathway by which autotrophic organisms fix inorganic carbon and provide organic carbon for higher trophic levels in aquatic and terrestrial food webs 12. In this study, we applied a radioisotope assay modified for filtered samples 13 to monitor maximum carboxylase activity as a proxy for carbon fixation potential and metabolic versatility in the Lake Bonney enrichment cultures.  相似文献   

9.
Phagotrophic protists are major consumers of microbial biomass in aquatic ecosystems. However, biochemical mechanisms underlying prey recognition and phagocytosis by protists are not well understood. We investigated the potential roles of cell signaling mechanisms in chemosensory response to prey, and in capture of prey cells, by a marine ciliate (Uronema sp.) and a heterotrophic dinoflagellate (Oxyrrhis marina). Inhibition of protein kinase signal transduction biomolecules caused a decrease in both chemosensory response and predation. Inhibition of G-protein coupled receptor signaling pathways significantly decreased chemosensory response but had no effect on prey ingestion. Inhibitor compounds did not appear to affect general cell health, but had a targeted effect. These results support the idea that cell signaling pathways known in other eukaryotic organisms are involved in feeding behavior of free-living protists.  相似文献   

10.
Crop plants carry an enormous diversity of microbiota that provide massive benefits to hosts. Protists, as the main microbial consumers and a pivotal driver of biogeochemical cycling processes, remain largely understudied in the plant microbiome. Here, we characterized the diversity and composition of protists in sorghum leaf phyllosphere, and rhizosphere and bulk soils, collected from an 8-year field experiment with multiple fertilization regimes. Phyllosphere was an important habitat for protists, dominated by Rhizaria, Alveolata and Amoebozoa. Rhizosphere and bulk soils had a significantly higher diversity of protists than the phyllosphere, and the protistan community structure significantly differed among the three plant–soil compartments. Fertilization significantly altered specific functional groups of protistan consumers and parasites. Variation partitioning models revealed that soil properties, bacteria and fungi predicted a significant proportion of the variation in the protistan communities. Changes in protists may in turn significantly alter the compositions of bacterial and fungal communities from the top-down control in food webs. Altogether, we provide novel evidence that fertilization significantly affects the functional groups of protistan consumers and parasites in crop-associated microbiomes, which have implications for the potential changes in their ecological functions under intensive agricultural managements.  相似文献   

11.
Changes in the pelagic microbial food web due to artificial eutrophication   总被引:1,自引:0,他引:1  
The effect of nutrient enrichment on the structure and carbon flow in the pelagic microbial food web was studied in mesocosm experiments using seawater from the northern Baltic Sea. The experiments included food webs of at least four trophic levels; (1) phytoplankton–bacteria, (2) flagellates, (3) ciliates and (4) mesozooplankton. In the enriched treatments high autotrophic growth rates were observed, followed by increased heterotrophic production. The largest growth increase was due to heterotrophic bacteria, indicating that the heterotrophic microbial food web was promoted. This was further supported by increased growth of heterotrophic flagellates and ciliates in the high nutrient treatments. The phytoplankton peak in the middle of the experiments was mainly due to an autotrophic nanoflagellate, Pyramimonas sp. At the end of the experiment, the proportion of heterotrophic organisms was higher in the nutrient enriched than in the nutrient-poor treatment, indicating increased predation control of primary producers. The proportion of potentially mixotrophic plankton, prymnesiophyceans, chrysophyceans and dinophyceans, were significantly higher in the nutrient-poor treatment. Furthermore, the results indicated that the food web efficiency, defined as mesozooplankton production per basal production (primary production + bacterial production − sedimentation), decreased with increasing nutrient status, possibly due to increasing loss processes in the food web. This could be explained by promotion of the heterotrophic microbial food web, causing more trophic levels and respiration steps in the food web.  相似文献   

12.
ABSTRACT The literature on discriminant feeding by planktonic protozoans using geometric and nongeometric criteria is reviewed with emphasis on recent studies that indicate phagotrophic protists can use information other than particle size or shape to sort among potential prey. Sufficient data are available for ciliates, aplastidic microflagellates, and phagotrophic dinoflagellates. Numerous representative taxa of all three groups have chemosensory capabilities, either to specific chemicals or to prey exudates, that modify their motility patterns resulting in aggregation or dispersal. Representatives of all three groups also have specific prey preferences. These considerations imply, but do not prove, selectivity in feeding through use of chemical cues. Although prey geometry is clearly a first-order determinant of ingestion through passive mechanical selection, recent studies illustrate that planktonic ciliates and flagellates can use other criteria to discriminate among prey. the evidence clearly implicates use of chemical cues, most likely perceived through contact chemoreception. Filter feeders as well as raptors have such abilities indicating that feeding mechanisms per se do not imply limitations on feeding behavior. Evidence of considerable flexibility and complexity in chemoperceptive feeding suggests that we have only glimpsed the more detailed features of feeding behavior in aquatic protozoans.  相似文献   

13.
For an algal bloom to develop, the growth rate of the bloom-forming species must exceed the sum of all loss processes. Among these loss processes, grazing is generally believed to be one of the more important factors. Based on numerous field studies, it is now recognized that microzooplankton are dominant consumers of phytoplankton in both open ocean and coastal waters. Heterotrophic protists, a major component of microzooplankton communities, constitute a vast complex of diverse feeding strategies and behavior which allow them access to even the larger phytoplankton species. A number of laboratory studies have shown the capability of different protistan species to feed and grow on bloom-forming algal species. Because of short generation times, their ability for fast reaction to short-term variation in food conditions enables phagotrophic protists to fulfill the function of a heterotrophic buffer, which might balance the flow of matter in case of phytoplankton blooms. The importance of grazing as a control of microalgae becomes most apparent by its failure; if community grazing controls initial stages of bloom development, there simply is no bloom. However, if a certain algal species is difficult to graze, e.g. due to specific defense mechanisms, reduced grazing pressure will certainly favor bloom development. The present contribution will provide a general overview on the interactions between planktonic microalgae and protozoan grazers with special emphasis on species-specific interactions and algal defense strategies against protozoan grazers.  相似文献   

14.
Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity—functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.  相似文献   

15.
Virioplankton: Viruses in Aquatic Ecosystems   总被引:24,自引:0,他引:24       下载免费PDF全文
The discovery that viruses may be the most abundant organisms in natural waters, surpassing the number of bacteria by an order of magnitude, has inspired a resurgence of interest in viruses in the aquatic environment. Surprisingly little was known of the interaction of viruses and their hosts in nature. In the decade since the reports of extraordinarily large virus populations were published, enumeration of viruses in aquatic environments has demonstrated that the virioplankton are dynamic components of the plankton, changing dramatically in number with geographical location and season. The evidence to date suggests that virioplankton communities are composed principally of bacteriophages and, to a lesser extent, eukaryotic algal viruses. The influence of viral infection and lysis on bacterial and phytoplankton host communities was measurable after new methods were developed and prior knowledge of bacteriophage biology was incorporated into concepts of parasite and host community interactions. The new methods have yielded data showing that viral infection can have a significant impact on bacteria and unicellular algae populations and supporting the hypothesis that viruses play a significant role in microbial food webs. Besides predation limiting bacteria and phytoplankton populations, the specific nature of virus-host interaction raises the intriguing possibility that viral infection influences the structure and diversity of aquatic microbial communities. Novel applications of molecular genetic techniques have provided good evidence that viral infection can significantly influence the composition and diversity of aquatic microbial communities.  相似文献   

16.
Zooplankton-mediated changes of bacterial community structure   总被引:10,自引:0,他引:10  
Enclosure experiments in the mesotrophic Schöhsee in northern Germany were designed to study the impact of metazooplankton on components of the microbial food web (bacteria, flagellates, ciliates). Zooplankton was manipulated in 500-liter epilimnetic mesocosms so that either Daphnia or copepods were dominating, or metazooplankton was virtually absent. The bacterial community responded immediately to changes in zooplankton composition. Biomass, productivity, and especially the morphology of the bacteria changed drastically in the different treatments. Cascading predation effects on the bacterioplankton were transmitted mainly by phagotrophic protozoans which had changed in species composition and biomass. When Daphnia dominated, protozoans were largely suppressed and the original morphological structure of the bacteria (mainly small rods and cocci) remained throughout the experiment. Dominance of copepods or the absence of metazoan predators resulted in a mass appearance of bacterivorous protists (flagellates and ciliates). They promoted a fast decline of bacterial abundance and a shift to the predominance of morphologically inedible forms, mainly long filaments. After 3 days they formed 80–90% of the bacterial biomass. The results indicate that metazooplankton predation on phagotrophic protozoans is a key mechanism for the regulation of bacterioplankton density and community structure.Correspondence to: K. Jürgens.  相似文献   

17.
18.
Resource subsidies increase the productivity of recipient food webs and can affect ecosystem dynamics. Subsidies of prey often support elevated predator biomass which may intensify top-down control and reduce the flow of reciprocal subsidies into adjacent ecosystems. However, top-down control in subsidized food webs may be limited if primary consumers posses morphological or behavioral traits that limit vulnerability to predation. In forested streams, terrestrial prey support high predator biomass creating the potential for strong top-down control, however armored primary consumers often dominate the invertebrate assemblage. Using empirically based simulation models, we tested the response of stream food webs to variations in subsidy magnitude, prey vulnerability, and the presence of two top predators. While terrestrial prey inputs increased predator biomass (+12%), the presence of armored primary consumers inhibited top-down control, and diverted most aquatic energy (∼75%) into the riparian forest through aquatic insect emergence. Food webs without armored invertebrates experienced strong trophic cascades, resulting in higher algal (∼50%) and detrital (∼1600%) biomass, and reduced insect emergence (−90%). These results suggest prey vulnerability can mediate food web responses to subsidies, and that top-down control can be arrested even when predator-invulnerable consumers are uncommon (20%) regardless of the level of subsidy.  相似文献   

19.
Many marine microbial eukaryotes combine photosynthetic with phagotrophic nutrition, but incomplete understanding of such mixotrophic protists, their functional diversity, and underlying physiological mechanisms limits the assessment and modeling of their roles in present and future ocean ecosystems. We developed an experimental system to study responses of mixotrophic protists to availability of living prey and light, and used it to characterize contrasting physiological strategies in two stramenopiles in the genus Ochromonas. We show that oceanic isolate CCMP1393 is an obligate mixotroph, requiring both light and prey as complementary resources. Interdependence of photosynthesis and heterotrophy in CCMP1393 comprises a significant role of mitochondrial respiration in photosynthetic electron transport. In contrast, coastal isolate CCMP2951 is a facultative mixotroph that can substitute photosynthesis by phagotrophy and hence grow purely heterotrophically in darkness. In contrast to CCMP1393, CCMP2951 also exhibits a marked photoprotection response that integrates non-photochemical quenching and mitochondrial respiration as electron sink for photosynthetically produced reducing equivalents. Facultative mixotrophs similar to CCMP2951 might be well adapted to variable environments, while obligate mixotrophs similar to CCMP1393 appear capable of resource efficient growth in oligotrophic ocean environments. Thus, the responses of these phylogenetically close protists to the availability of different resources reveals niche differentiation that influences impacts in food webs and leads to opposing carbon cycle roles.  相似文献   

20.
Predation risk in aquatic systems is often assessed by prey through chemical cues, either those released by prey or by the predator itself. Many studies on predation risk focus on simple pairwise interactions, with only a few studies examining community‐level and ecosystem responses to predation risk in species‐rich food webs. Further, of these few community‐level studies, most assume that prey primarily assess predation risk through chemical cues from consumed prey, even heterospecific prey, rather than just those released by the predator. Here, we compared the effects of different predation cues (predator presence with or without consumed prey) on the structure and functioning of a speciose aquatic food web housed in tropical bromeliads. We found that the mere presence of the top predator (a damselfly) had a strong cascading effect on the food web, propagating down to nutrient cycling. This predation risk cue had no effect on the identity of colonizing species, but strongly reduced the abundance and biomass of the macroinvertebrate colonists. As a result, bacterial biomass and nitrogen cycling doubled, with a concomitant decrease in bacterial production, but CO2 flux was unaffected. These community and ecosystem effects of predator presence cues were not amplified by the addition of chemical cues from consumed prey. Our results show that some of the consequences of predation risk observed in controlled experiments with simplified food webs may be observed in a natural, species‐rich food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号