首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations of human mitochondrial transfer RNA (tRNA) are implicated in a variety of multisystemic diseases. The most prevalent pathogenic mitochondrial mutation is the A3243G substitution within the gene for tRNA(Leu(UUR)). Here we describe the pronounced structural change promoted by this mutation. The A3243G mutation induces the formation of a tRNA dimer that strongly self-associates under physiological conditions. The dimerization interface in the mutant tRNA is a self-complementary hexanucleotide in the D-stem, a particularly weak structural element within tRNA(Leu(UUR)). Aminoacylation of the A3243G mutant is significantly attenuated, and mutational studies indicate that dimerization is partially responsible for the observed loss of function. The disruption of a conserved tertiary structural contact also contributes to the functional defect. The pathogenic mutation is proposed to interfere with the cellular function of human mitochondrial tRNA(Leu(UUR)) by destabilizing the native structure and facilitating the formation of a dimeric complex with low biological activity.  相似文献   

2.
The proteomic effects of specific cancer-related mutations have not been well characterized. In colorectal cancer (CRC), a relatively small number of mutations in key signaling pathways appear to drive tumorigenesis. Mutations in adenomatous polyposis coli (APC), a negative regulator of Wnt signaling, occur in up to 60% of CRC tumors. Here we examine the proteomic consequences of a single gene mutation by using an isogenic CRC cell culture model in which wildtype APC expression has been ectopically restored. Using LC-MS/MS label free shotgun proteomics, over 5000 proteins were identified in SW480Null (mutant APC) and SW480APC (APC restored). We observed 155 significantly differentially expressed proteins between the two cell lines, with 26 proteins showing opposite expression trends relative to gene expression measurements. Protein changes corresponded to previously characterized features of the APCNull phenotype: loss of cell adhesion proteins, increase in cell cycle regulators, alteration in Wnt signaling related proteins, and redistribution of β-catenin. Increased expression of RNA processing and isoprenoid biosynthetic proteins occurred in SW480Null cells. Therefore, shotgun proteomics reveals proteomic differences associated with a single gene change, including many novel differences that fall outside known target pathways.  相似文献   

3.
The nuclear suppressor allele NSM3 in strain FF1210-6C/170-E22 (E22), which suppresses a mutation of the yeast mitochondrial tRNAAsp gene in Saccharomyces cerevisiae, was cloned and identified. To isolate the NSM3 allele, a genomic DNA library using the vector YEp13 was constructed from strain E22. Nine YEp13 recombinant plasmids were isolated and shown to suppress the mutation in the mitochondrial tRNAAsp gene. These nine plasmids carry a common 4.5-kb chromosomal DNA fragment which contains an open reading frame coding for yeast mitochondrial aspartyl-tRNA synthetase (AspRS) on the basis of its sequence identity to the MSD1 gene. The comparison of NSM3 DNA sequences between the suppressor and the wild-type version, cloned from the parental strain FF1210-6C/170, revealed a G to A transition that causes the replacement of amino acid serine (AGU) by an asparagine (AAU) at position 388. In experiments switching restriction fragments between the wild type and suppressor versions of the NSM3 gene, the rescue of respiratory deficiency was demonstrated only when the substitution was present in the construct. We conclude that the base substitution causes the respiratory rescue and discuss the possible mechanism as one which enhances interaction between the mutated tRNAAsp and the suppressor version of AspRS.  相似文献   

4.
Initiation of protein synthesis in mitochondria and chloroplasts is widely believed to require a formylated initiator methionyl-tRNA (fMet-tRNAfMet) in a process involving initiation factor 2 (IF2). However, yeast strains disrupted at the FMT1 locus, encoding mitochondrial methionyl-tRNA formyltransferase, lack detectable fMet-tRNAfMet but exhibit normal mitochondrial function as evidenced by normal growth on non-fermentable carbon sources. Here we show that mitochondrial translation products in Saccharomyces cerevisiae were synthesized in the absence of formylated initiator tRNA. ifm1 mutants, lacking the mitochondrial initiation factor 2 (mIF2), are unable to respire, indicative of defective mitochondrial protein synthesis, but their respiratory defect could be complemented by plasmid-borne copies of either the yeast IFM1 gene or a cDNA encoding bovine mIF2. Moreover, the bovine mIF2 sustained normal respiration in ifm1 fmt1 double mutants. Bovine mIF2 supported the same pattern of mitochondrial translation products as yeast mIF2, and the pattern did not change in cells lacking formylated Met-tRNAfMet. Mutant yeast lacking any mIF2 retained the ability to synthesize low levels of a subset of mitochondrially encoded proteins. The ifm1 null mutant was used to analyze the domain structure of yeast mIF2. Contrary to a previous report, the C terminus of yeast mIF2 is required for its function in vivo, whereas the N-terminal domain could be deleted. Our results indicate that formylation of initiator methionyl-tRNA is not required for mitochondrial protein synthesis. The ability of bovine mIF2 to support mitochondrial translation in the yeast fmt1 mutant suggests that this phenomenon may extend to mammalian mitochondria as well.  相似文献   

5.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNAVal. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

6.
A fragment of mitochondrial DNA containing the Kluyveromyces lactis gene for valine-tRNA (tRNAVAL) was isolated as a multicopy suppressor of a respiratory-deficient mutant of this yeast. The mutant produced a truncated Cox14p because of a +1 frameshift mutation in COX14, a nuclear gene encoding a protein imported into mitochondria which is necessary for respiration (Fiori et al. 2000 Yeast 16: 307-314). We report here that the mitochondrial tRNAVAL gene, when transformed into K. lactis cells, is transcribed outside mitochondria and suppresses the frameshift mutation in COX14 restoring the correct reading frame during translation of its mRNA. In fact, using histidine tagging, the existence of a suppressed Cox14p of normal length was demonstrated in mutants expressing the mt-tRNAVAL from the nucleus. Suppression could occur through a non-canonical four base pairing between the tRNAVAL and the mutated mRNA or through slippage of ribosomes during translation. This is a new case of informational suppression in that the suppression of a chromosomal mutation is not caused by a second mutation but to a mislocalization/expression of a mt-tRNA.  相似文献   

7.
Many human mitochondrial disorders are associated with mutations in tRNA genes or with deletions of regions containing tRNA genes, all of which may be suspected to play a role in recognition by RNase P. Here we describe the analysis of five such mutations. The results presented here demonstrate that none of thse mutations result in errors in RNase P function. Further studies of mutations in tRNAs need to be pursued to elucidate the identity elements for RNase P function in mammalian mitochondria.  相似文献   

8.
We describe a lethal mitochondrial disease in a 10-month-old child who presented with encephalomyopathy. Histochemical and electron microscopy examinations of skeletal muscle biopsy revealed abnormal mitochondria associated with a combined deficiency of complexes I and IV. After excluding mitochondrial DNA deletions and depletion, direct sequencing was used to screen for mutation in all transfer RNA (tRNA) genes. A T-to-C substitution at position 5693 in the tRNA(Asn) gene was found in blood and muscle. Microdissection of muscle biopsy and its analysis revealed the highest level of this mutation in cytochrome c oxidase (COX)-negative fibres. We suggest that this novel mutation would affect the anticodon loop structure of the tRNA(Asn) and cause a fatal mitochondrial disease.  相似文献   

9.
Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA(Val). This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.  相似文献   

10.
11.
We report, for the first time, a patient with an overlap MERRF-NARP syndrome who carries the mutation m.12300G>A in the mitochondrial tRNA(Leu(CUN)) gene. The mutation was heteroplamic and more abundant in her muscle and fibroblast than in blood from her oligosymptomatic mother. Single muscle fiber analysis revealed that the proportion of mutant mtDNA in ragged red fibers was higher than that in normal fibers. Combined defects of mitochondrial respiratory chain complexes were detected in muscle, fibroblasts and transmitochondrial hybrid cells. Significant reduction of total ATP and mitochondrial membrane potential and an increased production of reactive oxygen species were observed.  相似文献   

12.
Although mitochondrial import of nuclear DNA-encoded RNAs is widely occurring, their functions in the organelles are not always understood. Mitochondrial function(s) of tRNA(Lys)(CUU), tRK1, targeted into Saccharomyces cerevisiae mitochondria was mysterious, since mitochondrial DNA-encoded tRNA(Lys)(UUU), tRK3, was hypothesized to decode both lysine codons, AAA and AAG. Mitochondrial targeting of tRK1 depends on the precursor of mitochondrial lysyl-tRNA synthetase, pre-Msk1p. Here we show that substitution of pre-Msk1p by its Ashbya gossypii ortholog results in a strain in which tRK3 is aminoacylated, while tRK1 is not imported. At elevated temperature, drop of tRK1 import inhibits mitochondrial translation of mRNAs containing AAG codons, which coincides with the impaired 2-thiolation of tRK3 anticodon wobble nucleotide. Restoration of tRK1 import cures the translational defect, suggesting the role of tRK1 in conditional adaptation of mitochondrial protein synthesis. In contrast with the known ways of organellar translation control, this mechanism exploits the RNA import pathway.  相似文献   

13.
The U3271C mutation affecting the human mitochondrial transfer RNA(Leu(UUR)) (hs mt tRNA) is correlated with diabetes and mitochondrial encephalopathies. We have explored the relationship between the structural effects of this mutation and its impact on function using chemical probing experiments and in vitro aminoacylation assays to investigate a series of tRNA constructs. Chemical probing experiments indicate that the U3271C substitution, which replaces an AU pair with a CA mispair, significantly destabilizes the anticodon stem. The introduction of a compensatory A3261G mutation reintroduces base pairing at this site and restores the structure of this domain. In fact, the anticodon stem of the A3261G/U3271C mutant appears more structured than wild-type (WT) hs mt tRNA(Leu(UUR)), indicating that the entirely AU stem of the native tRNA is intrinsically weak. The results of the chemical probing experiments are mirrored in the aminoacylation activities of the mutants. The U3271C substitution decreases aminoacylation reactivity relative to the WT tRNA due to an increase in K(m) for the pathogenic mutant. The binding defect is a direct result of the structural disruption caused by the pathogenic mutation, as the introduction of the stabilizing compensatory mutation restores aminoacylation activity. Other examples of functional defects associated with the disruption of weak domains in hs mt tRNAs have been reported, indicating that the effects of pathogenic mutations may be amplified by the fragile structures that are characteristic of this class of tRNAs.  相似文献   

14.
The 13 polypeptides encoded in mitochondrial DNA (mtDNA) are synthesized in the mitochondrial matrix on a dedicated protein-translation apparatus that resembles that found in prokaryotes. Here, we have investigated the genetic basis for a mitochondrial protein-synthesis defect associated with a combined oxidative phosphorylation enzyme deficiency in two patients, one of whom presented with encephalomyopathy and the other with hypertrophic cardiomyopathy. Sequencing of candidate genes revealed the same homozygous mutation (C997T) in both patients in TSFM, a gene coding for the mitochondrial translation elongation factor EFTs. EFTs functions as a guanine nucleotide exchange factor for EFTu, another translation elongation factor that brings aminoacylated transfer RNAs to the ribosomal A site as a ternary complex with guanosine triphosphate. The mutation predicts an Arg333Trp substitution at an evolutionarily conserved site in a subdomain of EFTs that interacts with EFTu. Molecular modeling showed that the substitution disrupts local subdomain structure and the dimerization interface. The steady-state levels of EFTs and EFTu in patient fibroblasts were reduced by 75% and 60%, respectively, and the amounts of assembled complexes I, IV, and V were reduced by 35%–91% compared with the amounts in controls. These phenotypes and the translation defect were rescued by retroviral expression of either EFTs or EFTu. These data clearly establish mutant EFTs as the cause of disease in these patients. The fact that the same mutation is associated with distinct clinical phenotypes suggests the presence of genetic modifiers of the mitochondrial translation apparatus.  相似文献   

15.
16.
Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.  相似文献   

17.
18.
Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes.  相似文献   

19.
20.
Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号