首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diurnal series of fluorescence and photosynthesis assays wereconducted in high altitude (3803 m), tropical (16°), LakeTiticaca (Peru/Bolivia). Near-surface diurnal thermoclines formedon typical days of high photon flux density (PFD, {small tilde}2000 µE m–2 s–1). In the depth range of diurnalstratification profiles of in vivo fluorescence, both without(Fa and with (Fb DCMU, exhibited a mean decrease of 64% frommorning to mid-day, but little change (mean increase of 1.5%)through the afternoon. Three times during the day surface, mid-depth(3–5 m) and deep (15–20 m) phytoplankton sampleswere incubated with H14CO3 under short (<2 h) exposuresto a range of in situ PFDs. Comparison of phytoplankton in differentsamples (ANOVA) showed identical photosynthetic response insunrise (isothermal) samples but a significant drop in surfaceand mid-depth photosynthesis at all PFDs during times of diurnalstratification. Similarly, both low-light () and light-saturated(P2 max photosynthetic parameters were lower in mid-day surfacesamples compared to deep samples. In addition, previously photoinhibitedsamples had a higher threshold intensity for photoinhibition,IT. These results, together with diurnal time series of fluorescencefrom in situ incubations, demonstrate that recovery from extendedepisodes of photoinhibition during diurnal stratification isslower than suggested by previous observations in vitro. Photosynthesisby near-surface phytoplankton is different in light increasingup to IT than light decreasing from IT. This effect can be modeledby reducing and Pmax as a function of the maximum photoinhibitingPFD in the diurnal light history. 1Present address: Division of Molecular Plant Biology, Universityof California, Berkeley, Berkeley, CA 94720, USA  相似文献   

2.
Relative limitations of nitrogen (N) status on the processescontributing to photosynthetic rate (A) were investigated. Jackpine {Pinus banksiana Lamb.) seedlings from seeds grown in sandculture were supplied with four different N treatments for 6weeks, which resulted in a needle N content ranging from 50–85mmol m–2 (14–32 mg g–1 dry weight). Leaf gasexchange at varying CO2 levels was measured and limitationson A350 (A at ambient CO2 level) caused by finite, limitingcarboxylation efficiency (c.e.), maximum A (Amax)and stomatalconductance were estimated from an analysis of the responseof A to internal CO2 concentration. Although c.e. and Amax decreasedlinearly with the decline in needle N, the magnitudes of theirchanges relative to A350 differed. Amax varied with A350 andalways exceeded A350 by 37–38% c.e., however, declinedfaster than A350, as needle N level decreased. Consequently,relative limitation on A350 caused by inefficient Amax remainedconstant, but limitations caused by c.e. increased by 10–15%at low N levels. In contrast, the limitation by stomatal conductancedeclined initially, but remained stable when N content droppedbelow 75 mmol m–2. The results suggest: (1) a decreasein biochemical capacity, but not stomatal conductance, contributedto the reduction of A350 induced by N-deficiency in jack pineseedlings; and (2) the capacity of carboxylation appeared tobe impaired more than that of electron transport and/or photophosphorylationand its reduction may be the major reason for the reductionin A350. Key words: A–Ci analysis, carboxylation efficiency, electron transport, nitrogen deficiency, stomatal conductance  相似文献   

3.
Two mutant strains (denoted as DCMUr-I and DCMUr-II) of theblue-green alga Aphanocapsa 6714, capable of growing in thepresence of 10–5 M DCMU (an inhibitor of electron transporton the acceptor side of photosystem II), were isolated. The DCMU sensitivity of growth rates and of two photosystemII activities, O2 emission and fluorescence, was investigatedin the mutant cells and compared with that of the wild type.The DCMU sensitivity of isolated thylakoids was also studied.The sensitivity of the mutant cells to other DCMU-type inhibitors(o-phenanthroline and atrazine) was tested. The results suggest that strain DCMUr-I resistance could bedue to the acquisition of a cellular permeability barrier toDCMU, expressed only after an adaptation phase in the presenceof the inhibitor. DCMUr-II resistance seems to be due primarilyto an alteration of the thylakoid membranes of the photosyntheticapparatus itself. (Received June 4, 1979; )  相似文献   

4.
Primary production was measured for 7 years, using the in situ14C-method in hypertrophic Hartbeespoort Dam, South Africa,to examine the influence of light and water temperature on theupper limit of Microcystis aeruginosa production. Water temperaturesvaried from 11 to >25°C and chlorophyll concentrationsreached 6500 mg m–3. The maximum volumetric rate of production(Amax) was 12->8800 mg C m–3 h–1 with areal productions(A) of 69->3300 mg C m–2 h–1 for euphotic zonedepths of <0.5–8.4 m. The intrinsic parameters of phytoplanktonproduction (, Amax/B, Ik) indicated that the phytoplankton populationwas adapted to high light levels. Both Amax/B and Ik were correlatedwith temperature. Under optimal conditions, , the theoreticalupper limit of A, was calculated to be 2.8 g Cm–2 h–1,while the measured rate was 2.5 g Cm–2 h–1. Measuredareal rates exceeding were overestimated due to methodologicalproblems when working with Microcystis scums. Light and watertemperature interacted to yield high production rates: watertemperature through its direct effect on photosynthetic ratesand indirectly in the formation of diurnal mixed layers; lightindirectly through water temperature and directly through itsattenuation and induction of light-adapted physiology in Microcystis.  相似文献   

5.
The physical factors controlling algal primary production weredemonstrated from data collected for a hypertrophic lake. Amaxranged between 12.4 and 5916 mg C m–3 h–1. Arealrates (A) varied between 46.9 and 3381 mg C m–2 h–1.The factors permitting and controlling production were subjectivelyseparated into two categories. In category 1, nutrients (N +P), which were in overabundance, permitted large standing cropsof Microcystis aeruginosa to develop (>1000 µg chla 1–1). Wind patterns determined the dramatic spatialand temporal changes in algal standing crop which could dropto 2.7 µg chl a 1–1. In category 2 were the factorswhich affected the rate processes. The buoyancy mechanism ofMicrocystis usually kept the alga in the euphotic zone. A powerrelationship (r = 0.92, n = 54) between A and Amax/min showedthat with increasing phytoplankton vertical stratification,Amax was increasingly important in the integral. The saturationparameter IK and photosynthetic capacity were temperature dependent.Variations of A were significantly related to changes in watercolumn stability (g cm cm–2) because both axes of thephotosynthesis depth-profile were affected by stability changes.  相似文献   

6.
Imbibition of seeds of oil seed rape (Brassica napus cv Jetneuf)in 10–3 M aminoethoxyvinylglycine (AVG) or 10–2silver thiosulphate (Ag+) had no effect on germination nor onthe emergence of seedlings from uncompacted or lightly compressedsoil, but significantly reduced emergence from moderately compressedsoil of 68.4 or 143.3 N cm–2 impedance. Exertion of force by emerging control seedlings against a staticcantilever bar fitted with strain gauges reached a maximum (Fmax)of 6 g over 10 h. Higher axial forces were achieved when theseedlings were emerging from compressed soil, without any changein the time required to reach Fmax, so that the build-up offorce was considerably (1.8 fold) faster than in uncompressedsoil. This adaptive response to soil impedance was modified by theseed pretreatments employed. Seedlings from AVG or Ag+pretreatedseeds produced lower axial forces than controls, and neitherFmax nor the rate at which force developed showed any responseto soil compression. After pretreatment in 10–3 ethephon or 10–4 naphthaleneacetic acid (NAA) the seedlings achieved similar Fmax to controlseedlings, but responded more rapidly to soil compression sothat the rate of build up of emergence force was 2.3 fold (NAA)or 2.8 fold (ethephon) faster in compressed than in uncompressedsoil. The results suggest that the exertion of force by a seedlingagainst a barrier involves a dynamic response to impedance onthe part of the seedling. This response can be either enhancedor suppressed by substances which affect ethylene productionor ethylene action. Such compounds may have promise for modifyingseedling emergence from impeding soils. Brassica napus, oil seed rape, seedling emergence, soil compaction, ethylene, Ethrel, silver, aminoethoxyvinylglycine, naphthalene acetic acid  相似文献   

7.
The uptake rate of carbon and nitrogen (ammonium, nitrate andurea) by the Microcystis predominating among phytoplankton wasinvestigated in the summer of 1984 in Takahamaira Bay of LakeKasumigaura. The Vmax values of Microcystis for nitrate (0.025–0.046h–1) and ammonium (0.15–0.17 h–1) were considerablyhigher than other natural phytoplankton. The ammonium, nitrateand urea uptake by Microcystis was light dependent and was notinhibited with nigh light intensity. The K1 values were farlower than the Ik values. The carbon uptake was not influencedby nitrogen enrichment. Microcystis accelerated the uptake rateby changing Vmax/K s value when nitrogen versus carbon contentin cells declined. Nitrate was scarcely existent in TakahamairiBay during the summer, when Microcystis usually used ammoniumas the nitrogen source. However, the standing stock of ammoniumin the water was far lower than the daily ammonium uptake rates.Therefore, the ammonium in this water had to be supplied becauseof its rapid turn-over time (–0.7–2.6 h).  相似文献   

8.
The effects of phthalate esters on chlorophyll a2 fluorescencein radish plants (Raphanus sativus L. cv. Cherry Belle) wereexamined Fluorescence yield was increased in those plants exposedto an aerial concentration of 120 ng dm–3 dibutyl phthaiatc(DBP) at a rate of 3.0 dm3 min–1 for 13 d. Comparisonof fluorescence enhancement ratios and Fred/Fox, suggests thatDBP inhibits photosynthesis in radish plants at a site afterQA. Both DBP and diisobutyl phthalate (DIBP) strongly inhibiteduncoupled (PS2+PS1) electron transport rates in thylakoids isolatedfrom spinach. At a chlorophyll concentration of 10 µgcm–3 the concentrations of DBP and DIBP exhibiting 50%inhibition were 44 mmol m–3 and 42 mmol m–3 respectively.Basal electron transport rates were also inhibited, with 87mmol m–3 of DBP or DIBP producing 50% inhibition. Measurementof photosystcm 1 activity suggested that the main site of actionof these phthalates was localized at a site near the reducingside of photosystem 2. Key words: Phthalate, plasticiser, chlorophyll, fluorescence, photosynthesis, inhibition  相似文献   

9.
The Km(CO2) ancl Vmax of ribulose 1,5-bisphosphate (RuBP) carboxylaseand its protein ratio to total soluble protein from Oryza speciesincluding cultivars (25 varieties) and wild types (11 species,21 strains) were surveyed. Their variabilities among cultivarsof O. sativa were very small. The averages of the Km(CO2) andVmax values and the ratio of carboxylase to soluble protein,and their standard errors were 10.2?1.0µM, 1.72?0.13units.mg–1(pH 8.0 and 25?C) and 52?2%, respectively. However, some differencesseemed to exist based on genome constitution in the Oryza genus.RuBP carboxylases from the species with the AgAg genome, O.graberrima and O. breviligulate, exhibited low Km(CO2) values(8.0?0.8 µM). High Vmax was associated with the CC genome,O. eichingeri and O. officinalis (2.08?0.15 units.mg–1).A higher ratio of RuBP carboxylase protein to soluble proteinwas found for the AA genome, O. sativa and O. perennis. (Received September 24, 1986; Accepted April 15, 1987)  相似文献   

10.
Cells of Dunaliella tertiolecta which had been grown in ordinaryair (low-CO2 cells) had high carbonic anhydrase (CA) activityon the cell surface and mainly utilized HCO3 for photosynthesis.When CA activity on the cell surface was inhibited by Diamoxor subtilisin, the cells utilized CO2. When bovine CA was added,the subtilisin-treated low-CO2 cells utilized mainly HCO3.When grown in air containing 2% CO2, the cells had low CA activityon the cell surface, and preferred CO2 to HCO3. Kineticanalysis of these results indicated that low-CO2 cells of D.tertiolecta absorb CO2 which was converted from HCO3via the CA located on the cell surface. (Received June 29, 1985; Accepted October 9, 1985)  相似文献   

11.
The net assimilation rate (EA), relative growth-rate (Rw), andleaf-area ratio (FA) were measured for rape (Brassica napus),sunflower (Hetianthus annuus), and maize (Zea mays) at varioustimes of year in an arid climate, using young plants grown widelyspaced on nutrient culture. Multiple regression analysis accountedfor 90–95 per cent of the variation in EA and RW in termsof two climatic variables: mean temperature and radiation receipt. EA rose linearly with radiation in all three species; increasein EA with temperature was greatest in maize and least (notsignificant) in rape. RWrose with radiation and temperature,the latter being the more important variable especially in coolweather; a temperature optimum was shown at 24° C in rape.FA rose with increase in temperature or decrease in radiation;its variation was due to change in leaf area/leaf weight ratherthan in leaf weight/plant weight. Multiple regression analyses can lead to faulty interpretationif the independent variables are correlated (as are climaticvariables in nature), but conclusions can be checked by controlled-environmentstudies in which climatic factors are not correlated. The presentconclusions are supported by such studies. The regression equations, coupled with average weather records,indicate seasonal cycles of growth parameters. EA is maximalnear midsummer and minimal near midwinter, following the radiationcycle. Maxima and minima in RW are about a month later, becauseRW is affected by the temperature cycle and this lags behindthe radiation cycle. FA is maximal in autumn and minimal inspring. EA is highest where radiation receipts near 750 cal cm–2day–1 coincide with high temperatures. This combinationoccurs only in clear midsummer weather at low latitudes, andis maintained over long periods only in arid regions. The fact that EA rose linearly with radiation suggests thatleaf water deficits arising under high radiation had littleeffect on EA and that saturating levels of light were very high.  相似文献   

12.
The relative requirement of N and P (the optimum N:P ratio)by Dunaliella tertiolecta, Phaeodactylum tricornutum, Prymnesiumparvum and Thalassiosira pseudonana was studied under variouslight intensities and spectra. The ratio was determined as theratio of the minimum cell N and P concentrations (q0N and q0pwhen either nutrient was limiting. The ratio varied widely amongspecies; under light-saturation for growth (116 µEin m–2s–1 it ranged from 11.8 in D. tertiolecta to 36.6 in P.tricornutum. The ratio appeared to be higher at a sub-saturatingintensity (24 µEin m–2 s–1 in all except P.tricornutum, mainly because of higher qoN with little changein qoP. In T. pseudonana QoP also increased, resulting in aninsignificant change in the ratio. The ratio varied little withinthe range of saturation intensity. Light quality affected qoNand qoP as well as the ratio, and the pattern of change variedfrom species to species. The optimum ratio of individual specieswas linearly correlated to their qoN except in P. tricornutum.qoN for all species showed a linear correlation with cell proteinconcentrations irrespective of light conditions. The changeof optimum N:P ratios in the three species thus appears to berelated to changes in cell protein contents. The ratio of carbohydratesto protein remained constant regardless of light intensity orquality and was higher in P-limited cultures. We conclude thatchanges in light regime can strongly influence algal nutrientrequirements and species interrelationships by altering theoptimum cellular N:P ratio.  相似文献   

13.
GLOBERSON  D. 《Annals of botany》1981,48(5):639-643
The effects of red light, far-red light, Gibberellin A3, andethephon were studied on the germination of lettuce seeds cv.Grand Rapids harvested at different stages of development. Seeds did not become capable of germination until 8 days afteranthesis. Red light promoted seed germination from the age of8–9 days following anthesis up to the newly mature stage.Ten or 11 days following anthesis, a large percentage of seedsbecame capable of germination in the dark and therefore couldbe considered not dormant. They were affected by far-red light,but less so than the mature seeds. The effect of light on the germination of developing seeds appearedto be similar to the known light effect on mature lettuce seedgermination. Gibberellin A3 and ethephon had no effect on immatureand fresh seed germination. Lactuca sativa L., Lettuce, germination, dormancy, red light, far-red light, gibberellin A3, ethephon  相似文献   

14.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

15.
Influx of nitrate into the roots of intact barley plants wasfollowed over periods of 1–15 min using nitrogen-13 asa tracer. Based on measurements taken over 15 min from a rangeof external nitrate concentrations (0·2–250 mmolm–3), the kinetic parameters of influx, Imax and Km, werecalculated. Compared with plants grown in the presence of nitrate throughout,plants that had been starved of N for 3 d showed a significantlygreater value ofImax for 13N-nitrate influx (by a factor of1·4–1·8), but a similar value of Km (12–14mmol m–3). Pre-treating N-starved plants with nitratefor about 5 h further increased the subsequent rate of 13N-nitrateinflux, but had little effect in the unstarved controls. Allowingfor this induction of additional nitrate transport, the differencein rates of nitrate influx in control and N-starved plants wassufficient to account for the previously-observed differencein net uptake by the two groups of plants. In barley plants grown without any exposure to nitrate, butwith ammonium as N-source, both Imax and Km for subsequent 13N-nitrateinflux were significantly decreased (by about one-half) comparedwith the corresponding nitrate-grown controls. The importance of changes in the rate of influx in the regulationof net uptake of nitrate is discussed. Key words: Ion transport, nitrate, influx, kinetic parameters, N-deficiency  相似文献   

16.
Modulated (690 and 730 nm), as well as direct chlorophyll (Chl)a fluorescence and changes in the concentration of the oxidizedP700 were measured under steady state conditions in leaves ofhigher plants adapted to different light intensities. All theleaf samples exhibit an optimum curve of steady state fluorescenceyield (Fs) versus the light intensity but its position withrespect to light intensity varies considerably from one speciesto another or from one sample to other even in the same plantor within the same leaf sample. However, the optimum level ofFs was always at a moderate light intensity. By using the modulatedfluorescence technique, the system with all closed (Flm) oropen reaction center (Flo) were measured in steady state conditions.Each experimentally measured fluorescence yield was separatedinto a fluorescence emission of open (Fopen = Flo,(1—Vs))and closed (Fclosed = (Flm . Vs)) reaction center (RC) of photosystemII where Vs=(Fs – Flo)/(Flm – Flo) is the functionof fraction of closed reaction centers. With increasing lightintensity, the fraction of open RC decreased while the fractionof closed RC increased. Maximum quantum efficiency (Po) andactual quantum efficiency (P) decreased by increasing lightintensity. An optimum level of Fs was observed, when the fractionof closed reaction centers Vs of each sample was about 0.2 showinga common quenching mechanism which determines the fluorescenceproperties under steady state condition. This explains the apparentphenomenological contradiction that the fluorescence yield understeady state conditions can increase or decrease upon an increaseof actinic light. (Received December 31, 1994; Accepted May 1, 1995)  相似文献   

17.
Niklas  Karl J. 《Annals of botany》1993,72(5):475-483
Perianth MP, gynoecium MG, and androecium MA dry-weight biomass(in g) of 39 species of perfect flowers was measured. Thesedata were pooled with published data from an additional 51 speciesand used to determine size-dependent variations in (MG and MA)in terms of the hypothesis that the quotient of MG and MA exceeds1·0 for out-breeding (xenogamous) species and less than1·0 for in-breeding (autogamous) species. Ordinary leastsquare regression of the pooled data (n = 90) showed MG = 0·118M0·916P (r2 = 0·884) and MA = 0·186 M0·975P(r2 = 0·865), indicating that the biomass of the gynoeciumproportionally decrease as floral size increases. The exponentsof these regressions indicate that the ratio of gynoecial toandroecial biomass decreased with increasing floral size suchthat comparatively small flowers (MP < 0·0021 g) hadMG/MA > 1·0 (predicted for 'out-breeders') while comparativelylarger flowers (MP > 0·0021 g) had MG /MA < 1·0(predicted for 'in-breeders'). Thus, on average, the type ofbreeding system was a size-dependent phenomenon. To test whether the biomass of a floral organ-type is a legitimateindicator of gender reproductive effort, the biomass (in g)of stamen filaments Mm and anther sacs MAS of 39 species wasdetermined. Least square regression of these data showed MAS= 0·188 M0·854fil (r2 = 0·967), indicatingthat species with larger stamen filaments, on the average, boreproportionally smaller anther sacs and thereby cautioning againstthe uncritical use of the allocation of biomass to floral organ-typeas a strict gauge of gender-function investment. To determine whether the loss of one gender-function resultsin proportional reallocation of biomass to the remaining gender-function,the size-dependency of androecial and gynoecial biomass wasdetermined for a total of 33 perfect and imperfect flowers ofCucumis melo. Regression of the data obtained from perfect flowersyielded MA = 0·402 M1·47P (r2 = 0·898)and MG = 4·63 M1·36P (r2 = 0·842). SinceMG/MA M0·11P , the biomass allocation to the gynoeciumrelative to the androecium decreased with increasing floralsize. This result was consistent with the broad interpecificcomparison based on 90 species with perfect flowers . Regressionof the data for imperfect flowers yielded MA = 0·151M1·02P (r2 = 0·675) and MG = 4·68 M1·47P(r2 = 0·996), indicating a near allometric relation forthe androecium and a strong positive anisometry for the gynoecium.Thus, for flowers of comparable size, a loss of female genderobtains a modest to significant again in androecial biomasswhereas the loss of male gender yields only a slight increasein gynoecial biomass. Collectively, the results of these studies indicate that biomassallocation patterns are size-dependent phenomena whose complexitieshave been largely ignored in the literature.Copyright 1993,1999 Academic Press Allometry, floral biomass, reproduction  相似文献   

18.
Nutrient-sufficient cultures of a Trondheimsfjord (Norway) cloneof the marine centric diatom Skeleionema costatum (Grev.) Clevewere grown at 75 µmol m–2 s–1 and 15C at24 and 12 h daylength to study diurnal variations and the effectof daylength on pigment and chemical composition, photosyntheticparameters, dark respiration rates and scaled fluorescence excitationspectra (F), the latter used as estimates for the absorptionof energy available to Photosystem II. Specific growth rateswere 1.06 and 0.56 day in 24 and 12 h daylength, respectively,while dark respiration rates were generally 85% of the net growthrate. The Chla-normalized photosynthetic coefficients PBm andaB were {small tilde}20–25% higher in continuous lightthan at 12 h daylength, while the Chla:C ratio was {small tilde}15%lower (0.051 versus 0.061 w:w). Thus, the carbon-normalizedcoefficients Pcm and ac were <11% lower at 24 h than at 12h daylength. The maximum quantum yield max, the Chla:C ratioand F differed negligibly, as did the light saturation indexlk, the N:C ratio and the ratios Chlc:Chla and Fucoxanthin:Chla. PBm and lk did not exhibit diurnal variations at 24 hdaylength, and varied within 23% of the daily mean at 12 h daylength.Predictions of the daily gross photosynthetic rate based ondata for a given time of the day should thus not be >10%in error relative to an integrated value based on several datasets collected through 24 h. max was 0.084–0.117 mol O2(mol photons) for gross oxygen evolution. However, ifused in mathematical models for predicting the gross and netgrowth rates (i.e. the gross and net carbon turnover rates),‘practical’ values of 0.076 and 0.040 g-at C (molphotons), respectively, should be employed. Correspondingly,values for aB and PBm should be adjusted pro rata. 1Present address: College of Marine Studies, Sjmannsveien 27,N-6008 lesund, Norway  相似文献   

19.
Sugar-beet, potato, and barley plants were grown in a controlledenvironment, for periods of up to 10 weeks from sowing, witha light intensity of 1,8oo f.c. (4·9 cal./cm.2/hr.) anda temperature of 20° C. during the 18-hour photoperiod and15° C. during the dark period, to test whether net assimilationrate varied with age and differed between the three species. Net assimilation rate of all species based on leaf area (EA)fell approximately linearly with time. During 5 weeks EA ofsugar-beet decreased by only about 20 per cent. and EA of potatodecreased by 50 per cent. EA of barley remained approximatelyconstant for 4 weeks after sowing and was halved during thesubsequent 4 weeks. The average value of EA for all times wasgreatest for sugarbeet and least for barley. Net assimilation rates based on leaf weight (EW) and leaf N(EN) decreased at about 15 per cent. of the initial value perweek for all species; this was similar to the mean rate of decreaseof EA of potato and barley, but greater than that of EA of sugar-beet.Mean values of EW or EN for potato and barley were similar andless than for sugar-beet. Relative growth rate (RW), relative leaf growth-rate (RA), andleaf-area ratio (F) fell with time at similar rates for allspecies. Average values of RW decreased and of F increased inthe order sugar-beet, potato, barley. RA was greatest for potatoand least for barley.  相似文献   

20.
Seasonal changes in the photosynthesis and primary productionof Microcystis aeruginosa Kütz. were investigated in LakeKasumigaura during 1981–1982. Microcystis always showeda light-saturated photosynthesis-light curve. Both Pmax andthe initial slope of the photosynthesis-light curve of Microcystisin early summer were very high, so it was concluded that Microcystisutilized both low and high light intensities efficiently. ThePmax of Microcystis was found to be a function of the watertemperature except in August and September. The linear regressionon the temperature-Pmax relationship discontinued at 11°C,where the Pmax value dropped; Microcystis did not photosynthesizebelow 4°C. The initial slope of the curve was also descendingbelow 11°C. It is suggested that Microcystis changes itsphysiological properties below 11°C. The highest value ofgross production calculated for M. aeruginosa was 5.4 gC m–2d–1 in July; the annual gross production was estimatedto be 300 gC m–2year–1 (i.e., 40% of the total primaryproduction in this lake).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号