首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
脂蛋白酯酶与动脉粥样硬化   总被引:3,自引:0,他引:3  
脂蛋白酯酶(1ipopmtein lipase,LPL)是调节脂蛋白代谢的一种关键酶,如具有水解血浆脂蛋白中三酰甘油的作用等.体内LPL减少会导致血三酰甘油升高和高密度脂蛋白胆固醇降低,增加患动脉粥样硬化的危险.通过提高LPL的活性可以抑制动脉粥样硬化的发生发展.已有的研究说明NO-1886促进心肌和脂肪组织LPL mRNA表达,提高心肌、脂肪组织、骨骼肌和血液中LPL活性,因而改善脂蛋白代谢,抑制动脉粥样硬化.  相似文献   

2.
In streptozotocin (STZ)-induced diabetic rats, we previously showed an increased heparin-releasable (luminal) lipoprotein lipase (LPL) activity from perfused hearts. To study the effect of this enlarged LPL pool on triglyceride (TG)-rich lipoproteins, we examined the metabolism of very-low-density lipoprotein (VLDL) perfused through control and diabetic hearts. Diabetic rats had elevated TG levels compared with control. However, fasting for 16 h abolished this difference. When the plasma lipoprotein fraction of density <1.006 g/ml from fasted control and diabetic rats was incubated in vitro with purified bovine or rat LPL, VLDL from diabetic animals was hydrolyzed as proficiently as VLDL from control animals. Post-heparin plasma lipolytic activity was comparable in control and diabetic animals. However, perfusion of control and diabetic rats with heparinase indicated that diabetic hearts had larger amounts of LPL bound to heparan sulfate proteoglycan-binding sites. [(3)H]VLDL obtained from control rats, when recirculated through the isolated heart, disappeared at a significantly faster rate from diabetic than from control rat hearts. This increased VLDL-TG hydrolysis was essentially abolished by prior perfusion of the diabetic heart with heparin, implicating LPL in this process. These findings suggest that the enlarged LPL pool in the diabetic heart is present at a functionally relevant location (at the capillary lumen) and is capable of hydrolyzing VLDL. This could increase the delivery of free fatty acid to the heart, and the resultant metabolic changes could induce the subsequent cardiomyopathy that is observed in the chronic diabetic rat.  相似文献   

3.
An exogenous [3H]triolein emulsion was hydrolyzed by intact cardiac myocytes with functional LPL located on the cell surface. This surface-bound LPL could be released into the medium when cardiac myocytes were incubated with heparin. Incubation of cardiac myocytes with VLDL, or the products of TG breakdown, oleic acid or 2-monoolein, did not increase LPL activity in the medium. However, incubation of cardiac myocytes with either VLDL or oleic acid for > 60 min did reduce heparin-releasable LPL activity. In the heart, this inhibitory effect of FFA could regulate the translocation of LPL from its site of synthesis in the cardiac myocyte to its functional site at the capillary endothelium.Abbreviations LPL lipoprotein lipase - TG triacylglycerol - FFA free fatty acids - VLDL very-low density lipoprotein  相似文献   

4.
An in vitro heparin release of lipoprotein lipase (LPL) from whole blood, mainly from monocytes, was demonstrated by (1) the time-course of lipolytic activity with the presence of 10 U/ml heparin at 37 degrees C, (2) the distribution of LPL activity in monocyte and lymphocyte fractions, (3) an immuno-inactivation with anti-LPL immunoglobulin (IgG) and (4) responses to various compounds such as NaCl, protamine sulfate, heparin, and serum activator. The in vitro heparin-releasable LPL activity from blood correlated well with the LPL activity of postheparin plasma obtained from both normolipidemic and hyperlipidemic rabbits. Studies in humans revealed sex- and age-related variations in the in vitro heparin-releasable LPL from monocytes in the blood of 134 normal subjects and 24 hypertriglyceridemic subjects: The mean LPL activity was significantly higher in normal females over the age of 30, than in the corresponding males. In the hypertriglyceridemic group, the LPL activity was also higher in females than in males, but it was not significant. The in vitro heparin-releasable LPL activity from monocytes in blood was comparable to the LPL activity derived from adipose tissue and postheparin plasma, and thus it reflects lipoprotein metabolism.  相似文献   

5.
The functional (heparin-releasable) fraction of myocardial lipoprotein lipase (LPL) has been located at the lumen surface of capillary endothelium by means of an indirect immunocytochemical perfusion method for electron microscopy. The primary step immunoreactant was an IgG fraction of goat antiserum directed against LPL from rat heart. The second step antibody, conjugated with horseradish peroxidase, was rabbit IgG directed against goat IgG. Peroxidase reaction product, when present, appeared at the surface an in invaginations of the lumenal plasma membrane of capillary endothelium and also on chylomicrons adherent to that membrane. The highest coverage by such product occurred when the highest heparin-releasable heart LPL activity was attained after fat-feeding of rats. Coverage was low when a low level of heparin-releasable heart LPL activity was induced by carbohydrate-feeding. Coverage was very low in the perfused hearts after heparin-release of functional LPL activity. The positive association between these immunocytochemical results and actual levels of functional LPL activities indicates that functional LPL in the isolated rat heart is at the lumen surface of capillary endothelium.  相似文献   

6.
Purified postheparin plasma lipoprotein lipase (LPL) of normolipidemic and primary hyperlipoproteinemic subjects was characterized by lipoprotein C polypeptide activation and specificity for triglycerides in chylomicrons and VLDL. Chromatography of normal LPL on Sephadex G-100 resulted in two protein peaks, LPLC-1 (activated by C-I but not C-II) and LPLC-II (activated by C-II but not C-I). LPL from type I hyperlipoproteinemic subjects was not activated by C-I and C-II activation was reduced to 40% of control. Hydrolysis of chylomicron and VLDL triglycerides was severely impaired. Although chromatography of type I LPL resulted in two protein peaks, the protein peak corresponding to LPLC-I did not exhibit lipolytic activity and LPLC-II was reduced to 50% of control in protein and enzyme specific activity. Type III LPL was normal in respect to LPLC-I while LPLC-II averaged 40% of control. Hydrolysis of chylomicron and VLDL was reduced to 50% and 10% of control, respectively. An etiological implication for LPLC-I and/or LPLC-II in type I and III hyperlipoproteinemias is suggested.  相似文献   

7.
Lipoprotein lipase (LPL)-mediated hydrolysis of triglycerides (TG) contained in chylomicrons requires the presence of a cofactor, apolipoprotein (apo) C-II. The physiological mechanism by which chylomicrons gain apoC-II necessary for LPL activation in whole plasma is not known. Using a gum arabic stabilized TG emulsion, activation of LPL by lipoprotein apoC-II was studied. Hydrolysis of TG by LPL was greater in the presence of serum than with addition of either high density lipoproteins (HDL) or very low density lipoproteins (VLDL). LPL activation by either VLDL or HDL increased with addition of the lipoprotein-free fraction of plasma. A similar increase in LPL activity by addition of the lipoprotein-free fraction together with HDL or VLDL was observed when another TG emulsion (Intralipid) or TG-rich lipoproteins from an apoC-II deficient subject were used as a substrate. Human apoA-IV, apoA-I, apoE, and cholesteryl ester transfer protein were assessed for their ability to increase LPL activity in the presence of VLDL. At and below physiological concentrations, only apoA-IV increased LPL activity. One hundred percent of LPL activity measured in the presence of serum was achieved using VLDL plus apoA-IV. In the absence of an apoC-II source, apoA-IV had no effect on LPL activity. Removal of greater than 80% of the apoA-IV from the nonlipoprotein-containing fraction of plasma by incubation with Intralipid markedly reduced its ability to activate LPL in the presence of VLDL or HDL. Gel filtration chromatography demonstrated that incubation of the nonlipoprotein-containing fraction of plasma with HDL and the TG emulsion caused increased transfer of apoC-II to the emulsion and association of apoA-IV with HDL. Our studies demonstrate that apoA-IV increases LPL activation in the presence of lipoproteins. We hypothesize that apoA-IV is required for efficient release of apoC-II from either HDL or VLDL, which then allows for LPL-mediated hydrolysis of TG in nascent chylomicrons.  相似文献   

8.
The possibility that impaired removal of lipoprotein triglyceride from the circulation may be a participating factor in the hypertriglyceridemia of the obese Zucker rat was examined. We found no significant differences in the heparin-released lipoprotein lipase (LPL) activities of the adipose tissue, skeletal muscle, and heart (expressed per gram of tissue) from the lean and obese Zucker rats. Furthermore, the kinetic properties of adipose tissue and heart LPL from the lean and obese rats were similar, indicating that the catalytic efficiency of the enzyme was unaltered in the obese animals. The postheparin plasma LPL activities of lean and obese rats were also similar. However, the postheparin plasma hepatic triglyceride lipase (H-TGL) activity in the obese rats was elevated. The higher activity of H-TGL could not alleviate the hypertriglyceridemia in these animals. Since hypertriglyceridemia in the obese rats could also be due to the hepatic production of triglyceride-rich lipoproteins which are resistant to lipolysis, we therefore isolated very low density lipoproteins (VLDL) from lean and obese rat liver perfusates and examined their degradation by highly purified human milk LPL. Although certain differences were observed in hepatic VLDL triglyceride fatty acid composition, the kinetic patterns of LPL-catalyzed triglyceride disappearance from lean and obese rat liver perfusate VLDL were similar. The isolated liver perfusate VLDL contained sufficient apolipoprotein C-II for maximum lipolysis. These results indicate that impaired lipolysis is not a contributing factor in the genesis of hypertriglyceridemia in the genetically obese Zucker rat. The hyperlipemic state may be attributed to hypersecretion of hepatic VLDL and consequent saturation of the lipolytic removal of triglyceride-rich lipoproteins from the circulation.  相似文献   

9.
Our objective was to test the hypothesis that a common polymorphism in the hepatic lipase (HL) gene (LIPC -514C>T, rs1800588) influences aerobic exercise training-induced changes in TG, very-low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) through genotype-specific increases in lipoprotein lipase (LPL) activity and that sex may affect these responses. Seventy-six sedentary overweight to obese men and women aged 50-75 yr at risk for coronary heart disease (CHD) underwent a 24-wk prospective study of the LIPC -514 genotype-specific effects of exercise training on lipoproteins measured enzymatically and by nuclear magnetic resonance, postheparin LPL and HL activities, body composition by dual energy x-ray absorptiometry and computer tomography scan, and aerobic capacity. CT genotype subjects had higher baseline total cholesterol, HDL-C, HDL(2)-C, large HDL, HDL particle size, and large LDL than CC homozygotes. Exercise training elicited genotype-specific decreases in VLDL-TG (-22 vs. +7%; P < 0.05; CC vs. CT, respectively), total VLDL and medium VLDL, and increases in HDL-C (7 vs. 4%; P < 0.03) and HDL(3)-C with significant genotype×sex interactions for the changes in HDL-C and HDL(3)-C (P values = 0.01-0.02). There were also genotype-specific changes in LPL (+23 vs. -6%; P < 0.05) and HL (+7 vs. -24%; P < 0.01) activities, with LPL increasing only in CC subjects (P < 0.006) and HL decreasing only in CT subjects (P < 0.007). Reductions in TG, VLDL-TG, large VLDL, and medium VLDL and increases in HDL(3)-C and small HDL particles correlated significantly with changes in LPL, but not HL, activity only in CC subjects. This suggests that the LIPC -514C>T variant significantly affects training-induced anti-atherogenic changes in VLDL-TG, VLDL particles, and HDL through an association with increased LPL activity in CC subjects, which could guide therapeutic strategies to reduce CHD risk.  相似文献   

10.
Oral nicotine induces an atherogenic lipoprotein profile   总被引:3,自引:0,他引:3  
Male squirrel monkeys were used to evaluate the effect of chronic oral nicotine intake on lipoprotein composition and metabolism. Eighteen yearling monkeys were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine primates given liquid diet supplemented with nicotine at 6 mg/kg body wt/day. Animals were weighed biweekly, plasma lipid, glucose, and lipoprotein parameters were measured monthly, and detailed lipoprotein composition, along with postheparin plasma lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) activity, was assessed after 24 months of treatment. Although nicotine had no effect on plasma triglyceride or high density lipoproteins (HDL), the alkaloid caused a significant increase in plasma glucose, cholesterol, and low density lipoprotein (LDL) cholesterol plus protein while simultaneously reducing the HDL cholesterol/plasma cholesterol ratio and animal body weight. Levels of LDL precursors, very low density (VLDL) and intermediate density (IDL) lipoproteins, were also lower in nicotine-treated primates while total postheparin lipase (LPL + HTGL) activity was significantly elevated. Our data indicate that long-term consumption of oral nicotine induces an atherogenic lipoprotein profile (increases LDL, decreases HDL/total cholesterol ratio) by enhancing lipolytic conversion of VLDL to LDL. These results have important health implications for humans who use smokeless tobacco products or chew nicotine gum for prolonged periods.  相似文献   

11.
Transgenic and gene disruption experiments in mice have revealed that apolipoprotein (apo) A-V is a potent regulator of plasma triglyceride (TG) levels. To investigate the molecular basis of apoA-V function, the ability of isolated recombinant apoA-V to modulate lipoprotein lipase (LPL) activity was examined in vitro. With three distinct lipid substrate particles, including very low-density lipoprotein (VLDL), a TG/phospholipid emulsion, or dimyristoylphosphatidylcholine liposomes, apoA-V had little effect on LPL activity. In the absence or presence apolipoprotein C-II, apoA-V marginally inhibited LPL activity. On the other hand, apoA-V-dimyristoylphosphatidylcholine disc particles bound to heparin-Sepharose and were specifically eluted upon application of a linear gradient of NaCl. The interaction of apoA-V with sulfated glycosaminoglycans was further studied by surface plasmon resonance spectroscopy. ApoA-V showed strong binding to heparin-coated chips, and binding was competed by free heparin. ApoA-V enrichment enhanced binding of apoC-II-deficient chylomicrons and VLDL to heparin-coated chips. When LPL was first bound to the heparin-coated chip, apoA-V-enriched chylomicrons showed binding. Finally, human pre- and post-heparin plasma samples were subjected to immunoblot analysis with anti-apoA-V IgG. No differences in the amount of apoA-V present were detected. Taken together, the results show that apoA-V lipid complexes bind heparin and, when present on TG-rich lipoprotein particles, may promote their association with cell surface heparan sulfate proteoglycans. Through such interactions, apoA-V may indirectly affect LPL activity, possibly explaining its inverse correlation with plasma TG levels.  相似文献   

12.
KK/Snk mice (previously KK/San) possessing a recessive mutation (hypl) of the angiopoietin-like 3 (Angptl3) gene homozygously exhibit a marked reduction of VLDL due to the decreased Angptl3 expression. Recently, we proposed that Angptl3 is a new class of lipid metabolism modulator regulating VLDL triglyceride (TG) levels through the inhibition of lipoprotein lipase (LPL) activity. In this study, to elucidate the role of Angptl3 in atherogenesis, we investigated the effects of hypl mutation against hyperlipidemia and atherosclerosis in apolipoprotein E knockout (apoEKO) mice. ApoEKO mice with hypl mutation (apoEKO-hypl) exhibited a significant reduction of VLDL TG, VLDL cholesterol, and plasma apoB levels compared with apoEKO mice. Hepatic VLDL TG secretion was comparable between both apoE-deficient mice. Turnover studies revealed that the clearance of both [3H]TG-labeled and 125I-labeled VLDL was significantly enhanced in apoEKO-hypl mice. Postprandial plasma TG levels also decreased in apoEKO-hypl mice. Both LPL and hepatic lipase activities in the postheparin plasma increased significantly in apoEKO-hypl mice, explaining the enhanced lipid metabolism. Furthermore, apoEKO-hypl mice developed 3-fold smaller atherogenic lesions in the aortic sinus compared with apoEKO mice. Taken together, the reduction of Angptl3 expression is protective against hyperlipidemia and atherosclerosis, even in the absence of apoE, owing to the enhanced catabolism and clearance of TG-rich lipoproteins.  相似文献   

13.
Hormone-sensitive lipase (HSL) is believed to play an important role in the mobilization of fatty acids from triglycerides (TG), diglycerides, and cholesteryl esters in various tissues. Because HSL-mediated lipolysis of TG in adipose tissue (AT) directly feeds non-esterified fatty acids (NEFA) into the vascular system, the enzyme is expected to affect many metabolic processes including the metabolism of plasma lipids and lipoproteins. In the present study we examined these metabolic changes in induced mutant mouse lines that lack HSL expression (HSL-ko mice). During fasting, when HSL is normally strongly induced in AT, HSL-ko animals exhibited markedly decreased plasma concentrations of NEFA (-40%) and TG (-63%), whereas total cholesterol and HDL cholesterol levels were increased (+34%). Except for the increased HDL cholesterol concentrations, these differences were not observed in fed animals, in which HSL activity is generally low. Decreased plasma TG levels in fasted HSL-ko mice were mainly caused by decreased hepatic very low density lipid lipoprotein (VLDL) synthesis as a result of decreased NEFA transport from the periphery to the liver. Reduced NEFA transport was also indicated by a depletion of hepatic TG stores (-90%) and strongly decreased ketone body concentrations in plasma (-80%). Decreased plasma NEFA and TG levels in fasted HSL-ko mice were associated with increased fractional catabolic rates of VLDL-TG and an induction of the tissue-specific lipoprotein lipase (LPL) activity in cardiac muscle, skeletal muscle, and white AT. In brown AT, LPL activity was decreased. Both increased VLDL fractional catabolic rates and increased LPL activity in muscle were unable to provide the heart with sufficient NEFA, which led to decreased tissue TG levels in cardiac muscle. Our results demonstrate that HSL deficiency markedly affects the metabolism of TG-rich lipoproteins by the coordinate down-regulation of VLDL synthesis and up-regulation of LPL in muscle and white adipose tissue. These changes result in an "anti-atherogenic" lipoprotein profile.  相似文献   

14.
There is evidence that elevated plasma triglycerides (TG) serve as an independent risk factor for coronary heart disease. Plasma TG levels are determined by the balance between the rate of production of chylomicrons and VLDL in intestine and liver, respectively, and their rate of clearance in peripheral tissues. Lipolytic processing of TG-rich lipoproteins is mediated by the enzyme lipoprotein lipase (LPL), which is tethered to the capillary endothelium via heparin sulphate proteoglycans. In recent years the Angiopoietin-like proteins ANGPTL3 and ANGPTL4 have emerged as novel modulators of LPL activity. Studies in transgenic animals supported by in vitro experiments have demonstrated that ANGPTL3 and ANGPTL4 impair plasma TG clearance by inhibiting LPL activity. In humans, genetic variation within the ANGPTL3 and ANGPTL4 genes contributes to variation in plasma TG and HDL levels, thereby validating the importance of ANGPTLs in the regulation of lipoprotein metabolism in humans. Combined with the discovery of GPIHBP1 as a likely LPL anchor, these findings have led to a readjustment of the mechanism of LPL function. This review provides an overview of our current understanding of the role and regulation of ANGPTL3, ANGPTL4 and GPIHBP1, and places the newly acquired knowledge in the context of the established function and mechanism of LPL-mediated lipolysis.  相似文献   

15.
Tamoxifen, a nonsteroidal antiestrogenic antitumor agent, has weak estrogen-like effects on lipid metabolism, however, the mechanism remains unknown. We previously reported that tamoxifen decreases the activity of lipoprotein lipase (LPL), a key enzyme in triglyceride metabolism, in patients with breast cancer. This study evaluated the effect of tamoxifen on LPL activity in vitro and in vivo. In experiment 1, total cholesterol, triglyceride, adipose tissue weight, and LPL activity of post-heparin plasma were measured in ovariectomized female rats with and without tamoxifen treatment. In experiment 2, purified very-low-density lipoprotein (VLDL) and purified LPL were incubated with and without tamoxifen or estrogen, and the triglycerides in VLDL were measured using an enzymatic method. In experiment 1, total cholesterol and adipose tissue weight decreased significantly in tamoxifen-treated rats (p < 0.001 and p < 0.01, respectively). Triglyceride measurements were not significantly different between the two groups, however, the LPL activity was lower in tamoxifen-treated rats (p < 0.005). In experiment 2, triglycerides in VLDL were significantly higher after VLDL and LPL were incubated with tamoxifen and estrogen (p < 0.005). We concluded that tamoxifen inhibits the hydrolytic activity of LPL in vivo and in vitro. This mechanism may explain the elevated serum triglyceride levels in some patients treated with tamoxifen.  相似文献   

16.
In comparison to very low density lipoprotein (VLDL), chylomicrons are cleared quickly from plasma. However, small changes in fasting plasma VLDL concentration substantially delay postprandial chylomicron triglyceride clearance. We hypothesized that differential binding to lipoprotein lipase (LPL), the first step in the lipolytic pathway, might explain these otherwise paradoxical relationships. Competition binding assays of different lipoproteins were performed in a solid phase assay with purified bovine LPL at 4 degrees C. The results showed that chylomicrons, VLDL, and low density lipoprotein (LDL) were able to inhibit specific binding of (125)I-labeled VLDL to the same extent (85.1% +/- 13.1, 100% +/- 6.8, 90.7% +/- 23.2% inhibition, P = NS), but with markedly different efficiencies. The rank order of inhibition (K(i)) was chylomicrons (0.27 +/- 0.02 nm apoB) > VLDL (12.6 +/- 3.11 nm apoB) > LDL (34.8 +/- 11.1 nm apoB). By contrast, neither triglyceride (TG) liposomes, high density lipoprotein (HDL), nor LDL from patients with familial hypercholesterolemia were efficient at displacing the specific binding of (125)I-labeled VLDL to LPL (30%, 39%, and no displacement, respectively). Importantly, smaller hydrolyzed chylomicrons had less affinity than the larger chylomicrons (K(i) = 2.34 +/- 0.85 nm vs. 0.27 +/- 0.02 nm apoB respectively, P < 0.01). This was also true for hydrolyzed VLDL, although to a lesser extent. Chylomicrons from patients with LPL deficiency and VLDL from hypertriglyceridemic subjects were also studied. Taken together, our results indicate an inverse linear relationship between chylomicron size and K(i) whereas none was present for VLDL. We hypothesize that the differences in binding affinity demonstrated in vitro when considered with the differences in particle number observed in vivo may largely explain the paradoxes we set out to study.  相似文献   

17.
Two lines of transgenic mice, hAIItg-delta and hAIItg-lambda, expressing human apolipoprotein (apo)A-II at 2 and 4 times the normal concentration, respectively, displayed on standard chow postprandial chylomicronemia, large quantities of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) but greatly reduced high density lipoprotein (HDL). Hypertriglyceridemia may result from increased VLDL production, decreased VLDL catabolism, or both. Post-Triton VLDL production was comparable in transgenic and control mice. Postheparin lipoprotein lipase (LPL) and hepatic lipase activities decreased at most by 30% in transgenic mice, whereas adipose tissue and muscle LPL activities were unaffected, indicating normal LPL synthesis. However, VLDL-triglyceride hydrolysis by exogenous LPL was considerably slower in transgenic compared with control mice, with the apparent Vmax of the reaction decreasing proportionately to human apoA-II expression. Human apoA-II was present in appreciable amounts in the VLDL of transgenic mice, which also carried apoC-II. The addition of purified apoA-II in postheparin plasma from control mice induced a dose-dependent decrease in LPL and hepatic lipase activities. In conclusion, overexpression of human apoA-II in transgenic mice induced the proatherogenic lipoprotein profile of low plasma HDL and postprandial hypertriglyceridemia because of decreased VLDL catabolism by LPL.  相似文献   

18.
To determine the putative metabolic relevance of preheparin versus postheparin lipoprotein lipases, the relationships of both pre- and postheparin lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) to plasma triglycerides, low density lipoprotein (LDL) cholesterol, and high density lipoprotein (HDL) cholesterol were determined in 93 men. Relationships of preheparin lipases to their respective postheparin lipases were also examined. Although relationships between the preheparin lipases and plasma triglycerides and HDL cholesterol were not apparent, both preheparin LPL (rs = 0.306, P = 0.0036) and HTGL (rs = 0.348, P = 0.0008) correlated with LDL cholesterol, a relationship not seen with either postheparin lipase. Both postheparin LPL (rs = 0.515, P = 0.0001) and postheparin HTGL (rs = -0.228, P = 0.0028), however, correlated with HDL cholesterol. In addition, postheparin LPL was inversely correlated with postheparin HTGL (rs = -0.363, P = 0.0003), whereas the relationship between preheparin LPL and preheparin HTGL was positive (rs = 0.228, P = 0.0009). Overall, these data point to differences between pre- and postheparin lipases in their relationships to lipoproteins, and one to another. The relationships of LDL cholesterol to both preheparin LPL and HTGL suggest that displacement of active forms of both lipases from their endothelial binding sites may mark triglyceride-rich lipoproteins or their remnants for metabolic pathways that lead to LDL.  相似文献   

19.
The effect of acute fat feeding on the response of two fractions of lipoprotein lipase in heart was explored. In rats, previously fasted, lipoprotein lipase activity released into the perfusate by heparin increased approximately 50% 4 h after fat feeding. The lipase activity remaining in the heart tissue after heparin perfusion showed no significant difference. When rats maintained ad libitum were intubated with glucose 2 h before the fat dose, a relatively larger increase (5-10-fold) in the heparin-releasable lipase activity was observed. The capacity of these hearts to hydrolyze 14C-labeled chylomicrons was also increased 4-5-fold over the controls. Fat ingestion has been reported to elevated plasma corticosteroid levels in rats. When adrenalectomized rats were fed fat, no significant changes in the heparin-releasable lipase activity were observed Hydrocortisone and corticotropin treatment increased the heparin-releasable lipase activity to the same degree as observed with fat feeding. These data suggest that the increase in heart lipoprotein lipase activity following fat feeding is mediated via corticosteroids.  相似文献   

20.
The effect of endotoxin on myocardial utilization of very low density lipoprotein (VLDL) triacylglycerol (TAG) was studied. VLDL was prepared by rat liver perfusion and tested as substrate in the isolated working rat heart. Both liver and heart donor rats were pretreated in vivo with endotoxin or vehicle (control). VLDL-TAG synthesized by endotoxin-pretreated livers was assimilated and oxidized at an increased rate by hearts compared with control VLDL-TAG, regardless of the cardiac endotoxic status, with increased cardiac mechanical performance (cardiac output, hydraulic work). There was no change in incorporation of labeled VLDL lipids into myocardial tissue lipids. Lipoprotein lipase (LPL) activity was increased in endotoxin-pretreated hearts, and after perfusion with "endotoxic" VLDL, there was a tendency for translocation of LPL from tissue-residual to heparin-releasable compartments, but these changes were modest. Analysis of the VLDL composition showed that endotoxin-pretreated livers produced apolipoprotein (apo)-B48 VLDL with decreased particle size (and hence TAG content), but apo-B100 VLDL was unchanged. Oleate content of VLDL was increased, but there was no difference in apo-C or apo-E content. These results suggest that VLDL-TAG produced during sepsis/endotoxinemia may be destined for utilization by the heart as energy substrate. However, the mechanism for its increased efficacy is uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号