首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Paul Humphries 《Hydrobiologia》1996,321(3):219-233
Aquatic macrophytes are a common habitat for macroinvertebrates and may occupy depth zones in the littoral region of lowland rivers. Studies have indicated that different species of macrophyte typically support different assemblages, abundances and numbers of species of macroinvertebrates. This has often been attributed to differences in the dissectedness of stems and leaves of the macrophytes, resulting in differences in the surface area and/or the number of microhabitats available to invertebrates. I set out to measure the abundance and taxonomic richness and to describe the macroinvertebrate assemblages associated with three species of aquatic macrophyte in a pool in the Macquarie River, Tasmania and to examine responses of these variables to changes in water levels over summer. The macrophyte species sampled wereMyriophyllum simulans/variifolium, Triglochin procera} and Eleocharis sphacelata, each one differing in the dissectedness of its stems and leaves and its location in the littoral zone. Whereas the greatest abundance of macroinvertebrates was found associated in all months (i.e. at all water levels) with the structurally complex and shallowest macrophyte species, Myriophyllum, the number of taxa associated with this species was in several cases lower than for the structurally simpler and deeper water Triglochin and Eleocharis. While water depth and total plant biomass of samples were often correlated with invertebrate abundance and richness, these relationships were different for each macrophyte species. Of the nine most common invertebrate taxa collected from all samples, the abundances of more than half showed consistent differences among macrophyte species across months, two showed differences among macrophytes, but with an interaction with month and two showed no differences among macrophytes. There were major differences in the invertebrate assemblages associated with each macrophyte species in any one month, however, there was also a large turnover of taxa associated with the species of macrophytes from one month to the next. Changes in water level and concomitant changes in environmental variables are suggested as factors influencing the invertebrate fauna in the littoral zone of the pool of the Macquarie River. It is thus important for river managers to be aware that species of macroinvertebrates are not evenly distributed across species of macrophyte and that water levels and their influence on macrophytes as invertebrate habitat may play an integral part in determining the abundance, richness and assemblage of invertebrates in rivers.  相似文献   

2.
A study of epiphytic gastropods associated with two submerged macrophytes (Myriophyllum spicatum and Vallisneria americana) was conducted at a soft and at a hard water site in the St. Lawrence River during two non-consecutive years in order to compare effects of macrophyte species and biomass, site and year in gastropod community structure. There was no effect of macrophyte species on total gastropod abundance nor on gastropod diversity, and few gastropod species showed a marked preference for either macrophyte species. Inter-site and inter-annual variations in diversity, total gastropod abundance and gastropod community structure were greater than variations among macrophytes. However, analysis of variations of epiphytic gastropod communities in one of the two sites shows that abiotic factors are important in explaining epiphytic gastropod distribution. Our results and results of other studies on gastropod population dynamics in the St. Lawrence River indicate that intra- and interspecific competition between gastropods is important on macrophytes and that they must be carefully considered in order to understand epiphytic community structure and population dynamics.  相似文献   

3.
Due to changes of discharge regime downstream of a dam reservoir, an alluvial natural stretch of the Warta River changed to a macrophyte‐dominated ecosystem. Large patches of submersed, aquatic macrophytes appeared in summer and their effect is analysed in this study. These patches contained enriched macroinvertebrate assemblages (epiphyton and benthos) and they were refuge for both zooplankton and young fishes released from the reservoir. Despite these altered conditions in this stretch, roach Rutilus rutilus, perch Perca fluviatilis and ruffe Gymnocephalus cernua dominated, as they did in the natural backwater. Fishes were sampled every 2 weeks from June to August, together with their food resources to assess the partitioning of the diet among small individuals of the three species in both stretches (the natural and affected ones). The aim of the analysis was to answer how animal food associated with water plants was partitioned between the species. In both stretches, G. cernua were primarily benthivorous, but epiphytic fauna, zooplankton and large‐sized benthic chironomid larvae replaced lack of many large, benthic insects in the tailwater. Levins' food breath index decreased from 0·36 in the backwater to 0·29 in the tailwater. An opposite trend was observed for P. fluviatilis occurring among macrophytes. Perca fluviatilis were competitors of R. rutilus and took food not only in or on the river bed, but also in the water column. They ate zooplankton and epiphytic fauna and Levins' index increased from 0·32 to 0·44 in the tailwater. Rutilus rutilus fed on adult insects, algae and plant fragments in the natural stretch. In the tailwater, these food types were chiefly complemented by zooplankton. Despite this, the niche breadth of R. rutilus was similar at the two sites. Abundance of food associated with the macrophytes appeared to facilitate cohabitation in the abundant fish populations, but P. fluviatilis appeared to benefit the most in the altered river stretch.  相似文献   

4.
1. Many animals that consume freshwater macrophytes are omnivorous (i.e., they include both plant and animal matter in their diet). For invertebrate omnivorous consumers, selection of macrophyte species depends partly on the presence of secondary metabolites in plants, plant carbon/nutrient balances and/or physical structure of plants. However, little is known about the mechanisms influencing consumption of macrophytes in aquatic vertebrates. 2. For two fish species, the omnivorous rudd (Scardinius erythrophthalmus) and herbivorous grass carp (Ctenopharyngodon idella), feeding preferences were determined in three choice experiments. We tested (i) whether the presence of secondary metabolites and macrophyte stoichiometry affects macrophyte species selection by fish, (ii) the importance of macrophyte stoichiometry by manipulating the macrophytes experimentally and (iii) the rate of herbivory when the most palatable macrophyte is offered simultaneously with a common animal prey. 3. In a choice experiment with five species of submerged macrophytes (Callitriche sp., Chara globularis, Elodea nuttallii, Myriophyllum spicatum and Potamogeton pectinatus), Myriophyllum was clearly consumed least by both fishes, which strongly correlated with the highest phenolic concentration of this macrophyte. Additionally, a significant negative relationship was found between consumption and C : N ratio of the five macrophytes. The two most consumed macrophytes also had the lowest dry matter concentration (DMC). 4. In a second choice experiment, the C : N ratio of the least (Myriophyllum) and most (Potamogeton) palatable plants was manipulated by growing the macrophytes under fertilised and unfertilised conditions and subsequently feeding them to rudd. The avoidance of consumption of the chemically defended Myriophyllum by rudd was partly alleviated by the lowered C : N ratio. 5. The third choice experiment showed that both fishes preferred animal prey (the amphipod Gammarus pulex) over the most palatable macrophyte (Potamogeton) when offered simultaneously. The C : N ratio of the amphipods was about half that of the lowest C : N ratio measured in the macrophytes. Consumption by the fishes could not clearly be related to C : P or N : P ratios of prey items in any of the experiments. 6. We conclude that omnivorous fish avoid macrophytes that are chemically defended. However, when these defences are only minor, stoichiometry (C : N ratio) in combination with DMC may be a determining factor for consumption by vertebrate facultative herbivores.  相似文献   

5.
Shoe Lake and East Graham Lake, part of a small chain of lakes in southeastern Michigan, USA, differ in nutrient loading and in the structure and productivity of their aquatic plant communities. A comparative study of species frequency and biomass distributions, nutrient contents, and responses to experimental nutrient enrichment and shading, was conducted to determine the principal factors controlling the macrophyte dynamics. A central objective was to address the question of why rooted macrophyte growth declines with eutrophication, and to test existing models designed to explain this phenomenon. In the more eutrophic Shoe Lake, diversity and productivity of rooted macrophytes were relatively low, restricted primarily by combined shading of phytoplankton, periphyton, and non-rooted macrophytes (principally Ceratophyllum demersum, along with Utricularia vulgaris and Cladophora fracta). In the less eutrophic East Graham Lake, lower nitrogen availability restricted the growth of all of these shading components, resulting in clearer water and higher productivity and diversity of rooted macrophytes. The macrophytes did not allelopathically suppress the phytoplankton in East Graham Lake. The results supported a direct relationship between nutrient loading, increasing growth of phytoplankton, periphyton and non-rooted macrophytes, and decline of rooted macrophytes.  相似文献   

6.
In saline lakes, areal cover and both species and structural diversity of macrophytes often decline as salinity increases. To assess effects of the loss of certain macrophyte growth forms, we characterized benthic and epiphytic invertebrates in three growth forms (thin-stemmed emergents, erect aquatics, and low macroalgae) in oligosaline lakes (0.8–4.2 mS cm−1) of the Wyoming High Plains, USA. We also measured the biomass and taxonomic composition of epiphytic and benthic invertebrates in two erect aquatics with very similar structure that are found in both oligosaline (Potamogeton pectinatus) and mesosaline (9.3–23.5 mS cm−1) (Ruppia maritima) lakes. Although total biomass of epiphytic invertebrates varied among oligosaline lakes, the relative distribution of biomass among growth forms was similar. For epiphytic invertebrates, biomass per unit area of lake was lowest in emergents and equivalent in erect aquatics and low macroalgae; biomass per unit volume of macrophyte habitat was greatest in low macroalgae. For benthic invertebrates, biomass was less beneath low macroalgae than other growth forms. Taxonomic composition did not differ appreciably between growth forms for either benthic or epiphytic invertebrates, except that epiphytic gastropods were more abundant in erect aquatics. Total biomass of epiphytic and benthic invertebrates for the same growth form (erect aquatic) did not differ between oligosaline (Potamogeton pectinatus) and mesosaline (Ruppia maritima) lakes, but taxonomic composition did change. In the oligosaline to mesosaline range, direct toxic effects of salinity appeared important for some major taxa such as gastropods and amphipods. However, indirect effects of salinity, such as loss of macrophyte cover and typically higher nutrient levels at greater salinities, probably have larger impacts on total invertebrate biomass lake-wide.  相似文献   

7.
The macrophytes Fucus serratus and Zostera marina form similar substrates for associated flora and fauna in shallow waters in Norway. While F. serratus forms a more or less continuous belt on rocky substrate along the coast, Z. marina forms disjunct populations on sandy or muddy bottoms. This study focused on the organisms associated with these two macrophytes in two localities in the Skagerrak region. In total, 130 taxa of epiphytic organisms were identified: 22 green algae, 41 red algae, 32 brown algae, eight diatoms and 27 sessile animals. One hundred and twenty-seven taxa of mobile macrofauna were registered. The dominant group was crustaceans, with amphipods as the order containing most species. Many species of both plants and animals preferred one or the other habitat. It is concluded that coastal macrophyte systems have high species diversity.  相似文献   

8.
The variables affecting epiphyton biomass were examined in a sheltered, multispecies macrophyte bed in the St. Lawrence River. Alteration of light penetration, resulting from the presence of dense macrophytes forming a thick subsurface canopy, primarily determined epiphyton biomass. Seasonal decrease of water levels also coincided with major increases in biomass. Plant morphology was the next important variable influencing epiphytic biomass, whereas the contribution of other variables (sampling depth, macrophyte species, relative abundance of macrophytes, and temperature) was low. Groups of lowest epiphyte biomass (0.1–0.6 mg Chla g–1 DW) were defined by the combination of a low percentage of incident light (<13% surface light) and simple macrophyte stem types found below the macrophyte canopy. Highest epiphyte biomass (0.7–1.8 mg Chla g–1 DW) corresponded to samples collected in mid-July and August, under high irradiance (>20% surface light) and supported by ramified stems. Our results suggest that epiphyton sampling should be stratified according to the fraction of surface light intensity, macrophyte architecture, and seasonal water level variations, in decreasing order of influence.  相似文献   

9.
Summary

216 species of diatoms have been found epiphytic on common intertidal marine algae from Great Cumbrae Island, Firth of Clyde, Scotland. Green and red algae had larger epiphytic floras than brown algae. Cocconeis spp. (especially C. scutellum var. scutellum) were common and abundant, and the endophytic Navicula endophytica was found in large numbers in fucoid algae. Similar epiphytic floras were observed on Cladophora rupestris, Polysiphonia lanosa, Gigartina stellata, and Palmaria palmata, but that on Enteromorpha intestinalis was quite distinct.  相似文献   

10.
SUMMARY. 1. A regression method is proposed for the estimation of populations of epiphytic invertebrates. Small samples of macrophytes and attached animals are taken by gentle enclosure. Regression analysis is used to relate the number of animals collected to the macrophyte species composition and ibiomass in these small samples. These relationships estimate the number of organisms of each taxon per unit mass of each macrophyte species. Areal population density is estimated by multiplication of macrophyte mass-specific invertebrate density by standing macrophyte biomass. 2. The regression method yields population density estimates several times greater than the best of current methods for several fauna. Differences are most pronounced for active organisms such as water mites, amphipods, cladocerans, copepods, lepidopterans, ostracods, and trichopterans. 3. Precision levels obtained using the regression method are comparable to other techniques. The regression technique automatically provides estimates of macrophyte species-specific colonization density and the abundance of organisms swimming among macrophytes in littoral areas.  相似文献   

11.
Bolam  S.G.  Fernandes  T.F. 《Hydrobiologia》2002,(1):437-448
The growth of green macro-algae in response to nutrient inputs is a common phenomenon in marine estuaries and sheltered bays. While the ecological effects of the growth of the most commonly occurring macroalgal taxa (Enteromorpha, Chaetomorpha, Ulva, Cladophora) have been well studied, the effects of a morphologically very different species, Vaucheria subsimplex, have not been investigated. This study investigated the ecological effects of the establishment of V. subsimplex on a relatively exposed intertidal sandflat, Drum Sands, Firth of Forth, Scotland. Because of the spatially heterogeneous development of the weed, the short term (4 weeks) and long term (20 weeks) effects of the weed could be studied using a survey approach in which the weed-affected and weed-free plots were interspersed. After 4 weeks, V. subsimplex significantly increased the mean number of individuals and diversity of the macrofauna, eight of the ten most abundant species showed significant increases in abundance compared to weed-free areas. After 20 weeks, mean number of species and individuals were significantly higher under weed patches, while species diversity was reduced due to the numerical dominance of Pygospio elegans (Claparède). The weed, therefore, had an enriching effect on the macrofaunal communities on Drum Sands. The increased numbers of P. elegans, the numerical dominant infaunal species on Drum Sands, resulted mainly from enhanced larval recruitment to weed-affected areas. The effects of V. subsimplex on sediment characteristics were similar to those reported for other macroalgal taxa, i.e., increased water, organic and silt/clay contents, medium particle size and sorting coefficients, and reduced redox potentials. The results from this study are compared to those for other, morphologically different macroalgal species, with particular reference to an Enteromorpha-implanted experiment on the same sandflat. Since the general effect of such macroalgal taxa on macrofaunal communities is a detrimental one, the present study supports the contention that macroalgal morphology is an important feature in algal–faunal interactions.  相似文献   

12.
Environmental heterogeneity in natural ecosystems influences several parameters at the population and community levels. In freshwater ecosystems, habitat heterogeneity can be provided by macrophyte species with different structural shapes. Previous studies suggest that aquatic plants with more complex architectures will support higher number, biomass, and taxon richness of macroinvertebrates than plants with simpler shape. We investigated the influence of macrophyte structural heterogeneity (quantified by fractal dimension) and food availability (represented by epiphytic biomass) on several parameters (number of individuals, biomass, body size distribution, taxon richness, and diversity) of the macroinvertebrate community in a Pampean stream. Four submerged macrophyte species (Egeria densa, Elodea ernstae, Ceratophyllum demersum, and Stuckenia striata) and associated macroinvertebrates were sampled in late spring, summer, and autumn. Plants were photographed and fractal dimension was estimated from the images by the box-counting method. Fractal dimension was independent of plant surface area per unit of macrophyte biomass and differed significantly among species. Mean fractal dimension varied between 1.29 and 1.62, and increased following the sequence E. densa → S. striata → E. ernstae → C. demersum. Macrophyte species with higher fractal dimension supported a greater abundance of macroinvertebrates, especially those of small body size (500–1,000 μm); but fractal dimension was unrelated to macroinvertebrate biomass, richness, and diversity. However, overall animal biomass was significantly associated to the epiphytic abundance. Consequently, macrophyte heterogeneity influences macroinvertebrate density and body size distribution, while animal biomass depends on epiphytic food resources provided by plants.  相似文献   

13.
Changes in the ecology of the Norfolk Broads   总被引:6,自引:0,他引:6  
The Norfolk Broads have recently shown a marked loss of both floral and faunal diversity. To detect any recent changes and to provide a baseline for future research, twenty-eight broads were visited in 1972–73. Samples of aquatic flora and benthic fauna were taken and a number of physical parameters were measured. In the private broads a good inverse correlation between chlorophyll-a concentration and Secchi disc readings was found, suggesting that phytoplankton was largely responsible for the turbidity of the water. The relationship did not hold for the public broads where erosion and the stirring of sediments by motor launches is intense. Eleven broads were completely devoid of macrophytes. A macrophyte flora was well developed only in Upton and in the five Thurne broads and in these latter there was evidence of a recent loss in diversity. The sudden loss of formerly abundant species of macrophyte has been recorded frequently from the broads. The benthic fauna was poorly developed in most broads and was dominated by Limnodrilus hoffmeisteri and/or Potamothrix hammoniensis. Valvata piscinalis was the only regularly occurring gastropod in the benthos. Most of those broads with a diverse benthic fauna also had an abundant growth of macrophytes. Possible reasons for the recent changes in the ecology of the broads are discussed.  相似文献   

14.
Vallisneria aethiopica and Lagarosiphon ilicifolius are common and abundant submerged macrophytes in Lake Kariba, Zimbabwe. The two species have distinct structural morphologies, with Vallisneria consisting of long ribbon-like leaves, while Lagarosiphon has filiform stems with numerous small alternate leaves. This study investigated the effect of these architectural differences between the two plant species on their epiphytic macroinvertebrate assemblages in the shallow inshore waters of Lake Kariba. Ten sites were sampled on three occasions between May and July 2005. A total of 56 macroinvertebrate taxa was collected, 48 from Lagarosiphon and 45 from Vallisneria. Generally, the two plant species were associated with similar macroinvertebrate communities, but the average abundances of most taxa, and thus the overall macroinvertebrate abundances, were significantly greater on Lagarosiphon. The main macroinvertebrate functional feeding groups found on both plant species were collector-gatherers, grazers and predators, all of which were significantly more abundant on Lagarosiphon. Although the macroinvertebrate assemblages associated with Vallisneria and Lagarosiphon generally consisted of the same taxa, there were distinct and significant differences between them, probably due to the architectural differences between the two submerged macrophytes.  相似文献   

15.
The taxonomic placement of four antarctic species of the marine red algal family Phyllophoraceae (Gigartinales) is assessed within a preliminary molecular phylogeny of the family based on direct sequence analysis of the chloroplast gene rbcL. Parsimony analysis of rbcL sequences indicates that Gymnogongrus antarcticus and Gymnogongrus turquetii cluster in a clade consisting predominantly of southern hemisphere species currently placed in Gymnogongrus and Ahnfeltiopsis, whereas Phyllophora ahnfeltioides and Phyllophora antarctica cluster in a separate clade that is widely divergent from the northern hemisphere Phyllophora clade. Results from molecular and morphological data challenge the current taxonomic concept that type of life history is a phylogenetically valid criterion for recognition of genera in the Phyllophoraceae.  相似文献   

16.
Tomasz Mieczan 《Biologia》2007,62(2):189-194
Body size, community structure, abundance and biomass of ciliates were compared in various stands of macrophytes in a macrophyte-abundant shallow lake in Eastern Poland. Samples were collected in belts of Phragmites, Typha, Ceratophyllum, Elodea, Stratiotes and Chara. Additionally, protozooplankton was collected from the open water zone surrounding the vegetation belts. Differences in numbers of ciliate taxa between micro-sites were statistically significant. The highest numbers were found in Chara and Ceratophyllum stands, lower numbers in Stratiotes and Elodea stands and the lowest in the open water, Phragmites and Typha areas. Ciliate biomass was, like density, significantly higher in submerged macrophytes than in emergent macrophytes and open water zones. Based on differences in macrophyte structure, two groups of habitats with similar patterns of size-related ciliate distribution were distinguished. The first group consisted of two vegetated zones of sparse stem structure (Phragmites and Typha) and the open water zone, the second group comprised submerged macrophyte species, which were more dense and complex. Generally, the abundance of ciliates correlated positively with total suspension solid (TSS) and total organic carbon (TOC) concentrations. In the Chara and Ceratophyllum stands, relations between ciliate numbers, TSS and TOC were stronger.  相似文献   

17.
Food selection by freshwater snails in the Gezira irrigation canals,Sudan   总被引:1,自引:1,他引:0  
Henry Madsen 《Hydrobiologia》1992,228(3):203-217
Stomach content analysis was carried out on samples of the freshwater snail species Biomphalaria pfeifferi, Bulinus truncatus, Bulinus forskalii (Pulmonata, Planorbidae), Lymnaea natalensis (Pulmonata, Lymnaeidae), Melanoides tuberculata, Cleopatra bulimoides (Prosobranchia, Thiaridae) and Lanistes carinatus (Prosobranchia, Ampullariidae) from different irrigation canals in Sudan. In order to evaluate overlap in diet selection among these species, sites with two or more of the above-mentioned species present were selected. For some species food choice was examined in relation to size groupings. In addition, samples of Marisa cornuarietis (Prosobranchia, Ampullariidae) from small ponds in Sudan, samples of Biomphalaria pfeifferi and Helisoma duryi (Pulmonata, Planorbidae) from drainage canals in an irrigation scheme in northern Tanzania, and samples of H. duryi from fish ponds in the coastal area of Kenya were also analysed. The results indicate a great similarity in the food choice of these species, especially among the pulmonate species. All species feed on fine detritus, epiphytic algae and decaying macrophytes. No fresh fragments of aquatic macrophytes were found and animal remains were found only on a few occasions. However, the stomach contents of the ampullarid species were characterized by large fragments of dead macrophyte tissue, while the composition of the finer particles showed a great resemblance to that of the pulmonate species. The diet of the thiarid species is essentially the same as that of the pulmonate species, although in one site Cleopatra bulimoides showed a greater preference for green algae. Apart from the avoidance of blue-green algae, there was little evidence of selection of certain algal components of the Aufwuchs for the pulmonate species. Detritus constitutes the major component of the stomach content of all these snail species.  相似文献   

18.
Microbes play an important role in decomposition of macrophytes in shallow lakes, and the process can be greatly affected by bacteria–fungi interactions in response to material composition and environmental conditions. In this study, microbes involved in the decomposition of leaf litter from three macrophyte species, Zizania latifolia, Hydrilla verticillata and Nymphoides peltata, were analysed at temperatures of 5, 15 and 25 °C. Results indicate that the decomposition rate was affected by temperature. Bacterial alpha diversity increased significantly along the time, while both temperature and plant species had a significant impact on the bacterial community, and plant type was shown to be the most important driving factor for the fungal community. The cosmopolitan bacterial taxa affiliated with Gammaproteobacteria, Bacteroidetes, Deltaproteobacteria, Firmicutes and Spirochaetes were key species in the investigated ecological networks, demonstrating significant co-occurrence or co-exclusion relationships with Basidiomycota and Ascomycota, according to different macrophyte species. This study indicates that bacteria involved in the decomposition of macrophyte leaf litter are more sensitive to temperature variance, and that fungi have a higher specificity to the composition of plant materials. The nutrient content of Hydrilla verticillata promoted a positive bacteria–fungi interaction, thereby accelerating the decomposition and re-circulation of leaf litter.  相似文献   

19.
Abstract Ferns, bryophytes and lichens are the most diverse groups of plants in wet forests in south‐eastern Australia. However, management of this diversity is limited by a lack of ecological knowledge of these groups and the difficulty in identifying species for non‐experts. These problems may be alleviated by the identification and characterization of suitable proxies for this diversity. Epiphytic substrates are potential proxies. To evaluate the significance of some epiphytic substrates, fern and bryophyte assemblages on a common tree‐fern species, Dicksonia antarctica (soft tree‐fern), were compared with those on a rare species, Cyathea cunninghamii (slender tree‐fern), in eastern Tasmania, Australia. A total of 97 fern and bryophyte species were recorded on D. antarctica from 120 trunks at 10 sites, and 64 species on C. cunninghamii from 39 trunks at four of these sites. The trunks of C. cunninghamii generally supported fewer species than D. antarctica, but two mosses (particularly Hymenodon pilifer) and one liverwort showed significant associations with this host. Several other bryophytes and epiphytic ferns showed an affinity for the trunks of D. antarctica. Species assemblages differed significantly between both sites and hosts, and the differences between hosts varied significantly among sites. The exceptionally high epiphytic diversity associated with D. antarctica suggests that it plays an important ecological role in Tasmanian forests. Evidently C. cunninghamii also supports a diverse suite of epiphytes, including at least one specialist species.  相似文献   

20.
Clear Lake, Iowa, USA is a shallow, agriculturally eutrophic lake that has changed drastically over the past century. Eight macrophyte surveys since 1896 were pooled and examined to characterize long-term impacts of eutrophication on macrophyte community composition and relative abundance. Surveys in 1981 and 2000 revealed few submergent and floating-leaved species and a dominance in emergent species (Scirpus, Typha). Over the past century, however, species richness has declined from a high of 30 species in 1951 to 12 found today, while the community composition has shifted from submergent-(99%) to emergent-dominated floras (84%). Potamogeton praelongus was the first emergent species to disappear but was followed by several other clear water Potamogeton species. Several floating leaved and emergent genera increased in relative abundance with eutrophication, notably Nuphar, Nymphaea, Phragmites, Polygonum, Sagittaria, Scirpus, and Typha. P. pectinatus was present over the entire century due to its tolerance of eutrophic conditions. Macrophyte growth was generally light-limited, with 93% of the variance in relative abundance of submergent species explained by changes in water transparency. Clear Lake exhibits signs of alternative stable states, oscillating between clear and turbid water, coupled with high and low submerged species relative abundance. The maximum macrophyte richness occurred as the lake oscillated between submergent- and emergent-dominated states. Changes in the water level have also impacted macrophyte growth since the area of the lake occupied by emergent macrophytes was negatively correlated with water level. Strongest correlations indicated that macrophytes respond to water level variations with a 2-year time-lag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号