首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Trypsin was coupled on an agarose gel which was modified with a spiropyran compound. The trypsin–spiropyran (agarose) gel showed reverse photochromism. The activity of the trypsin–spiropyran gel in the dark was 12% of that of native trypsin, and it was higher than that under visible light. The apparent Michaelis constant of the trypsin–spiropyran gel in the dark was larger than that under visible light. On the other hand, the maximum velocity in the dark was higher than that under visible light. The optimum pH of the trypsin–spiropyran gel in the dark was the same as that under visible light. Immobilized trypsin was stable in the pH range from 3 to 9. The trypsin–spiropyran gel was more stable against heat than the native trypsin.  相似文献   

2.
Kinetics of trypsin association with trypsin inhibitor from colostrum (IC) was studied. The association rate constant is 3-10-5 M- minus 1 sec- minus 1 at pH 7,8, 25 degrees C. The rate constant for the complex dissociation was determined from the kinetics of the IC displacement from the complex with trypsin by a specific substrate and was found to be 5-10- minus 6 sec- minus 1 (pH 7,8; 25 degrees C). The equilibrium constant (Ki) was measured in a special experiment and was equal to 4-10- minus 12 M (p H 7,8; 25 degrees C). The similarity of this reaction and the association of trypsin with other protein inhibitors was discussed.  相似文献   

3.
Soybean trypsin inhibitor, a protein of Mr = 20,000, has been used to assess the degree of inaccessibility of porcine trypsin within the alpha 2-macroglobulin-trypsin complex. The interaction between alpha 2-macroglobulin-bound trypsin and the inhibitor was demonstrated by affinity chromatography and trypsin inhibition. Whereas the free trypsin-inhibitor association is very fast (k = 1.2 X 10(7) M-1 s-1), the reaction between complexed trypsin and inhibitor takes 10 h to reach equilibrium. In addition, alpha 2-macroglobulin reduces, by several orders of magnitude, the affinity of trypsin for the inhibitor. Only one of the two trypsin molecules of the ternary (trypsin)2-alpha 2-macroglobulin complex is readily accessible to soybean inhibitor. It is postulated that the recently discovered proximity of the alpha 2-macroglobulin binding sites (Pochon, F., Favaudon, V., Tourbez-Perrin, M., and Bieth, J. (1981) J. Biol. Chem. 256, 547-550) accounts for this behavior. In the light of these results it is concluded that the proteinase binding sites are localized on the alpha 2-macroglobulin surface and that the two subunits of this protein are either not identical or not symmetrically arranged.  相似文献   

4.
The stabilities of trypsin and soybean trypsin inhibitor in sodium dodecylsulfate (SDS) were examined by SDS-polyacrylamide gel electrophoresis (PAGE). Both samples contained several bands, all of which migrated to positions corresponding to the appropriate molecular weight or less, even when the samples were unheated, suggesting that both the trypsin and trypsin inhibitor are susceptible to SDS-induced denaturation. When they were mixed together prior to addition of SDS-PAGE sample buffer (1% SDS), a new smearing band appeared which corresponded to a molecular weight of around 46,000, suggesting that these proteins form a stable complex in SDS. This was confirmed by electroblotting and sequence analysis, which indicated that this band contains both the trypsin and inhibitor sequences. At a fixed concentration of the inhibitor, increasing concentrations of the trypsin resulted in an increase in the intensity of the complex band. When the mixture was heated for 10 min in 1% SDS, the complex band disappeared in a temperature-dependent manner. The melting temperature determined under the experimental conditions used was about 35|MoC. Similar results were obtained with Bowman-Birk trypsin inhibitor, except that the complex with the above inhibitor had a higher melting temperature, around 41|MoC, suggesting that the Bowman-Birk inhibitor/trypsin complex is more stable than the soybean inhibitor/trypsin complex.  相似文献   

5.
6.
Trypsin mRNA from the citrus weevil, Diaprepes abbreviatus, was reverse transcribed and amplified by PCR. A cDNA species of 513 bp was cloned and sequenced. The 3' and 5' ends of the gene (262 bp and 237 bp, respectively) were amplified by rapid amplification of cDNA ends, cloned and sequenced. The deduced sequence of the trypsin cDNA (860 bp) encodes for 250 amino acids including 11 amino acids of activation and signal peptides and exhibited 16.8% identity to trypsin genes of selected Lepidoptera and Diptera. A three-dimensional model of Diaprepes trypsin contained two domains of beta-barrel sheets as has been found in Drosophila and Neobellieria. The catalytic active site is composed of the canonical triad of His41, Asp92 and Ser185 and a specificity pocket occupied by Asp179 with maximal activity at pH 10.4. Southern blot analysis indicated that at least two copies of the gene are encoded by Diaprepes midgut. Northern blot analysis detected a single RNA band below 1.35 kb at different larval ages (28-100 days old). The message increased with age and was most abundant at 100 days. Trypsin activity, on the other hand, reached a peak at 50 days and fell rapidly afterwards indicating that the trypsin message is probably regulated translationally. Feeding of soybean trypsin inhibitor and Aedes aegypti trypsin modulating oostatic factor affected trypsin activity and trypsin biosynthesis, respectively. These results indicate that Diaprepes regulates trypsin biosynthesis with a trypsin modulating oostatic factor-like signal.  相似文献   

7.
Dog trypsin (EC 3.4.4.4) was isolated from dog pancreatic juice on SP-Sephadex C-50. The preparation was homogeneous on disc electrophoresis at pH 4.3. On agarose gel electrophoresis at pH 8.6, dog pancreas trypsinogen had the mobility of an alpha 2-globulin and trypsin the mobility of a beta-globulin. On gel filtration on Sephadex G-75 at pH 4.0, dog trypsin was eluted in the same fractions as bovine trypsin. It was inhibited by soybean trypsin inhibitor. Rabbit anti-dog trypsin inhibited the caseinolytic activity of bovine trypsin by about 60%.  相似文献   

8.
The immobilization of trypsin onto various commercial silica gels was studied. Silica gels were used directly and characterized by mercuric porosimetry. Agitation rates (100–740 rpm) and particles size (35–75 to 250–500 μm) of silica gels did not affect the trypsin immobilization capacity. The pore size (3 to 15 nm) is a limiting factor of the trypsin adsorption onto the mesopores structure of silica gels. The adsorption of trypsin was determined as a function of their initial concentration and multilayer formed at high trypsin concentration.  相似文献   

9.
The kinetics of binding of bovine trypsin to a proteinaceous inhibitor of trypsin from buckwheat seeds (BWI-1a) has been studied. The association rate constant (k(ass)) was 2.2 x 10(6) M-1 x sec-1 and the dissociation rate constant (k(off)) of the enzyme--inhibitor complex was 3.5 x 10(-3) sec-1; the inhibition constant Ki was 1.5 nM. The inhibitor BWI-1a is of the slow, tightly binding type. The mechanism of the inhibition of bovine trypsin by the trypsin inhibitor BWI-1a was studied. The mechanism of inhibition was found to involve two steps according to the kinetic data.  相似文献   

10.
K Iwaki  M Ogawa  T Kitahara  S Tanaka  G Kosaki 《Enzyme》1983,29(3):153-159
The influences of various active site-specific reagents of trypsin and protease inhibitors on the immunoreactivity of trypsin and serum trypsin concentration have been studied by radioimmunoassay (RIA). The RIA using inactivated 125I-trypsin as tracer showed lower Bo/T than the RIA using active 125I-trypsin, but the coefficient of variance of the former was smaller than that of the latter. Normal serum trypsin concentrations were 26.12-36.38 ng/ml with the RIA using inactivated 125I-trypsin as antigen tracer, and 201.15 ng/ml with the RIA using active 125I-trypsin as tracer. The recovery experiment showed that the difference was due to the interaction of serum protease inhibitors and labeled active trypsin.  相似文献   

11.
Two new methods for quantitative assay of trypsin inhibitors, suitable for large numbers of samples, are described. The assay methods use trypsin-Sepharose conjugates incorporated into agarose gel slabs. Trypsin inhibitors are allowed to diffuse into, or are electrophoretically moved through, the slabs, and the consequent areas of inactivation of immobilized trypsin are visualized using a histochemical enzyme substrate. Quantitation of the trypsin inhibitor content of samples can be made on the basis of the inactivated areas. The limit of detection is 1–2 μg of soybean trypsin inhibitor and determinations are reproducible to 10% or better. Measured trypsin inhibitor contents of several legume species and varieties agree with spectrophotometric determinations.  相似文献   

12.
T Usui  S Maehara  E Kawashita  T Ishibe  H Sumi  N Toki 《Enzyme》1984,31(1):11-16
Using monospecific antibody to human urinary trypsin inhibitor, we developed a highly specific and sensitive radioimmunoassay (RIA) for measuring human urinary trypsin inhibitor. No cross-reactivity of the antibody with protein standard serum, which contained albumin, alpha 1-antitrypsin, haptoglobin, alpha 2-macroglobulin, transferrin, IgG and IgA, was observed. The sensitivity of the system was 10 ng of trypsin inhibitor per assay tube, and 5-10 microliters of urine was sufficient to determine the concentration of trypsin inhibitor in urine. The amounts excreted in the urine of 10 healthy men and 10 healthy women were 4.83 +/- 2.46 (mean +/- SD) and 3.86 +/- 1.35 mg/day, respectively. The correlation between estimates by RIA and those by enzymic assay was r = 0.96 (p less than 0.005). The method proposed here can be used to determine the concentration of urinary trypsin inhibitor in a small amount of biological fluids and cells.  相似文献   

13.
An expression system for trypsin   总被引:4,自引:0,他引:4  
  相似文献   

14.
Agarose-bound trypsin (EC 3.4.21.4) was prepared and its properties were compared with those of soluble trypsin. The bound form of the enzyme was found to be equally available to large and small molecular weight substrates as the soluble form. In addition, the bound form of the enzyme showed the same specificity towards protein substrates as the soluble enzyme. However, the agarose-bound trypsin showed greater stability than the soluble trypsin to denaturing conditions for prolonged period of time.  相似文献   

15.
Bovine pancreatic trypsin was treated with ethylene glycol bis(succinic acid N-hydroxysuccinimide ester). Approximately 8 of 14 lysines per trypsin molecule were modified. This derivative (EG trypsin) was more stable than native between 30 degrees and 70 degrees C: T50 values were 59 degrees C and 46 degrees C, respective. EG trypsin's half-life of 25 min at 55 degrees C was fivefold greater than native's. EG trypsin had a decreased rate of autolysis and retained more activity in aqueous mixtures of 1,4-dioxan, dimethylformamide, dimethylsulfoxide, and acetonitrile. EG trypsin had lower Km values for both amide and ester substrates; its kcat values for two amides (benzoyl-L-arginine p-nitroanilide and benzyloxycarbonyl glycyl-glycyl-arginyl-7-amino-4-methyl coumarin) increased, whereas its kcat value for an ester (thiobenzoyl benzoyloxycarbonyl-L-lysinate) decreased slightly. The specific activity (kcat/Km) of EG trypsin was increased for both amide and ester substrates. EG trypsin gave higher yields and reaction rates than native in kinetically controlled synthesis of benzoyl argininyl-leucinamide in acetonitrile and in t-butanol. Highest peptide yields occurred with EG trypsin in 95% acetonitrile, where 90% of the substrate was converted to product. No peptide synthesis occurred in 95% DMF with either form of trypsin.  相似文献   

16.
Trypsin was immobilized on sand using five different methods. Attempts were made to attach amino-functional groups onto sand using 3-aminopropyltriethoxysilane, hexamethylenetetramine, hexamethylenediamine, and melamine. Glutaraldehyde was used as a bifunctional agent in all the methods. Methods for the estimation of the proteolytic 1activity and protein content of immobilized trypsin were standardized. The maximum retained activity was observed for trypsin immobilized on sand via 3-aminopropytriethoxysilane and glutaraldehyde. Immobilized trypsin showed a shift in the pH optimum toward the acidic side over that of soluble trypsin in all five cases. The optimum temperature for both native and immobilized trypsin prepared by the silane-glutaraldehyde method was found to be 45°C. However, the pH and thermal stabilities of immobilized trypsin were observed to be better than that of the native enzyme.  相似文献   

17.
The conjugation of trypsin (try) and trypsin inhibitor (tryi) with poly(ethylene glycol) (PEG) and methoxypoly(ethylene glycol) anthracene (mPEG-anthracene) was investigated in aqueous solution, using multiple spectroscopic methods, thermodynamic analysis, and molecular modeling. Thermodynamic parameters ΔS, ΔH, and ΔG showed protein-PEG bindings occur via H-bonding and van der Waals contacts with trypsin inhibitor forming more stable conjugate than trypsin. As polymer size increased more stable PEG-protein conjugate formed, while hydrophobic mPEG-anthracene forms less stable protein complexes. Modeling showed the presence of several H-bonding contacts between polymer and amino acids that stabilize protein-polymer conjugation. Polymer complexation induces more perturbations of trypsin inhibitor structure than trypsin with reduction of protein alpha-helix and major increase in random structures, indicating protein structural destabilization.  相似文献   

18.
The changes of H-D exchange rates upon protein-protein interactions are generally interpreted as a result of the changes of the dynamic properties of the proteins. The effect of trypsin binding on the H-D exchange kinetics of some trypsin inhibitor amide H's was reported (Simon et al., 1984). In this paper the electrostatic potential originating from the trypsin molecule is calculated at the positions of the studied amide H's in the trypsin-trypsin inhibitor complex. We conclude that the observed decrease of the exchange rates is mainly due to the electrostatic field of the trypsin molecule.  相似文献   

19.
It was found that sheep haptoglobin causes non-competitive inhibition of trypsin. The enzyme inactivation is due to its interaction with haptoglobin. MetHb and thionine do not influence the efficiency of haptoglobin as a trypsin inhibitor. It is concluded that the haptoglobin molecule has a trypsin-binding site which differs from the sites responsible for the interaction with MetHb and thionine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号