首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies have demonstrated the critical role of angiogenesis for successful osteogenesis during endochondral ossification and fracture repair. Vascular endothelial growth factor (VEGF), a potent endothelial cell-specific cytokine, has been shown to be mitogenic and chemotactic for endothelial cells in vitro and angiogenic in many in vivo models. Based on previous work that (1) VEGF is up-regulated during membranous fracture healing, (2) the fracture site contains a hypoxic gradient, (3) VEGF is up-regulated in a variety of cells in response to hypoxia, and (4) VEGF is expressed by isolated osteoblasts in vitro stimulated by other fracture cytokines, the hypothesis that hypoxia may regulate the expression of VEGF by osteoblasts was formulated. This hypothesis was tested in a series of in vitro studies in which VEGF mRNA and protein expression was assessed after exposure of osteoblast-like cells to hypoxic stimuli. In addition, the effects of a hypoxic microenvironment on osteoblast proliferation and differentiation in vitro was analyzed. These results demonstrate that hypoxia does, indeed, regulate expression of VEGF in osteoblast-like cells in a dose-dependent fashion. In addition, it is demonstrated that hypoxia results in decreased cellular proliferation, decreased expression of proliferating cell nuclear antigen, and increased alkaline phosphatase (a marker of osteoblast differentiation). Taken together, these data suggest that osteoblasts, through the expression of VEGF, may be in part responsible for angiogenesis and the resultant increased blood flow to fractured bone segments. In addition, these data provide evidence that osteoblasts have oxygen-sensing mechanisms and that decreased oxygen tension can regulate gene expression, cellular proliferation, and cellular differentiation.  相似文献   

2.
We examined immunohistochemically the fracture repair process in rat tibial bone using antibodies to PCNA, BMP2, TGF-beta 1,-2,-3, TGF-beta R1,-R2, bFGF, bFGFR, PDGF, VEGF, and S-100. The peak level of cell proliferation as revealed by PCNA labelling appeared first in primitive mesenchymal cells and inflammatory cells at the fracture edges and neighboring periosteum at 2-days after fracture, followed by the peaks of periosteal primitive fibroblasts and chondroblasts, which appeared at fracture edges at 3- and 4-days after fracture, respectively. BMP2 was weakly positive in primitive mesenchymal cells, osteoblasts and chondroblasts. At 3-days post-fracture, periosteal osteoblasts produced osteoid tissue and callus with marrow spaces lined by osteoblasts and osteoclasts, and all primitive mesenchymal cells and osteoblasts were positive for TGF-beta 1,-2,-3, and TGF-beta R1,-R2. They were also positive for vascular growth factors bFGF, FGFR and PDGF, but negative for VEGF, and the peak of PCNA labelling of vascular endothelial cells in the marrow space was delayed to 4-days after fracture. Chondroblasts at fracture edges produced hypertrophic chondrocytes at 5-days after fracture and they were positive for TGF-beta 1,-2,-3, and TGF-beta R1,-R2. Primitive chondroblasts were positive for vascular growth factors VEGF as well as bFGF, FGFR, and the peak of PCNA labelling of vascular endothelial cells in the cartilage was at 5-days after fracture. Hypertrophic chondrocytes were also positive for these growth factors but negative for bFGF and bFGFR. S-100 protein-induced calcification was only positive on chondroblasts and hypertrophic chondrocytes. At 7-days after fracture, bone began to be formed from the cartilage at fracture edges, by a process similar to bone formation in the growth plate. Enchondral ossification established a bridge between both fracture edges and periosteal membranous ossification encompassed the fracture site like a sheath at 14 day after fracture. Our study of fracture repair of bone indicates that this process is complex and occurs through various steps involving various growth factors.  相似文献   

3.
The role of glomerular endothelial cells in kidney fibrosis remains incompletely understood. While endothelia are indispensable for repair of acute damage, they can produce extracellular matrix proteins and profibrogenic cytokines that promote fibrogenesis. We used a murine cell line with all features of glomerular endothelial cells (glEND.2), which dissected the effects of vascular endothelial growth factor (VEGF) on cell migration, proliferation, and profibrogenic cytokine production. VEGF dose-dependently induced glEND.2 cell migration and proliferation, accompanied by up-regulation of VEGFR-2 phosphorylation and mRNA expression. VEGF induced a profibrogenic gene expression profile, including up-regulation of TGF-beta1 mRNA, enhanced TGF-beta1 secretion, and bioactivity. VEGF-induced endothelial cell migration and TGF-beta1 induction were mediated by the phosphatidyl-inositol-3 kinase pathway, while proliferation was dependent on the Erk1/2 MAP kinase pathway. This suggests that differential modulation of glomerular angiogenesis by selective inhibition of the two identified VEGF-induced signaling pathways could be a therapeutic approach to treat kidney fibrosis.  相似文献   

4.
Microvascular dysfunction due to endothelial damage is often associated with the ionizing radiation used during cancer therapy. This radiation-induced capillary injury is a major factor in the inhibition of new vessel growth (angiogenesis) and in disease states such as radiation-induced pneumonitis and nephropathy. Many studies have examined the effects of radiation on endothelial cell function; however, little is known regarding the role the basement membrane plays in radiation-induced endothelial cell damage and angiogenesis. Therefore, we examined the effects of gamma radiation on aortic explants, and in vitro on three endothelial cell types (of artery, vein and capillary origin) irradiated with or without the basement membrane glycoprotein laminin-1. As expected, irradiation inhibited angiogenic sprouting of the aortic explants, endothelial cell proliferation, attachment, migration and differentiation in vitro in a dose-dependent manner. However, the effect of radiation on several of these processes in angiogenesis was reduced when the cells were irradiated on laminin-1. To further evaluate the effects of radiation on endothelial cells, we examined the expression of the vascular endothelial cell growth factor (VEGF) kinase domain region receptor in endothelial cells irradiated in the presence and absence of laminin-1. In endothelial cells irradiated on laminin-1, KDR expression increased 2.5-fold over control levels. Therefore, although radiation has a dose-dependent inhibitory effect on processes associated with angiogenesis in vitro, the presence of the basement membrane glycoprotein laminin-1 during irradiation decreases these effects.  相似文献   

5.
6.
Transforming growth factor-beta (TGF-beta) reportedly induces vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. We have recently shown that TGF-beta activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in these cells. In the present study, we investigated the exact mechanism of TGF-beta behind the synthesis of VEGF in MC3T3-E1 cells. PD98059 and U-0126, specific inhibitors of MEK, suppressed the VEGF synthesis induced by TGF-beta. U-0126 inhibited the TGF-beta-induced p44/p42 MAP kinase phosphorylation. SB203580 and PD169316, inhibitors of p38 MAP kinase, reduced the TGF-beta-stimulated VEGF synthesis. SB202474, a negative control for p38 MAP kinase inhibitor, did not affect the VEGF synthesis. A combination with PD98059 and SB203580 almost completely suppressed the TGF-beta-induced VEGF synthesis. Retinoic acid, which alone failed to affect VEGF synthesis, markedly enhanced the VEGF synthesis stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-increased levels of VEGF mRNA. The amplifications by retinoic acid of TGF-beta-increased VEGF synthesis and levels of VEGF mRNA were reduced by PD98059 or SB203580. The combination of PD98059 and SB203580 almost completely suppressed the enhancement by retinoic acid of VEGF synthesis induced by TGF-beta. Taken together, our results strongly suggest that both p44/p42 MAP kinase and p38 MAP kinase take part in TGF-beta-stimulated VEGF synthesis in osteoblasts, and that retinoic acid upregulates the VEGF synthesis.  相似文献   

7.
8.
We previously reported that transforming growth factor-beta (TGF-beta) activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase, resulting in the stimulation of vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of stress-activated protein kinase/c- Jun N-terminal kinase (SAPK/JNK), another member of the MAP kinase superfamily, in TGF-beta-induced VEGF synthesis in these cells. TGF-beta markedly induced SAPK/JNK phosphorylation. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced TGF-beta-induced VEGF synthesis. SP600125 suppressed TGF-beta-induced SAPK/JNK phosphorylation. PD98059, an inhibitor of upstream kinase of p44/p42 MAP kinase and SB203580, an inhibitor of p38 MAP kinase, each failed to reduce TGF-beta-induced SAPK/JNK phosphorylation. A combination of SP600125 and PD98059 or SP600125 and SB203580 suppressed TGF-beta-stimulated VEGF synthesis in an additive manner. These results strongly suggest that TGF-beta activates SAPK/JNK in osteoblasts, and that SAPK/JNK plays a role in addition to p42/p44 MAP kinase and p38 MAP kinase in TGF-beta-induced VEGF synthesis.  相似文献   

9.
Increase in size and number of bronchial blood vessels as well as hyperaemia are factors that contribute to airway wall remodelling in patients with chronic airway diseases, such as asthma and chronic obstructive pulmonary diseases (COPD). Expression of transforming growth factor beta 1 (TGF-beta 1), a multifunctional cytokine as well as vascular endothelial growth factor (VEGF), a key angiogenic molecule, has been shown in the inflammed airways in patients with chronic airway diseases. TGF-beta 1 has been implicated in the regulation of extracellular matrix, leading to airway remodelling in patients with chronic airway diseases. However, the role of TGF-beta 1 in regulating VEGF expression in patients with chronic airway diseases, as well as the underlying mechanisms are not yet well established. We investigated whether TGF-beta 1 stimulates VEGF expression in vitro and hence could influence vascular remodelling. Cultured human airway smooth muscle cells (HASMC) were serum deprived for 60 h before incubation with 5ng/ml of TGF-beta 1 for different time points. Control cells received serum-free culture medium. TGF-beta 1 treatment resulted in time dependent HASMC cell proliferation with maximal values for DNA biosynthesis at 24 h and cell number at 48 h. Northern blot analysis of VEGF mRNA expression showed increased levels in cells treated with TGF-beta 1 for 4 to 8 h. TGF-beta 1 also induced a time-dependent release of VEGF proteins in the conditioned medium after 48 h of treatment. Furthermore, the ability of HASMC-released VEGF proteins to induce human umbilical vein endothelial cells proliferation was inhibited by VEGF receptor antagonist, confirming that TGF-beta 1 induced VEGF was biologically active. We conclude that TGF-beta 1 in addition to an extracellular matrix regulator also could play a key role in bronchial angiogenesis and vascular remodelling via VEGF pathway in asthma.  相似文献   

10.
In this work the authors studied the effects of interleukin-1 alpha on metabolic activities of human osteoblast-like cells in vitro. The bone nature of the cells was established by assaying for specific bone protein, the osteonectin, and the parathormone receptor, an osteoblast marker. Administration of interleukin-1 alpha to cultured osteoblasts produce an increase in cellular proliferation as suggested by 3H-thymidine incorporation and cell growth studies. Interleukin-1 alpha also affected collagen synthesis confirming its potential role on bone-formation and resorption processes.  相似文献   

11.
Vascular Endothelial Growth Factor (VEGF)/Vascular Permeability Factor plays an important role in angiogenesis and cell proliferation of cancer cells. Glioblastoma cells are most malignant and show resistance to radiation therapy inducing VEGF to cause angiogenesis and brain edema. In the present study, the regulatory mechanism of the expression of VEGF by ionizing radiation was studied in three human glioblastoma cells. Induction of VEGF mRNA by ionizing radiation was dependent on dose and incubation time. Activator protein-1 (AP-1) was activated by 10 Gy of ionizing radiation in 1 h in T98G glioblastoma cells on an electrophoretic mobility shift assay. We constructed chimeric genes containing various regions of the VEGF promoter gene and the coding region for chloramphenicol acetyltransferase (CAT) and transiently transfected them to T98G cells. CAT assay with the VEGF promoter gene containing an AP-1 site demonstrated that the promoter activity of the VEGF gene was enhanced by ionizing radiation. Immunological analysis of the activity of mitogen-activated protein kinase, ERK1/2, showed that this activity is up-regulated by ionizing radiation.

These results suggest that ERK1/2 pathway is involved in the up-regulation of VEGF expression ionizing radiation mediated by AP-1, which may lead to further neovascularization and proliferation of glioblastoma cells resistant to radiation therapy.  相似文献   

12.
We have shown that natural homogenous IL-1 beta exhibits regulatory activities on human bone-derived osteoblast-like cells in vitro. IL-1 beta stimulated cellular proliferation and the synthesis of prostaglandin E2 and plasminogen activator activity by the cultured human osteoblast-like cells. In contrast to these stimulatory actions, IL-1 beta antagonised the stimulatory effects of 1.25(OH)2 D3 on the production of alkaline phosphatase and osteocalcin, two markers of the osteoblast phenotype. These studies indicate that this cytokine may therefore have potential physiological and pathological effects on bone metabolism.  相似文献   

13.
Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH2A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation.  相似文献   

14.
15.
Angiogenesis is indispensable during fracture repair, and vascular endothelial growth factor (VEGF) is critical in this process. CCN1 (CYR61) is an extracellular matrix signaling molecule that has been implicated in neovascularization through its interactions with several endothelial integrin receptors. CCN1 has been shown to be up-regulated during the reparative phase of fracture healing; however, the role of CCN1 therein remains unclear. Here, the regulation of CCN1 expression in osteoblasts and the functional consequences thereof were studied. Stimulation of osteoblasts with VEGF resulted in a dose- and time-dependent up-regulation of CCN1 mRNA and protein. An up-regulation of both cell surface-associated CCN1 as well as extracellular matrix-associated CCN1 in osteoblasts was found. The supernatant of VEGF-prestimulated osteoblasts was chemotactic for endothelial cells, increasing their migration and stimulated capillary-like sprout formation. These effects could be attributed to the presence of CCN1 in the osteoblast supernatant as they were prevented by an antibody against CCN1 or by small interfering RNA-mediated knockdown of osteoblast CCN1. Moreover, the supernatant of VEGF-prestimulated osteoblasts induced angiogenesis in Matrigel plugs in vivo in a CCN1-dependent manner. In addition, blockade of CCN1 prevented bone fracture healing in mice. Taken together, the present work demonstrates a potential paracrine loop consisting of the VEGF-mediated up-regulation of CCN1 in osteoblasts that attracts endothelial cells and promotes angiogenesis. Such a loop could be operative during fracture healing.  相似文献   

16.
Effect of ultrasound on the production of IL-8, basic FGF and VEGF.   总被引:10,自引:0,他引:10  
P Reher  N Doan  B Bradnock  S Meghji  M Harris 《Cytokine》1999,11(6):416-423
Therapeutic angiogenesis is the controlled induction or stimulation of new blood vessel formation to reduce unfavourable tissue effects caused by local hypoxia and to enhance tissue repair. The effects of ultrasound on wound healing, chronic ulcers, fracture healing and osteoradionecrosis may be explained by the enhancement of angiogenesis. The aim of this study was to identify which cytokines and angiogenesis factors are induced by ultrasound in vitro.Two ultrasound machines were evaluated, a "traditional" (1 MHz, pulsed 1:4, tested at four intensities), and a "long wave" machine (45 kHz, continuous, also tested at four intensities). The ultrasound was applied to human mandibular osteoblasts, gingival fibroblasts and peripheral blood mononuclear cells (monocytes). The following cytokines and angiogenesis factors were assayed by ELISA techniques: interleukin-1beta(IL-1beta), IL-6, tumour necrosis factor alpha (TNF-alpha), IL-8, fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF).A slight stimulation of IL-1beta was noted in all cell types. There was no difference in the IL-6 and TNF-alpha levels. The angiogenesis-related cytokines, IL-8 and bFGF, were significantly stimulated in osteoblasts, and VEGF was significantly stimulated in all cell types. Both ultrasound machines produced similar results, and the optimum intensities were 0.1 and 0. 4 W/cm2 (SATA) with 1 MHz ultrasound, and 15 and 30 mW/cm2 (SATA) with 45 kHz ultrasound.The results show that therapeutic ultrasound stimulates the production of angiogenic factors such as IL-8, bFGF and VEGF. This may be one of the mechanisms through which therapeutic ultrasound induces angiogenesis and healing.  相似文献   

17.
Radiation induced genomic instability can be described as the increased rate of genomic alterations occurring in the progeny of an irradiated cell. Its manifestations are the dynamic ongoing production of chromosomal rearrangements, mutations, gene amplifications, transformation, microsatellite instability, and/or cell killing. In this prospectus, we present the hypothesis that cellular exposure to ionizing radiation can result in the secretion of soluble factors by irradiated cells and/or their progeny, and that these factors can elicit responses in other cells thereby initiating and perpetuating ongoing genomic instability.  相似文献   

18.
Zhou XY  Wang QR  Huang YH  Cheng LM  Tan MQ 《生理学报》2005,57(2):199-204
本文通过制备小鼠骨髓内皮细胞无血清条件培养液(serum-free murine bone marrow endothelial cell conditioned medium, mBMEC-CM),经超滤分为分子量>10 kDa组分和<10 kDa组分,分别观察mBMEC-CM原液及其组分以及外源性细胞因子对小鼠骨髓内皮细胞集落生成的影响。用Wright’S Giemsa染色计数内皮细胞集落及检测骨髓内皮细胞的vWF,通过[3H]- TdR掺入量,观察mBMEC-CM原液及其组分以及外源性细胞因子对小鼠骨髓内皮细胞增殖的影响,并用分子杂交方法检测内皮细胞表达的细胞因子,从几个方面来研究mBMEC-CM对骨髓内皮细胞增殖的作用。结果显示,骨髓内皮细胞vWF 检测阳性。mBMEC-CM原液及其分子量>10 kDa组分能刺激骨髓内皮细胞集落增殖,且能明显增加骨髓内皮细胞[3H]-TdR 掺入量;分子量<10 kDa组分对骨髓内皮细胞集落增殖无明显刺激作用,也不能增加骨髓内皮细胞[3H]-TdR掺入量。外源加入IL-6、IL-11、SCF、GM-CSF、VEGF、bFGF 6种细胞因子能明显刺激骨髓内皮细胞集落增殖,SCF、VEGF、bFGF能明显增加骨髓内皮细胞[3H]-TdR掺入量。Atlas array膜杂交实验显示骨髓内皮细胞内源性表达GM-CSF、SCF、MSP-1、endothelin-2、thymosin β10、connective tissue GF、PDGF-A chain、MIP-2α、PlGF、neutrophil activating protein ENA-78、INF-γ、IL-1、IL-6、IL-13、IL-11、inhibin-α等细胞因子的mRNA。上述结果提示,骨髓内皮细胞无血清条件培养液对骨髓内皮细胞增殖具有促进作用。  相似文献   

19.
20.
Great controversy exists regarding the biologic responses of osteoblasts to X-ray irradiation, and the mechanisms are poorly understood. In this study, the biological effects of low-dose radiation on stimulating osteoblast proliferation, differentiation and fracture healing were identified using in vitro cell culture and in vivo animal studies. First, low-dose (0.5 Gy) X-ray irradiation induced the cell viability and proliferation of MC3T3-E1 cells. However, high-dose (5 Gy) X-ray irradiation inhibited the viability and proliferation of osteoblasts. In addition, dynamic variations in osteoblast differentiation markers, including type I collagen, alkaline phosphatase, Runx2, Osterix and osteocalcin, were observed after both low-dose and high-dose irradiation by Western blot analysis. Second, fracture healing was evaluated via histology and gene expression after single-dose X-ray irradiation, and low-dose X-ray irradiation accelerates fracture healing of closed femoral fractures in rats. In low-dose X-ray irradiated fractures, an increase in proliferating cell nuclear antigen (PCNA)-positive cells, cartilage formation and fracture calluses was observed. In addition, we observed more rapid completion of endochondral and intramembranous ossification, which was accompanied by altered expression of genes involved in bone remodeling and fracture callus mineralization. Although the expression level of several osteoblast differentiation genes was increased in the fracture calluses of high-dose irradiated rats, the callus formation and fracture union were delayed compared with the control and low-dose irradiated fractures. These results reveal beneficial effects of low-dose irradiation, including the stimulation of osteoblast proliferation, differentiation and fracture healing, and highlight its potential translational application in novel therapies against bone-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号