首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Preparation of 3′-deoxypsicothymidines bearing a tether group at O1′ is described. Selective protection of the primary hydroxy functions of the starting nucleoside is briefly discussed.  相似文献   

2.
3.
Abstract

Several β-L-3′-substituted-3′-deoxythymidine were stereospecifically synthesized. None of these analogs inhibited HIV-1 nor HBV replication in vitro suggesting that these β-L-pyrimidine derivatives may not be efficiently phosphorylated inside the cells.  相似文献   

4.
Abstract

A series of 3′-C-cyano-3′-deoxy and 3′-C-cyano-2′,3′-dideoxy-nucleoside analogues of thymidine, uridine, cytidine and adenosine have been prepared. Their antiviral activity was assessed in various assay systems and while none of the compounas proved specifically active against human immunodeficiency virus, some compounds had marked activity against other viruses.  相似文献   

5.
Summary Two profoundly mentally mentally retarded brothers with partial trisomy for the distal part of the short arm of chromosome 3 (3p253pter) are described. Their anomaly arose as a segregation product of a balanced t(3p-;18q+) translocation in the mother. Compared with the other cases of partial 3p trisomy reported up to now, the present patients display a similar craniofacial dysmorphism with hypertelorism, broad nasal tip, short upper lip with prominent philtrum, and a large mouth with down-turned corners. Other stigmata, such as a prominent, high forehead with frontal bossing and full cheeks, were present during childhood but progressively disappeared.  相似文献   

6.
Abstract

The interplay of enthalpy of the gauche effect (ΔH°GE) of the [X3′-C3′-C4′-O4′] fragment in various 3′-substituted (X) 2′,3′-dideoxythymidine derivatives 1–7 and the inherent anomeric effect drives the two-state North ? South equilibrium in the constituent sugar moiety. The group electronegativity of 3′-OCF3 substituent in Marriott's, Inamoto's and Mullay's scales has been determined from simple calibration graphs correlating the group electronegativity of various 3′-substituents (X) in 2′,3′-dideoxythymidine derivatives 1–7 with the experimental strength (ΔH°GE) of the [X3′-C3′-C4′-O4′] gauche effect. ΔH°GE has been experimentally determined from pseudorotational analyses of temperature-dependent 3JHH coupling constants, and can be used as an unambiguous tool for direct experimental estimation of the group electronegativity of a specific substituent covalently attached to 3′-carbon of 2′,3′-dideoxythymidine, which can be compared, in turn, with the theoretical estimation carried out according to Marriott's or Inamoto's procedure. Inconsistency found between theoretical values in Marriott's and Inamoto's scales, on the one hand, and between our experimental estimate and the theoretical value in Marriott's scale, on the other, have been solved by refining the electronegativity scale using our experimental data for 1–7.  相似文献   

7.
Abstract

A series of 3′-N-substituted 3′-amino-3′-deoxythymidine derivatives with alkyl, alkenyl and alkylaryl substituents was synthesized by two methods. The first method involved the reaction of 1-(2,3-dideoxy-3-0-mesyl-5-0-trityl-β-D-threo-pentofuranosyl)thymine with an appropriate amine. In the second method, 3′-amino-5′-0-trityl-3′-deoxy-thymidine served as a synthetic precursor which was reacted with an appropiate aldehyde or ketone followed by sodium borohydride reduction. An improved synthesis of 3′-amino-3′-deoxythymidine from 3′ -azido-5′-0-trityl-3′-deoxythymidine using sodium borohydride was also described.  相似文献   

8.
The role of epigenetic inactivation of 14-3-3σ in human cancer   总被引:5,自引:1,他引:4  
Cancer cells show characteristic alterations in DNA methylation patterns. Aberrant CpG methylation of specific promoters results in inactivation of tumor suppressor genes and therefore plays an important role in carcinogenesis. The p53-regulated gene 14-3-3σ undergoes frequent epigenetic silencing in several types of cancer, including carcinoma of the breast, prostate, and skin, suggesting that the loss of 14-3-3σ expression may be causally involved in tumor progression. Functional studies demonstrated that 14-3-3σ is involved in cell-cycle control and prevents the accumulation of chromosomal damage. The recent identification of novel 14-3-3if-associated proteins by a targeted proteomics approach implies that 14-3-3σ regulates diverse cellular processes, which may become deregulated after silencing of 14-3-3σ expression in cancer cells.  相似文献   

9.
Abstract

The target compounds were synthesized via the key intermediate carbohydrate 8, which was synthesized by first selectively protecting the 1′ - and 2′- hydroxyl groups followed by selective tosylation of the 5′ -hydroxyl group to obtain compound 3. The tosyl moiety was then replaced by a benzyl ether to obtain 4. Compound 4 underwent Dess-Martin oxidation to afford the ketone 5. Compound 5 was subjected to Wittig olefination to afford the alkene 6 followed by regioselective hydroboration to obtain 7. Compound 7 was fully acetylated using acetic acid, acetic anhydride and sulfuric acid to obtain the key intermediate 8.  相似文献   

10.
Spiromorpholinone derivatives were synthesized from androsterone or cyclohexanone in 6 or 3 steps, respectively, and these scaffolds were used for the introduction of a hydrophobic group via a nucleophilic substitution. Non-steroidal spiromorpholinones are not active as inhibitors of 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3), but steroidal morpholinones are very potent inhibitors. In fact, those with (S) stereochemistry are more active than their (R) homologues, whereas N-benzylated compounds are more active than their non substituted precursors. The target compounds exhibited strong inhibition of 17β-HSD3 in rat testis homogenate (87–92% inhibition at 1 μM).  相似文献   

11.
Abstract

Methods of synthesis of 7–(2′,3′,5′-tri-O-acetyl-β-D-ribofuranosyl)-8-chloro-3-methylxanthine (5a) and l-methyl-3-isobutylxanthine (5b) were reported. Further nucleophilic displacement of chlorine has provided the corresponding 8-alkylamino and 8-benzylamino derivatives (6a,b-9a,b). Several 5′-acyl analogues of 3-methylxanthine-7–β-D-ribofuranoside (15–18) were synthesized using 7–(2′,3′-di-O-isopropylidene-β-D-ribofuranosyl)-3-methylxanthine (10) as intermediate.  相似文献   

12.
17Beta-hydroxysteroid dehydrogenase type 3 (17β-HSD3) is a steroidogenic enzyme that catalyzes the transformation of 4-androstene-3,17-dione (Δ?-dione) into androgen testosterone (T). To provide effective inhibitors of androgen biosynthesis, we synthesized two different series (amines and carbamates) of 3β-substituted-androsterone derivatives and we tested their inhibitory activity on 17β-HSD3. From the results of our structure-activity relationship study, we identified a series of compounds producing a strong inhibition of 17β-HSD3 overexpressed in HEK-293 cells (homogenized cells). The most active compound when tested in intact HEK-293 transfected cells, namely (3α,5α)-3-{[trans-2,5-dimethyl-4-{[2-(trifluoromethyl)phenyl] sulfonyl}piperazin-1-yl]methyl}-3-hydroxyandrostan-17-one (15b), shows an IC?? value of 6 nM, this compound is thus eight times more active than our reference compound D-5-2 (IC??=51 nM). This new improved inhibitor did not stimulate the proliferation of androgen-sensitive Shionogi cells, suggesting a non-androgenic profile. Compound 15b is thus a good candidate for further in vivo studies on rodents.  相似文献   

13.
14.
Cyclic GMP-AMPs (cGAMPs) are new members of the cyclic dinucleotide family of second messenger signaling molecules identified in both bacteria and mammalian cells. A recent study by Gao et al. published in Cell Research has identified and characterized three 3′3′-cGAMP-specific phosphodiesterases (termed as V-cGAP1/2/3) in V. cholerae, thereby providing mechanistic insights into the function of these enzymes that degrade cGAMPs.Despite their indispensable roles in the composition of DNA and RNA, as well as serving as energy sources, nucleotides are also well known as crucial signaling molecules in all domains of life. Cyclic dinucleotides (CDNs) represent an important and growing family of second messengers, which have been previously recognized as key modulators governing a variety of cellular activities in bacteria, and more recently, in mammalian cells. c-di-GMP and c-di-AMP, the first two members of the CDN family, have been implicated in central bacterial processes, and likely act as universal bacterial secondary messengers1,2. The latest addition to the bacterial CDN family is 3′3′-cGAMP, a hybrid molecule that is synthesized from ATP and GTP by DncV (a cyclase from V. cholerae) and shown to promote intestinal colonization of V. cholerae by downregulating chemotaxis3. Predicted homologs of DncV are present in many other bacterial species3, indicating that 3′3′-cGAMP may also regulate a wide range of cellular functions, similar to c-di-GMP and c-di-AMP. The research on CDNs as second messengers reached new heights following the recent identification of 2′3′-cGAMP, a noncanonical CDN in mammalian cells containing mixed 2′,5′ (at GpA step) and 3′,5′ (at ApG step) linkages, which is synthesized by cGAMP synthase (cGAS) in response to the presence of DNA in the cytosol4,5,6. A remarkable set of new discoveries have revealed that all the CDNs described above are able to bind and activate STING, the central adaptor in the cytosolic DNA sensing pathway, thereby promoting the innate immune response in mammalian cells by inducing the expression of Type I interferon (IFN)7,8,9.Given their critical roles in a variety of important cellular processes, the cellular levels of CDNs have to be tightly controlled by the coordinated action of counteracting cyclases and degradation enzymes. To date, several phosphodiesterases (PDEs) have been found to hydrolyze c-di-GMP (EAL or HD-GYP domain-containing enzymes)1 and c-di-AMP (DHH-DHHA or HD domain-containing enzymes)2,10 (Figure 1). In addition, recent research reported that ENPP1 (ecto-nucleotide pyrophosphatase/phosphodiesterase) is the dominant 2′3′-cGAMP hydrolyzing enzyme in mammalian cells11 (Figure 1). A new study by Gao et al.12 has now identified the first three 3′3′-cGAMP-specific PDEs in V. cholerae and provided detailed insights into their enzymatic mechanisms.Open in a separate windowFigure 1Schematic representation of degradation enzymes identified for different cyclic dinucleotides and the related hydrolysis products. The various protein domains are highlighted by different shapes and colors. Note that the newly identified V-cGAPs belong to the HD-GYP domain-containing PDEs.There are a total of 36 potential PDE genes (containing EAL, HD-GYP or DHH domains) in the V. cholerae genome. To search for 3′3′-cGAMP-specific PDE(s), Gao et al.12 established an efficient and sensitive eukaryotic screening system by taking advantage of the ability of 3′3′-cGAMP to activate STING and induce type I IFN expression in mammalian cells. By overexpressing the 3′3′-cGAMP synthetase DncV together with the 36 potential PDEs in 293 cells, the authors could monitor IFN-β promoter activation to identify the PDE(s) that could degrade 3′3′-cGAMP. To exclude false-positives, Gao et al. further purified the PDEs that potentially target 3′3′-cGAMP based on the initial screening, and incubated these enzymes with chemically synthesized 3′3′-cGAMP. The treated 3′3′-cGAMP molecules were further assayed by either adding to PFO-permeabilized THP-1 cells to examine IRF3 phosphorylation levels or through loading on HPLC to monitor the generation of new products. As a result of the screening and validation, the authors successfully identified three HD-GYP domain-containing proteins that could degrade 3′3′-cGAMP, named VCA0681, VCA0210 and VCA0931 (designated as V-cGAP1, 2 and 3, respectively).To determine the substrate specificity of V-cGAPs, different cGAMP linkage isomers (3′3′-, 3′2′-, 2′3′-, and 2′2′-cGAMPs) were incubated with the purified V-cGAPs. The results of both IRF3 phosphorylation in THP-1 cells and HPLC assays clearly indicated that V-cGAPs only degrade 3′3′-cGAMP, but not other cGAMP linkage isomers. The 3′3′-cGAMP PDE activity of V-cGAPs was further confirmed by dosage- and time-dependent enzymatic assays. By using mutant proteins, the authors also confirmed that both the HD and GYP motifs within V-cGAPs are critical for PDE activity.Combining detailed HPLC analysis, mass spectrometry and enzymatic treatment, Gao et al. definitively established that 3′3′-cGAMP is first hydrolyzed by all three V-cGAPs to generate linear 5′-pApG, which is further hydrolyzed into 5′-ApG only by V-cGAP1. These results show that V-cGAP2 and V-cGAP3 have only PDE activity, while V-cGAP1 has both PDE and 5′-nucleotidase activities. The authors also found that V-cGAP1 has a much higher activity for linearization of 3′3′-cGAMP to 5′-pApG than V-cGAP2 and 3, with the later two V-cGAPs exhibiting similar kinetics of degradation.The cellular level of 3′3′-cGAMP has to be tightly regulated by a combination of counteracting synthesis and degradation enzymes. Since the expression level of DncV was found to be inducible by outside signals to enhance intestinal colonization and infectivity, it is very likely that the expression level of V-cGAPs will also be regulated by 3′3′-cGAMP production. Indeed, the authors proved that V-cGAP expression is greatly and readily enhanced after arabinose-induced DncV expression in a ΔdncV mutant V. cholerae strain, at both mRNA (by qRT-PCR) and protein (by immunoblot analysis) levels. To confirm the in vivo function of V-cGAPs, the authors performed both “chemotactic” and “infant mouse colonization competition” assays by using V-cGAP1/2/3 single-, double-, or triple-deletion V. cholerae strains. All the in vivo data clearly established that V-cGAPs counteract DncV function and exert a crucial role in regulating bacterial infectivity.The large amount of insightful data presented by Gao et al. has elucidated detailed information regarding the identification and characterization of 3′3′-cGAMP-specific phosphodiesterases, thereby providing valuable insights into our understanding of the regulatory mechanisms of cGAMP signaling in bacteria. Clearly, further structural work will be necessary to understand the intermolecular interactions between 3′3′-cGAMP and V-cGAPs, and provide insights into the mechanism by which V-cGAPs preferentially attack the phosphodiester bond at the GpA step.  相似文献   

15.
The relationships among the spinnability, the rheological properties, the spun fiber strength, and the inhibition of lysinoalanine (LAL) formation with the addition of reducing agents were studied to get safe, edible, fibrous soy protein, having excellent spun fiber strength, when a dope of 20% protein concentration was used as a normal dope. It was found that cysteine and 2-mercaptoethanol were effective in reducing LAL formation and the dopes prepared with the addition of these agents showed almost the same spun fiber strength as that of the normal dope prepared without agents. Especially, cysteine was the most effective agent for inhibiting LAL formation to get fibrous protein for meat analogues. The most suitable concentration for inhibiting LAL formation was 2% cysteine in the total protein. The dopes with the addition of 2-mercaptoethanol and Na2SO3 had lower viscoelastic values and their frequency dependence of G' was higher than that of the normal dope. However, the dopes with the addition of other reducing agents (NaHSO3, glycine, reduced glutathione) had higher viscoelastic values and lower frequency dependence of G'. The viscoelastic values of the dopes with the addition of 2-mercaptoethanol, Na2SO3, and that of the normal dope were decreased with the lapse of time, but the dopes prepared by the addition of other agents had constant viscoelastic values.  相似文献   

16.
Abstract

3′-Derivatives of phosphorothioate (PS) oligonucleotide analogues have been synthesized by a selective activation of a 3′-terminal phosphate group of the deprotected PS oligonucleotides using a mixture of triphenylphosphine and 2,2′-dipyridyldisulfide.  相似文献   

17.
18.
3β-Hydroxysteroid oxidase (3β-hydroxysteroid: oxygen oxidoreductase, EC 1.1.3.6.) from the culture supernatant of Brevibacterium sterolicum ATCC 21387 has a molecular weight of 32,500 and an isoelectric point of 8.9. The enzyme contained 258 amino acid residues and the composition revealed a distinctive feature of a relatively high amount of proline and the absence of alanine and tryptophan. The crystalline enzyme exhibited an absorption spectrum characteristic of a flavoprotein with absorption maxima at 280, 390, and 470 nm with a shoulder at 490 nm. Anaerobic addition of dehydro-epi-androsterone as well as sodium dithionite to the enzyme produced a disappearance of the peaks at 390 and 470 nm. The flavin moiety of the enzyme was isolated and identified as flavin adenine dinucleotide, 1 mole of which was found per mole of protein. The enzyme is sulfhydryl dependent and was inactivated by silver and mercury compounds. Analysis of the enzyme protein by atomic absorption spectrophotometry failed to detect any significant quantity of heavy metals.

Various 3β-hydroxysteroids were oxidized and the relative rates of the oxidation were cholesterol, 100; dehydro-epi-androsterone, 41; pregnenolone, 22; and β-sitosterol, 20. The oxidation product of cholesterol by the enzyme was crystallized and identified as 4-cholesten-3-one by melting point, elementary analysis, optical rotation, UV, IR and NMR spectra. The oxidation of cholesterol proceeded as follows:

The enzyme would be used for some analytical and preparative purposes in the field of steroid chemistry, e.g., microdetermination of cholesterol in serum.  相似文献   

19.
Intracellular 14-3-3 proteins bind to many proteins, via a specific phosphoserine motif, regulating diverse cellular tasks including cell signalling and disease progression. The 14-3-3ζ isoform is a molecular chaperone, preventing the stress-induced aggregation of target proteins in a manner comparable with that of the unrelated sHsps (small heat-shock proteins). 1H-NMR spectroscopy revealed the presence of a flexible and unstructured C-terminal extension, 12 amino acids in length, which protrudes from the domain core of 14-3-3ζ and is similar in structure and length to the C-terminal extension of mammalian sHsps. The extension stabilizes 14-3-3ζ, but has no direct role in chaperone action. Lys(49) is an important functional residue within the ligand-binding groove of 14-3-3ζ with K49E 14-3-3ζ exhibiting markedly reduced binding to phosphorylated and non-phosphorylated ligands. The R18 peptide binds to the binding groove of 14-3-3ζ with high affinity and also reduces the interaction of 14-3-3ζ ligands. However, neither the K49E mutation nor the presence of the R18 peptide affected the chaperone activity of 14-3-3ζ, implying that the C-terminal extension and binding groove of 14-3-3ζ do not mediate interaction with target proteins during chaperone action. Other region(s) in 14-3-3ζ are most likely to be involved, i.e. the protein's chaperone and phosphoserine-binding activities are functionally and structurally separated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号