首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
To clarify the independent changes of insulations of body tissues (Itissue) and wet suit (Isuit) in the wet-suited subject during underwater exercise, overall heat flow from the skin (Htissue) and wet suit (Hsuit) and esophageal (Tes), skin (Tsk), and wet suit temperatures were measured at 1, 2, and 2.5 atmospheres absolute (ATA) at critical water temperature (Tcw). The average Tcw in nine wet-suited men (23-38 yr) was 22.3 +/- 0.2, 26.3 +/- 0.2, and 28.0 +/- 0.4 degrees C (SE) at 1, 2, and 2.5 ATA, respectively. At Tcw of each pressure male volunteers wearing 5-mm neoprene wet suits completed three 2-h experiments while immersed up to the neck. During one experiment the subjects remained at rest, and in the other two they exercised on an underwater ergometer at two different intensities (2 and 3 met). Tes significantly declined (P less than 0.05) over 2 h from 37.1 to 36.5 degrees C during rest in each pressure. The 2-met exercise prevented Tes from falling in all pressures, and the 3-met exercise elevated Tes by 0.2-0.3 degrees C. There was no exercise-dependent difference in Isuit, but a pressure-dependent difference was remarkable. The Itissue at rest was identical for all pressures; however, it progressively decreased as a function of exercise intensity. It is concluded that overall Itissue is entirely determined by work intensity at Tcw, but not by atmospheric pressure. On the contrary, Isuit at Tcw is solely dependent on the pressure, but not on the work intensity.  相似文献   

2.
The present work was undertaken to determine the effect of atmospheric pressure [ranging from a high altitude of 4,300 m above sea level or 0.6 atmospheres absolute (ATA) to depths of 10 m deep or 2 ATA] on the critical water temperature (Tcw), defined as the lowest water temperature a subject can tolerate at rest for 2 h without shivering, of the unprotected subject during water immersion. Nine healthy males wearing only shorts were subjected to immersion to the neck in water at 0.6, 1, and 2 ATA while resting for 2 h. Continuous measurements included esophageal (Tes) and skin (Tsk) temperatures, direct heat loss from the skin (Htissue), and insulation of the tissue (Itissue). The Tcw was significantly higher at 0.6 ATA than 1 and 2 ATA: however, Tcw at 1 ATA was identical to that at 2 ATA. The metabolic heat production remained unchanged among the pressures. During the 2-h immersion in Tcw, Tes was identical among all atmospheric pressures: however, Tsk was significantly higher (P less than 0.05) at 0.6 ATA and was identical between 1 and 2 ATA. The overall mean Itissue was near maximal during immersion in Tcw in each pressure, and no difference was detected among the pressures. However, Itissue at the acral extremities (arm, hand, and foot) decreased significantly at 0.6 ATA, and subsequently heat loss from these parts was increased, which elevated an extremity-to-trunk heat loss ratio to 1.4 at 0.6 ATA from 1.1 at 1 and 2 ATA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The present work was undertaken to examine the effect of wet suits on the pattern of heat exchange during immersion in cold water. Four Korean women divers wearing wet suits were immersed to the neck in water of critical temperature (Tcw) while resting for 3 h or exercising (2-3 met on a bicycle ergometer) for 2 h. During immersion both rectal (Tre) and skin temperatures and O2 consumption (VO2) were measured, from which heat production (M = 4.83 VO2), skin heat loss (Hsk = 0.92 M +/- heat store change based on delta Tre), and thermal insulation were calculated. The average Tcw of the subjects with wet suits was 16.5 +/- 1.2 degrees C (SE), which was 12.3 degrees C lower than that of the same subjects with swim suits (28.8 +/- 0.4 degrees C). During the 3rd h of immersion, Tre and mean skin temperatures (Tsk) averaged 37.3 +/- 0.1 and 28.0 +/- 0.5 degrees C, and skin heat loss per unit surface area 42.3 +/- 2.66 kcal X m-2 X h. The calculated body insulation [Ibody = Tre - Tsk/Hsk] and the total shell insulation [Itotal = (Tre - TW)/Hsk] were 0.23 +/- 0.02 and 0.5 +/- 0.04 degrees C X kcal-1 X m2 X h, respectively. During immersion exercise, both Itotal and Ibody declined exponentially as the exercise intensity increased. Surprisingly, the insulation due to wet suit (Isuit = Itotal - Ibody) also decreased with exercise intensity, from 0.28 degrees C X kcal-1 X m2 X h at rest to 0.12 degrees C X kcal-1 X m2 X h at exercise levels of 2-3 met.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
This study investigated thermal swimsuits (TSS) effects on body temperature and thermal insulation of prepubescent children during moderate-intensity water exercise. Nine prepubescent children (11.0+/-0.7 yrs) were immersed in water (23 degrees C) and pedalled on an underwater cycle-ergometer for 30 min with TSS or normal swimsuits (NSS). The rectal temperature (Tre) was maintained slightly higher with TSS than with NSS. The total insulation (Itotal) was significantly higher with TSS. The DeltaTre, Deltamean body temperature (Tb), and tissue insulation (Itissue) in the NSS condition were correlated with % body fat, which indicated that the insulation layer of subjects with low body fat was thinner than that of obese subjects, and tended to decrease body temperature. Wearing TSS increased Itotal, thereby reducing heat loss from subjects' skin to the water. Consequently, subjects with TSS were able to maintain higher body temperatures. In addition, TSS is especially advantageous for subjects with low body fat to compensate for the smaller Itissue.  相似文献   

5.
This study examined the thermal and metabolic responses of six men during exercise in water at critical temperature (Tcw, 31.2 +/- 0.5 degrees C), below Tcw (BTcw, 28.8 +/- 0.6 degrees C), at thermoneutrality (Ttn, 34 degrees C), and above Ttn (ATtn, 36 degrees C). At each water temperature (Tw) male volunteers wearing only swimming trunks completed four 1-h experiments while immersed up to the neck. During one experiment, subjects remained at rest (R), and the other three performed leg exercise (LE) at three different intensities (LE-1, 2 MET; LE-2, 3 MET; LE-3, 4 MET). In water warmer than Tcw, there was no difference in metabolic rate (M) during R. The M for each work load was independent of Tw. Esophageal temperature (Tes) remained unchanged during R in water of ATtn (36 degrees C). However, Tes significantly (P less than 0.05) declined over 1 h during R at Ttn (delta Tes = -0.39 degrees C), Tcw (delta Tes = -0.54 degrees C), and BTcw (delta Tes = -0.61 degrees C). All levels of underwater exercise elevated Tes and M compared with R at all Tw. In water colder than Tcw, the ratio of heat loss from limbs compared with the trunk became greater as LE intensity increased, indicating a preferential increase in heat loss from the limbs in cool water. Tissue insulation (Itissue) was lower during LE than at R and was inversely proportional to the increase in LE intensity. A linearly inverse relationship was established between Tw and M in maintaining thermal equilibrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Seasonal basal metabolic rates (BMR), critical water temperature (Tcw), maximal body insulations (Imax), and finger blood flow during hand immersion in 6 degrees C water (Q finger) were measured periodically during the course of a 3-yr longitudinal study (1980-1982) of modern Korean diving women (ama), who have been wearing wet suits since 1977 to avoid cold stress during work. Methods and protocols were identical to previous studies of cotton-suited ama from 1961-1974. The BMR of modern ama did not undergo seasonal fluctuation (1980-1981) and was within the DuBois standard and comparable to nondivers year around Tcw of ama was still reduced by 2-3 degrees C in 1980 but increased progressively to equal that of nondivers in 1982, when compared at comparable subcutaneous fat thickness (SFT). Since modern ama and nondivers have 2.4 times thicker SFT (i.e., 4-13 mm) than in 1962 the absolute Tcw is significantly reduced. Q finger of ama was also significantly lower than controls in 1980 but in 1981-1982 was identical to controls. Imax of modern ama was identical to controls of comparable SFT in 1980-1982. The time course of cold deacclimatization thus was BMR, 3 yr; Imax, 3 yr; Q finger, 4 yr; and Tcw, 5 yr. This longitudinal study provides further evidence that acclimatization to cold did at one time exist in these diving women.  相似文献   

7.
To detect shifts in the threshold core temperature (Tc) for sweating caused by particular nonthermal stresses, it is necessary to stabilize or standardize all other environmental and physiological variables which cause such shifts. It is, however, difficult to cause progressive changes in Tc without also causing changes in skin temperature (Tsk). This study compares the technique of body warming by immersion in water at 40 degrees C, and subsequent body cooling in water at 28 degrees C, to determine the core threshold for sweating, with one by which Tc was raised by cycling exercise in air at 20 degrees C, and then lowered by immersion in water at 28 degrees C. The first of these procedures involved considerable shifts in Tsk upon immersion in water at 40 degrees C, and again upon transfer to water at 28 degrees C; the second procedure caused only small changes in Tsk. The onset of sweating at a lower esophageal temperature (Tes) during immersion in water at 40 degrees C (36.9 +/- 0.1 degrees C) than during exercise (37.4 +/- 0.3 degree C) is attributed to the high Tsk since Tes was then unchanged. Likewise, the rapid decline in the sweat rate during immersion at 28 degrees C had the same time course to extinction after the pretreatments. This related more to the Tsk, which was common, than to the levels or rates of change of Tes, which both differed between techniques. Tes fell most rapidly, and thus sweating was extinguished at a lower Tes, following 40 degrees C immersion than following exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Twenty male volunteers (17-28 yr of age) exhibiting a range of body weights (60 kg less than or equal to Wt less than or equal to 95 kg) and body fat (7% less than or equal to BF less than or equal to 23%) underwent total immersion while at rest in water between 36 and 20 degrees C. The metabolic heat production measured as a function of time and water temperature was converted to explicit linear functions of core (Tre) and mean skin (Tsk) temperature for each individual immersion. The metabolic functions defined planes of thermogenic activity that showed a fourfold steeper slope with respect to changes in Tsk for small lean subjects than for large fatter subjects. Small lean males also exhibited steeper slopes with respect to changes in Tre than heavier phenotypes. The time course of Tsk and Tre was simulated for each individual immersion with the aid of a time-dependent system of differential heat balance equations coupling different body compartments to the water bath. This formulation permitted the evaluation of internal and external conductances as a function of water temperature. Maximal internal insulation, indicating full vasoconstriction, was achieved at higher bath temperatures in small lean subjects than large fatter subjects. A decline in insulation is seen above a critical metabolic level (approximately 150 W) in small to average size subjects.  相似文献   

9.
To study the role of venous return from distal parts of the extremities in influencing heat loss from the more proximal parts, changes in mean skin temperature (Tsk) of the non-exercising extremities were measured by color thermography during leg and arm exercise in eight healthy subjects. Thirty minutes of either leg or arm exercise at an ambient temperature (Ta) of 20 degrees C or 30 degrees C produced a greatly increased blood flow in the hand or foot and a great increase in venous return through the superficial skin veins of the extremities. During the first 10 min of recovery from the exercise, blood flow to and venous return from the hand or foot on the tested side was occluded with a wrist or ankle cuff at a pressure of 33.3 kPa (250 mm Hg), while blood flow to the control hand or foot remained undisturbed. During the 10-min wrist occlusion, Tsk increased significantly from 28.3 degrees +/- 0.41 degrees C to 30.1 degrees +/- 0.29 degrees C in the control forearm, but remained at nearly the same level (28.0 degrees +/- 0.34 degrees C to 28.2 degrees +/- 0.25 degrees C) in the occluded forearm. In the legs, although Tsk on both sides was virtually identical (32.0 degrees +/- 0.31 degrees C, control vs 32.0 degrees +/- 0.36 degrees C, tested) before occlusion, Tsk on the control side (32.6 degrees +/- 0.27 degrees C) was significantly higher than that on the tested side (32.2 degrees +/- 0.21 degrees C) after ankle occlusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effect of low-intensity exercise in the heat on thermoregulation and certain biochemical changes in temperate and tropical subjects under poorly and well-hydrated states was examined. Two VO2max matched groups of subjects consisting of 8 Japanese (JS) and 8 Malaysians (MS) participated in this study under two conditions: poorly-hydrated (no water was given) and well-hydrated (3 mL x Kg(-1) body weight of water was provided at onset of exercise, and the 15th, 35th and 55th min of exercise). The experimental room in both countries was adjusted to a constant level (Ta: 31.6+/-0.03 degrees C, rh: 72.3+/-0.13%). Subjects spent an initial 10 min rest, 60 min of cycling at 40% VO2max and then 40 min recovery in the experimental room. Rectal temperatures (Tre) skin temperatures (Tsk), heart rate (HR), heat-activated sweat glands density (HASG), local sweat rate (M sw-back) and percent dehydration were recorded during the test. Blood samples were analysed for plasma glucose and lactate levels.The extent of dehydration was significantly higher in the combined groups of JS (1.43+/-0.08%) compared to MS (1.15+/-0.05%). During exercise M sw-back was significantly higher in JS compared to MS in the well-hydrated condition. The HASG was significantly more in JS compared to MS at rest and recovery. Tre was higher in MS during the test. Tsk was significantly higher starting at the 5th min of exercise until the end of the recovery period in MS compared to JS.In conclusion, tropical natives have lower M sw-back associated with higher Tsk and Tre during the rest, exercise and recovery periods. However, temperate natives have higher M sw-back and lower Tsk and Tre during experiments in a hot environment. This phenomenon occurs in both poorly-hydrated and well-hydrated states with low intensity exercise. The differences in M sw-back, Tsk and Tre are probably due to a setting of the core temperature at a higher level and enhancement of dry heat loss, which occurred during passive heat exposure.  相似文献   

11.
Hyperoxia has been shown to attenuate the increase in pulmonary artery (PA) pressure associated with immersed exercise in thermoneutral water, which could serve as a possible preventive strategy for the development of immersion pulmonary edema (IPE). We tested the hypothesis that the same is true during exercise in cold water. Six healthy volunteers instrumented with arterial and PA catheters were studied during two 16-min exercise trials during prone immersion in cold water (19.9-20.9°C) in normoxia [0.21 atmospheres absolute (ATA)] and hyperoxia (1.75 ATA) at 4.7 ATA. Heart rate (HR), Fick cardiac output (CO), mean arterial pressure (MAP), pulmonary artery pressure (PAP), pulmonary artery wedge pressure (PAWP), central venous pressure (CVP), arterial and venous blood gases, and ventilatory parameters were measured both early (E, 5-6 min) and late (L, 15-16 min) in exercise. During exercise at an average oxygen consumption rate (Vo(2)) of 2.38 l/min, [corrected] CO, CVP, and pulmonary vascular resistance were not affected by inspired (Vo(2)) [corrected] or exercise duration. Minute ventilation (Ve), alveolar ventilation (Va), and ventilation frequency (f) were significantly lower in hyperoxia compared with normoxia (mean ± SD: Ve 58.8 ± 8.0 vs. 65.1 ± 9.2, P = 0.003; Va 40.2 ± 5.4 vs. 44.2 ± 9.0, P = 0.01; f 25.4 ± 5.4 vs. 27.2 ± 4.2, P = 0.04). Mixed venous pH was lower in hyperoxia compared with normoxia (7.17 ± 0.07 vs. 7.20 ± 0.07), and this result was significant early in exercise (P = 0.002). There was no difference in mean PAP (MPAP: 28.28 ± 8.1 and 29.09 ± 14.3 mmHg) or PAWP (18.0 ± 7.6 and 18.7 ± 8.7 mmHg) between normoxia and hyperoxia, respectively. PAWP decreased from early to late exercise in hyperoxia (P = 0.002). These results suggest that the increase in pulmonary vascular pressures associated with cold water immersion is not attenuated with hyperoxia.  相似文献   

12.
In this study we focused on thermal sensation at fingertip under the influence of applied external pressure via a tourniquet at the upper arm. The perceived thermal sensation has found to be closely related to the skin temperature (Tsk) that is regulated by the skin blood flow (SkBF), whereas SkBF is easily influenced by external pressure. We thus hypothesized that the perceived thermal sensation, the Tsk and SkBF form such a cross-coupled triad that jointly affects our feeling of thermal comfort. Such interconnections among them were examined in this study using two protocols to investigate the perceived thermal sensation from a given heat stimulus under an exerted external pressure: (1) the SkBF and Tsk, at the right hand index finger under different external pressures at the right upper arm of one male subject, were monitored by a laser-Doppler flowmeter (LDF); (2) subjective thermal feelings (cold, normal and warm) at the right index fingertip of 10 test takers were recorded, while contacting a glass tube filled with water at different temperatures, with/without 50 mm Hg external pressure at the upper arm, while the temperatures of the glass tube and the index fingertip were recorded by an infrared camera. First, it is found that the SkBF and Tsk at the index fingertip reduced significantly with high external pressure applied at the upper arm, while the pressure from our daily clothing is not large enough to generate such an effect. Next, the applied pressure suppresses the variations in subjective sensory responses towards the thermal stimuli. Our hypothesis on the interconnections among the perceived thermal sensation, the Tsk and SkBF is thus confirmed. Overall, females appear more discerning to temperature change under the given conditions compared to males.  相似文献   

13.
The present study was undertaken to investigate energy balance in professional male breath-hold divers in Tsushima Island, Japan. In 4 divers, rectal (Tre) and mean skin (Tsk) temperatures and rate of O2 consumption (VO2) were measured during diving work in summer (27 degrees C water) and winter (14 degrees C water). Thermal insulation and energy costs of diving work were estimated. In summer, comparisons were made of subjects clad either in wet suits (protected) or in swimming trunks (unprotected), and in winter, they wore wet suits. The average Tre in unprotected divers decreased to 36.4 +/- 0.2 degrees C at the end of 1-h diving work, but in protected divers it decreased to 37.2 +/- 0.3 degrees C in 2 h in summer and to 36.9 +/- 0.1 degree C in 1.5 h in winter. The average Tsk of unprotected divers decreased to 28.0 +/- 0.6 degrees C in summer and that of protected divers decreased to 32.9 +/- 0.5 degrees C in summer and 28.0 +/- 0.3 degrees C in winter. Average VO2 increased 190% (from 370 ml/min before diving to 1,070 ml/min) in unprotected divers in summer, but in protected divers it rose 120% (from 360 to 780 ml/min) in summer and 110% (from 330 to 690 ml/min) in winter. Overall thermal insulation (tissue and wet suit) calculated for protected divers was 0.065 +/- 0.006 degree C X kcal-1 X m-2 X h-1 in summer and 0.135 +/- 0.019 degree C X kcal-1 X m-2 X h-1 in winter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Alterations to the finger skin temperature (Tsk) and blood flow (FBF) before and after cold immersion on exposure to an Antarctic environment for 8 weeks were studied in 64 subjects. There was a significant fall in Tsk and increase in finger blood flow after 1 week of Antarctic exposure. The Tsk did not further change even after 8 weeks of stay in Antarctica but a significant increase in FBF was obtained after 8 weeks. The cold immersion test was performed at non-Antarctic and Antarctic conditions by immersing the hand for 2 min in 0–4° C cold water. In the non-Antarctic environment the Tsk and FBF dropped significantly (P < 0.001) indicating a vasoconstriction response. Interestingly after 8 weeks of stay in Antarctic conditions, the skin temperature dropped (P < 0.001) but the cold induced fall in FBF was inhibited. Based on these observations it may be hypothesized that continuous cold exposure in Antarctica results in vasodilatation, which overrides the stronger vasoactive response of acute cold exposure and thus prevents cold injuries.  相似文献   

15.
Rats with subcutaneously implanted polyurethane sponges were exposed 6 hours daily for 7 days to high ambient atmospheric pressures (1.5, 2, 2.5 and 3 ATA). Another group was exposed 4 hours daily for 4 weeks to 3 ATA before inducing granulation tissue formation. 14C-proline was administered 16 hours before terminating the experiment. Free hydroxyproline, soluble and insoluble collagen and total noncollagenous protein were isolated from the 7-day granuloma and the amount and radioactivity of 14C-hydroxyproline and 14C-proline were determined. Seven days' graduated hyperbarism did not affect collagen synthesis; the maturation of collagen to insoluble forms was inhibited at 2 and 2.5 ATA, but not at 3 ATA. Stimulated degradation of collagen (free hydroxyproline) was observed at 2, 2.5 and 3 ATA. In animals subjected to long-term exposure at 3 ATA pressure, the collagen in the granuloma matured to insoluble forms more quickly. Biochemical changes were correlated with changes in the fine structure of the granulation tissue. The appearance of the fibroblast proteosynthetic apparatus was not influenced by hyperbarism. Progressive spherical transformation, fusion of mitochondria and lysosomal activation in the pericapillary fibroblasts occurred at 2, 2.5 and 3 ATA. In short-term experiment, the formation of cytosegresomes and cellular necrosis also contributed to the effect at 3 ATA, which is thus already a toxic pressure for granulation tissue.  相似文献   

16.
The apparent conductance (Kss, in W.m-2.degrees C-1) of a given region of superficial shell (on the thigh, fat + skin) was determined on four nonsweating and nonshivering subjects, resting and exercising (200 W) in water [water temperature (Tw) 22-23 degrees C] Kss = Hss/(Tsf-Tsk) where Hss is the skin-to-water heat flow directly measured by heat flow transducers and Tsf and Tsk are the temperatures of the subcutaneous fat at a known depth below the skin surface and of the skin surface, respectively. The convective heat flow (qc) through the superficial shell was then estimated as qc = (Tsf - Tsk).(Kss - Kss,min), assuming that at rest Kss was minimal (Kss,min) and resting qc = 0. The duration of immersion was set to allow rectal temperature (Tre) to reach approximately 37 degrees C at the end of rest and approximately 38 degrees C at the end of exercise. Except at the highest Tw used, Kss at the start of exercise was always Kss,min and averaged 51 W.m-2.degrees C-1 (range 33-57 W.m-2.degrees C-1) across subjects, and qc was zero. At the end of exercise at the highest Tw used for each subject, Kss averaged 97 W.m-2.degrees C-1 (range 77-108 W.m-2.degrees C-1) and qc averaged 53% (range 48-61%) of Hss (mean Hss = 233 W.m-2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We hypothesized that elevated partial pressures of O(2) would increase perivascular nitric oxide (*NO) synthesis. Rodents with O(2)- and.NO-specific microelectrodes implanted adjacent to the abdominal aorta were exposed to O(2) at partial pressures from 0.2 to 2.8 atmospheres absolute (ATA). Exposures to 2.0 and 2.8 ATA O(2) stimulated neuronal (type I) NO synthase (nNOS) and significantly increased steady-state.NO concentration, but the mechanism for enzyme activation differed at each partial pressure. At both pressures, elevations in.NO concentration were inhibited by the nNOS inhibitor 7-nitroindazole and the calcium channel blocker nimodipine. Enzyme activation at 2.0 ATA O(2) appeared to be due to an altered cellular redox state. Exposure to 2.8 ATA O(2), but not 2.0 ATA O(2), increased nNOS activity by enhancing nNOS association with calmodulin, and an inhibitory effect of geldanamycin indicated that the association was facilitated by heat shock protein 90. Infusion of superoxide dismutase inhibited.NO elevation at 2.8 but not 2.0 ATA O(2). Hyperoxia increased the concentration of.NO associated with hemoglobin. These findings highlight the complexity of oxidative stress responses and may help explain some of the dose responses associated with therapeutic applications of hyperbaric oxygen.  相似文献   

18.
Endogenous hormones subtly alter women's response to heat stress   总被引:1,自引:0,他引:1  
The thermoregulatory responses of menstruant women to exercise in dry heat (dry-bulb temperature/wet-bulb temperature = 48/25 degrees C) were evaluated at three times during the menstrual cycle: menstrual flow (MF), 3-5 days during midcycle including ovulation (OV), and in the middle of the luteal phase (LU). Serum concentrations of estradiol-17 beta (E2), progesterone (Pg), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were measured by radioimmunoassay, and these values were used to determine the dates of OV (peak LH and FSH) and LU (peak postovulatory Pg). After heat acclimation, subjects received heat stress tests (HST) consisting of a 2-h cycle-ergometer exercise at 30% of maximal O2 consumption in the heat. Rectal (Tre) and mean skin (Tsk) temperatures, heart rate (HR), and sweat rate on the chest and thigh were recorded continuously. Total sweat loss (Msw), as indicated by weight loss, was recorded every 20 min, and equivalent water replacement was given. Steady-state exercise metabolic rate (M) was measured at 45 and 110 min. Seven of eight subjects had ovulatory cycles during experimental months. At rest, Tre was lowest at OV and significantly higher at LU. During steady-state exercise both Tre and Tsk were lowest at OV and significantly higher at LU. There were no differences between phases in Msw, sweat rate on the chest and thigh or M. Despite higher Tre and Tsk at LU, all subjects were able to complete the 2-h of exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Ventilation (V), end-tidal PCO2 (PACO2), and CO2 elimination rate were measured in men at rest breathing CO2-free gas over the pressure range 1-50 ATA and the gas density range 0.4-25 g/l, during slow and rapid compressions, at stable elevated ambient pressures and during slow decompressions in several phases of Predictive Studies III-1971 and Predictive Studies IV-1975. Inspired O2 was at or near natural O2 levels during compressions and at stable high pressures; it was 0.5 ATA during decompressions. Rapid compressions to high pressures did not impair respiratory homeostasis. Progressive increase in pulmonary gas flow resistance due to elevation of ambient pressure and inspired gas density to the He-O2 equivalent of 5,000 feet of seawater was not observed to progressively decrease resting V, or to progressively increase resting PACO2. Rather, a complex pattern of change in PACO2 was seen. As both ambient pressure and pulmonary gas flow resistance were progressively raised, PACO2 at first increased, went through a maximum, and then declined towards values near the 1 ATA level. It is suggested that this pattern of PACO2 change results from interaction on ventilation of 1) increase in pulmonary resistance due to elevation of gas density with 2) increase in respiratory drive postulated as due to generalized CNS excitation associated with exposure to high hydrostatic pressure. There may be a similar interaction between increased gas flow resistance and increase in respiratory drive related to nitrogen partial pressure and the narcosis resulting therefrom.  相似文献   

20.
Since human thermoregulation at rest is altered by cold exposure, it was hypothesized that physical training under cold conditions would alter thermoregulation. Three groups (n = 8) of male subjects (mean age 24.3 +/- 0.9 years) were evaluated: group T (interval training at 21 degrees C), group CT (interval training at 1 degrees C), and group C (no training, equivalent exposure to 1 degrees C). Each group was submitted, before and after 4 weeks of interval training (5 d/week), to a cold air test at rest (SCAT) (dry bulb temperature (Tdb) = 1 degrees C) for a 2-h period for evaluation of the thermoregulatory responses. During SCAT, after the training/acclimation period, group T exhibited a higher rectal temperature (Tre) (P < 0.05) without significant change in mean skin temperature (Tsk) whereas metabolic heat production (M) was higher at the beginning of the SCAT (P < 0.05). For group CT, no thermoregulatory change was observed. Group C showed a lower Tre (P < 0.05) without significant change in either Tsk or in M, suggesting the development of a hypothermic general cold adaptation. This study showed, first, that the cold thermoregulatory responses induced by an interval training differed following the climatic conditions of the training and, second, that this training performed in the cold prevented the development of a general cold adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号