首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We previously showed that 1-[3-(3-pyridyl)-acryloyl]-2-pyrrolidinone hydrochloride (N2733) inhibits lipopolysaccharide (LPS)-induced tumour necrosis factor (TNF)-alpha secretion and improves the survival of endotoxemic mice. Since overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) in vascular smooth muscle cells (VSMCs) is largely responsible for the development of endotoxemic shock, and iNOS gene expression is mainly regulated by LPS and inflammatory cytokines, we studied whether or not N2733 affects interleukin (IL)-1beta-induced iNOS gene expression, NF-kappaB activation, and NF-kappaB inhibitor (IkappaB)-alpha degradation in cultured rat VSMCs. N2733 dose-dependently (10-100 microM) inhibited IL-1beta-stimulated NO production, and decreased IL-1beta-induced iNOS mRNA and protein expression, as found on Northern and Western blot analyses, respectively. Gel shift assay and an immunocytochemical study showed that N2733 inhibited IL-1beta-induced NF-kappaB activation and its nuclear translocation. Western blot analyses involving anti-IkappaB-alpha and anti-phospho IkappaB-alpha antibodies showed that IL-1beta induced transient degradation of IkappaB-alpha preceded by the rapid appearance of phosphorylated IkappaB-alpha, both of which were markedly blocked by N2733. N2733 blocked IL-1beta-induced phosphorylated IkappaB-alpha even in the presence of a proteasome inhibitor (MG115). Immunoblot analysis involving anti-IkappaB kinase (IKK)-alpha and anti-phosphoserine antibodies revealed that N2733 inhibited IL-1beta-induced IKK-alpha phosphorylation, whereas N2733 had no inhibitory effect on IL-1beta-stimulated p42/p44 MAP kinase or p38 MAP kinase activity. Our results suggest that the inhibitory action of N2733 toward IL-1beta-induced NF-kappaB activation and iNOS expression is due to its blockade of the upstream signal(s) leading to IKK-alpha activation, and subsequent phosphorylation and degradation of IkappaB-alpha in rat VSMCs.  相似文献   

4.
Mitogen-activated protein (MAP) kinases have been suggested as potential mediators for interleukin 1beta (IL-1beta)-induced gene activation. This study investigated the role of the MAP kinases p38 and ERK2 in IL-1beta-mediated expression of the chemokine MCP-1 by human mesangial cells. Phosphorylation of p38 kinase, which is necessary for activation, increased significantly after IL-1beta treatment. p38 kinase immunoprecipitated from IL-1beta-treated cells phosphorylated target substrates to a greater extent than p38 kinase from controls. SB 203580, a selective p38 kinase inhibitor, was used to examine the role of p38 kinase in MCP-1 expression. SB 203580 decreased IL-1beta-induced MCP-1 mRNA and protein levels, but did not affect MCP-1 mRNA stability. Because NF-kappaB is necessary for MCP-1 gene expression, the effect of p38 kinase inhibition on IL-1beta induction of NF-kappaB was measured. SB 203580 (up to 25 microM) had no effect on IL-1beta-induced NF-kappaB nuclear translocation or DNA binding activity. Our previous work showed that IL-1beta also activates the MAP kinase ERK2 in human mesangial cells. PD 098059, a selective inhibitor of the ERK activating kinase MEK1, had no effect on IL-1beta-induced MCP-1 mRNA or protein levels, or on IL-1beta activation of NF-kappaB. These data indicate that p38 kinase is necessary for the induction of MCP-1 expression by IL-1beta, but is not involved at the level of cytoplasmic activation of NF-kappaB. In contrast, ERK2 does not mediate IL-1beta induced MCP-1 gene expression.  相似文献   

5.
Interleukin-1beta (IL-1beta) stimulates nitric oxide (NO) production and induces apoptosis in several tissues. Cilostazol is a Type 3 phosphodiesterase inhibitor. We investigated whether cilostazol affects IL-1beta-induced NO production and apoptosis in rat vascular smooth muscle cells. Cilostazol (100 nM-10 microM) potentiated NO production triggered by IL-1beta. The mRNA and protein expression of inducible NO synthase was also upregulated by cilostazol. KT5720, an inhibitor of protein kinase A, and N(G)-monomethyl-L-arginine, an inhibitor of NO synthase, abrogated cilostazol-enhanced IL-1beta-stimulated NO production and apoptosis. These results shows that cilostazol potentiates IL-1beta-induced NO production via PKA-pathway and thereafter augments apoptosis via NO-dependent pathway.  相似文献   

6.
The selective induction of PGE(2) synthesis in inflammation suggests that a PGE synthase may be linked to an inducible pathway for PG synthesis. We examined the expression of the recently cloned inducible microsomal PGE synthase (mPGES) in synoviocytes from patients with rheumatoid arthritis, its modulation by cytokines and dexamethasone, and its linkage to the inducible cyclooxygenase-2. Northern blot analysis showed that IL-1beta or TNF-alpha treatment induces mPGES mRNA from very low levels at baseline to maximum levels at 24 h. IL-1beta-induced mPGES mRNA was inhibited by dexamethasone in a dose-dependent fashion. Western blot analysis demonstrated that mPGES protein was induced by IL-1beta, and maximum expression was sustained for up to 72 h. There was a coordinated up-regulation of cyclooxygenase-2 protein, although peak expression was earlier. Differential Western blot analysis of the microsomal and the cytosolic fractions revealed that the induced expression of mPGES protein was limited to the microsomal fraction. The detected mPGES protein was catalytically functional as indicated by a 3-fold increase of PGES activity in synoviocytes following treatment with IL-1beta; this increased synthase activity was limited to the microsomal fraction. In summary, these data demonstrate an induction of mPGES in rheumatoid synoviocytes by proinflammatory cytokines. This novel pathway may be a target for therapeutic intervention for patients with arthritis.  相似文献   

7.
Human immunodeficiency virus (HIV) infection is associated with a surprisingly high frequency of myocardial dysfunction. Potential mechanisms include direct effects of HIV, indirect effects mediated by cytokines, or a combination. We have previously reported that interleukin-1beta (IL-1beta) (500 U/ml) alone induced nitric oxide (NO) production by neonatal rat cardiac myocytes (CM). Effects of the HIV-1 envelope, glycoprotein120 (gp120), on inducible NO synthase (iNOS) in CM have not been previously reported. Unlike IL-1beta, recombinant HIV-gp120 (1 microgram/ml) alone failed to enhance NO production in CM (0.5 +/- 0.4 vs. 0.4 +/- 0.5 micromol/1.25 x 10(5) cells/48 h, gp120 vs. control, respectively; n = 12, P = not significant). However, the addition of gp120 to IL-1beta significantly enhanced iNOS mRNA expression (70 +/- 1.5 vs. 26 +/- 2.4 optical units, IL-1beta + gp120 vs. IL-1beta, respectively; n = 3), iNOS protein synthesis (42 +/- 1.4 vs. 18 +/- 0.8 optical units, IL-1beta + gp120 vs. IL-1beta, respectively; n = 3), and NO production (NO(2)(-)) (6.6 +/- 0.6 vs. 4.1 +/- 0.8 micromol/1.25 x 10(5) cells/48 h, IL-1beta + gp120 vs. IL-1beta, respectively; n = 12, P 相似文献   

8.
9.
10.
Both interleukin-1beta (IL-1beta) and prostaglandins (PGs) are important mediators of physiological and pathophysiological processes in the brain. PGE2 exerts its effects by binding to four different types of PGE2 receptors named EP1-EP4. EP3 has found to be expressed in neurons, whereas expression of EP3 in glial cells has not been reported in the brain yet. Here we describe IL-1beta-induced EP3 receptor expression in human astrocytoma cells, primary astrocytes of rat and human origin and in rat brain. Using western blot, we found a marked up-regulation of EP3 receptor synthesis in human and rat primary glial cells. Intracerebroventricular administration of IL-1beta stimulated EP3 receptor synthesis in rat hippocampus. The analysis of involved signal transduction pathways by pathway-specific inhibitors revealed an essential role of protein kinase C and nuclear factor-kappaB in astrocytic IL-1beta-induced EP3 synthesis. Our data suggest that PGE2 signaling in the brain may be altered after IL-1beta release due to up-regulation of EP3 receptors. This might play an important role in acute and chronic conditions such as cerebral ischemia, traumatic brain injury, HIV-encephalitis, Alzheimer's disease and prion diseases in which a marked up-regulation of IL-1beta is followed by a prolonged increase of PGE2 levels in the brain.  相似文献   

11.
In cultured rat vascular smooth muscle cells (VSMC), inducible nitric oxide synthase (iNOS) expression evoked by interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha was greatly enhanced in hypoxia (2% O(2)), compared to in normoxia. In contrast, iNOS induction by interferon-gamma, lipopolysaccharide or their combination was barely influenced by hypoxia. These results indicate that iNOS induction is regulated by hypoxia in different manners, depending on the stimuli in VSMC. Nitric oxide (NO) production in response to stimulation with interferon-gamma plus lipopolysaccharide was significantly decreased in hypoxia, due to a decrease in the concentration of O(2) as a substrate. In contrast, the level of NO production in hypoxia was almost the same as that in normoxia when the cells were stimulated by IL-1beta. In addition, cGMP increased in response to IL-1beta in hypoxia to a level comparable to that in normoxia. Thus, it seems that the IL-1beta-induced expression of iNOS is up-regulated in hypoxia to compensate for a decrease in the enzyme activity due to the lower availability of O(2) as a substrate, and consequently a sufficient amount of NO is produced to elevate cGMP to an adequate level. In addition, the IL-1beta-induced synthesis of tetrahydrobiopterin, a cofactor for iNOS, was also greatly stimulated by hypoxia in VSMC.  相似文献   

12.
Periodontal disease, a gingival inflammatory disease caused by gram-negative bacteria, is the main cause of tooth loss. Lipopolysaccharides (LPS) present in bacterial cell walls induce human gingival fibroblasts' production of pro-inflammatory cytotoxins such as IL-1beta and TNFalpha. The goal of this study was to determine p38 role in the expression of inducible nitric oxide synthase enzyme (i-NOS) and cyclooxygenase (COX-2), as well as in PGE(2) and nitric oxide synthesis in human gingival fibroblasts challenged with LPS. We found that lipopolysaccharides induced a rapid and significant increase in p38 phosphorylation. After interruption of p38 transduction pathway by pre-treatment with inhibitor SB203580, no response to stimulation with LPS was observed; i-NOS expression and nitric oxide synthesis was completely blocked. However, p38 inhibition only partially blocked COX-2 expression and PGE2 synthesis. We conclude that p38 is critically involved in i-NOS induction, and that it participates in COX-2 expression and in PGE2 synthesis.  相似文献   

13.
14.
Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.  相似文献   

15.
We have previously reported that interleukin (IL)-1 beta causes beta-adrenergic hyporesponsiveness in cultured human airway smooth muscle (HASM) cells by increasing cyclooxygenase (COX)-2 expression. The purpose of this study was to determine whether p38 mitogen-activated protein (MAP) kinase is involved in these events. IL-1 beta (2 ng/ml for 15 min) increased p38 phosphorylation fourfold. The p38 inhibitor SB-203580 (3 microM) decreased IL-1 beta-induced COX-2 by 70 +/- 7% (P < 0.01). SB-203580 had no effect on PGE(2) release in control cells but caused a significant (70-80%) reduction in PGE(2) release in IL-1 beta-treated cells. IL-1 beta increased the binding of nuclear proteins to the oligonucleotides encoding the consensus sequences for activator protein (AP)-1 and nuclear factor (NF)-kappa B, but SB-203580 did not affect this binding, suggesting that the mechanism of action of p38 was not through AP-1 or NF-kappa B activation. The NF-kappa B inhibitor MG-132 did not alter IL-1 beta-induced COX-2 expression, indicating that NF-kappa B activation is not required for IL-1 beta-induced COX-2 expression in HASM cells. IL-1 beta attenuated isoproterenol-induced decreases in HASM stiffness as measured by magnetic twisting cytometry, and SB-203580 abolished this effect. These results are consistent with the hypothesis that p38 is involved in the signal transduction pathway through which IL-1 beta induces COX-2 expression, PGE(2) release, and beta-adrenergic hyporesponsiveness.  相似文献   

16.
Ying B  Yang T  Song X  Hu X  Fan H  Lu X  Chen L  Cheng D  Wang T  Liu D  Xu D  Wei Y  Wen F 《Molecular biology reports》2009,36(7):1825-1832
Quercetin is a herbal flavonoid derived from various foods of plant origin and widely used as a major constituent of nutritional supplements. Quercetin has been shown to have anti-inflammatory properties and can play a role in anti-inflammatory procedure. Intercellular adhesion molecule-1 (ICAM-1) is one of the important pro-inflammatory factors, especially in early phage of inflammation. However, the mechanisms regulating ICAM-1 expression by quercetin in human A549 cells were still unclear. In this study, the inhibitory effect of quercetin on ICAM-1 expression by interleukin-1 beta (IL-1 beta)-stimulated A549 cells was investigated, and the roles of mitogen-activated protein kinases (MAPK) pathways were explored. Quercetin attenuated IL-1 beta-induced expression of ICAM-1 mRNA and protein in a dose-dependent manner. The experiment suggested that quercetin actively inhibited inhibitory protein of nuclear factor-kappa B (I kappa B) degradation, and nuclear factor-kappa B (NF-kappa B) activity. The c-fos and c-jun, components of activator protein-1 (AP-1), were mediated by MAPK pathways. ERK and p38 were involved in the c-fos mRNA expression, and JNK was involved in the c-jun mRNA expression. The inhibitory effect of quercetin on ICAM-1 expression was mediated by the sequential attenuation of the c-fos and c-jun mRNA expressions. These inhibitory effects were partially inhibited by SB203580, a specific inhibitor of p38 MAPK, but not by PD98059, a specific inhibitors of extracellular signal-regulated kinase (ERK), and SP600125, a specific inhibitor of c-Jun-N-terminal kinase (JNK). Taken together, these results suggest that quercetin negatively modulating ICAM-1 partly dependent on MAPK pathways. Binwu Ying and Ting Yang have contributed equally to this work.  相似文献   

17.
Hydrogen sulfide (H(2)S) and nitric oxide (NO) are endogenously synthesized from l-cysteine and l-arginine, respectively. They might constitute a cooperative network to regulate their effects. In this study, we investigated whether H(2)S could affect NO production in rat vascular smooth muscle cells (VSMCs) stimulated with interleukin-1beta (IL-1beta). Although H(2)S by itself showed no effect on NO production, it augmented IL-beta-induced NO production and this effect was associated with increased expression of inducible NO synthase (iNOS) and activation of nuclear factor (NF)-kappaB. IL-1Beta activated the extracellular signal-regulated kinase 1/2 (ERK1/2), and this activation was also enhanced by H(2)S. Inhibition of ERK1/2 activation by the selective inhibitor U0126 inhibited IL-1beta-induced NF-kappaB activation, iNOS expression, and NO production either in the absence or presence of H(2)S. Our findings suggest that H(2)S enhances NO production and iNOS expression by potentiating IL-1beta-induced NF-kappaB activation through a mechanism involving ERK1/2 signaling cascade in rat VSMCs.  相似文献   

18.
Abstract : The induction of inducible nitric oxide synthase (iNOS) by proinflammatory cytokines was studied in an oligodendrocyte progenitor cell line in relation to mitogen-activated protein kinase (MAPK) activation and cytokine-mediated cytotoxicity. When introduced individually to cultures of CG4 cells, the cytokines, i.e., tumor necrosis factor-α (TNFα), interleukin-1 (IL-1), and interferon-γ (IFNγ), had either minimal (TNFα) or no (IL-1 and IFNγ) detectable stimulatory effect on the production of nitric oxide. However, combinations of these factors, in particular, TNFα plus IFNγ, elicited a strong enhancement of nitric oxide synthesis and, as revealed by western blot and RT-PCR analysis, the expression of iNOS. TNFα and IL-1 were able to activate p38 MAPK in a time- and dose-dependent manner and together showed a combinatorial effect. In contrast, IFNγ neither activated on its own nor enhanced the activation of p38 MAPK in response to TNFα and IL-1. However, a specific inhibitor of p38 MAPK, i.e., SB203580, inhibited the induction of iNOS in cytokine combination-treated cells in a dose-dependent manner, thereby suggesting a role for the MAPK cascade in regulating the induction of iNOS gene expression in cytokine-treated cells. Blocking of nitric oxide production by an inhibitor of iNOS, i.e., nitro-L-arginine methyl ester, had a minimal protective effect against cytokine-mediated cytotoxicity that occurred before the elevation of nitric oxide levels, thereby indicating temporal and functional dissociation of nitric oxide production from cell killing.  相似文献   

19.
Previously we found that interleukin-1beta (IL-1beta)-activated inducible nitric oxide (NO) synthase (iNOS) expression and that NO production can trigger cardiac fibroblast (CFb) apoptosis. Here, we provide evidence that angiotensin II (ANG II) significantly attenuated IL-1beta-induced iNOS expression and NO production in CFbs while simultaneously decreasing apoptotic frequency. The anti-apoptotic effect of ANG II was abolished when cells were pretreated with the specific ANG II type 1 receptor (AT1) antagonist losartan, but not by the AT2 antagonist DP-123319. Furthermore, ANG II also protected CFbs from apoptosis induced by the NO donor diethylenetriamine NONOate and this effect was associated with phosphorylation of Akt/protein kinase B at Ser473. The effects of ANG II on Akt phosphorylation and NO donor-induced CFb apoptosis were abrogated when cells were preincubated with the specific phosphatidylinositol 3-kinase inhibitors wortmannin or LY-294002. These data demonstrate that ANG II protection of CFbs from IL-1beta-induced apoptosis is associated with downregulation of iNOS expression and requires an intact phosphatidylinositol 3-kinase-Akt survival signal pathway. The findings suggest that ANG II and NO may play a role in regulating the cell population size by their countervailing influences on cardiac fibroblast viability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号