首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone’s internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a “coupling factor” on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of “osteotransmitters” that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies.  相似文献   

2.
After an initial phase of growth and development, bone undergoes a continuous cycle of repair, renewal and optimisation by a process called remodelling. This paper describes a novel mathematical model of the trabecular bone remodelling cycle. It is essentially formulated to simulate a remodelling event at a fixed position in the bone, integrating bone removal by osteoclasts and formation by osteoblasts. The model is developed to construct the variation in bone thickness at a particular point during the remodelling event, derived from standard bone histomorphometric analyses. The novelties of the approach are the adoption of a predator-prey model to describe the dynamic interaction between osteoclasts and osteoblasts, using a genetic algorithm-based solution; quantitative reconstruction of the bone remodelling cycle; and the introduction of a feedback mechanism in the bone formation activity to co-regulate bone thickness. The application of the model is first demonstrated by using experimental data recorded for normal (healthy) bone remodelling to predict the temporal variation in the number of osteoblasts and osteoclasts. The simulated histomorphometric data and remodelling cycle characteristics compare well with the specified input data. Sensitivity studies then reveal how variations in the model's parameters affect its output; it is hoped that these parameters can be linked to specific biochemical factors in the future. Two sample pathological conditions, hypothyroidism and primary hyperparathyroidism, are examined to demonstrate how the model could be applied more broadly, and, for the first time, the osteoblast and osteoclast populations are predicted for these conditions. Further data are required to fully validate the model's predictive capacity, but this work shows it has potential, especially in the modelling of pathological conditions and the optimisation of the treatment of those conditions.  相似文献   

3.
Bones are constantly remodeled throughout life to maintain robust structure and function. Dysfunctional remodeling can result in pathological conditions such as osteoporosis (bone loss) or osteosclerosis (bone gain). Bone contains 100s of extracellular matrix (ECM) proteins and the ECM of the various bone tissue compartments plays essential roles directing the remodeling of bone through the coupled activity of osteoclasts (which resorb bone) and osteoblasts (which produce new bone). One important role for the ECM is to serve as a scaffold upon which mineral is deposited. This scaffold is primarily type I collagen, but other ECM components are involved in binding of mineral components. In addition to providing a mineral scaffolding role, the ECM components provide structural flexibility for a tissue that would otherwise be overly rigid. Although primarily secreted by osteoblast-lineage cells, the ECM regulates cells of both the osteoblast-lineage (such as progenitors, mature osteoblasts, and osteocytes) and osteoclast-lineage (including precursors and mature osteoclasts), and it also influences the cross-talk that occurs between these two oppositional cells. ECM influences the differentiation process of mesenchymal stem cells to become osteoblasts by both direct cell-ECM interactions as well as by modulating growth factor activity. Similarly, the ECM can influence the development of osteoclasts from undifferentiated macrophage precursor cells, and influence osteoclast function through direct osteoclast cell binding to matrix components. This comprehensive review will focus on how networks of ECM proteins function to regulate osteoclast- and osteoblast-mediated bone remodeling. The clinical significance of these networks on normal bone and as they relate to pathologies of bone mass and geometry will be considered. A better understanding of the dynamic role of ECM networks in regulating tissue function and cell behavior is essential for the development of new treatment approaches for bone loss.  相似文献   

4.
Osteoporosis is a condition characterized by low bone mass and increased bone fragility, putting patients at risk of fractures, which are major causes of morbidity substantially in older people. Osteoporosis is currently attributed to various endocrine, metabolic and mechanical factors. However, emerging clinical and molecular evidence suggests that inflammation also exerts significant influence on bone turnover, inducing osteoporosis. Numerous proinflammatory cytokines have been implicated in the regulation of osteoblasts and osteoclasts, and a shift towards an activated immune profile has been hypothesized as important risk factor. Chronic inflammation and the immune system remodelling characteristic of ageing, as well as of other pathological conditions commonly associated with osteoporosis, may be determinant pathogenetic factors. The present article will review the current perspectives on the interaction between bone and immune system in the elderly, providing an interpretation of osteoporosis in the light of inflamm-ageing.  相似文献   

5.
Bone remodeling is performed by osteoclasts and osteoblasts at the bone surface. Inside of bone is a network of numerous osteocytes, whose specific function has remained an enigma. Here we describe a transgenic mouse model in which inducible and specific ablation of osteocytes is achieved in vivo through targeted expression of diphtheria toxin (DT) receptor. Following a single injection of DT, approximately 70%–80% of the osteocytes, but apparently no osteoblasts, were killed. Osteocyte-ablated mice exhibited fragile bone with intracortical porosity and microfractures, osteoblastic dysfunction, and trabecular bone loss with microstructural deterioration and adipose tissue proliferation in the marrow space, all of which are hallmarks of the aging skeleton. Strikingly, these “osteocyte-less” mice were resistant to unloading-induced bone loss, providing evidence for the role of osteocytes in mechanotransduction. Thus, osteocytes represent an attractive target for the development of diagnostics and therapeutics for bone diseases, such as osteoporosis.  相似文献   

6.
We propose a multiscale mechanobiological model of bone remodelling to investigate the site-specific evolution of bone volume fraction across the midshaft of a femur. The model includes hormonal regulation and biochemical coupling of bone cell populations, the influence of the microstructure on bone turnover rate, and mechanical adaptation of the tissue. Both microscopic and tissue-scale stress/strain states of the tissue are calculated from macroscopic loads by a combination of beam theory and micromechanical homogenisation. This model is applied to simulate the spatio-temporal evolution of a human midshaft femur scan subjected to two deregulating circumstances: (i) osteoporosis and (ii) mechanical disuse. Both simulated deregulations led to endocortical bone loss, cortical wall thinning and expansion of the medullary cavity, in accordance with experimental findings. Our model suggests that these observations are attributable to a large extent to the influence of the microstructure on bone turnover rate. Mechanical adaptation is found to help preserve intracortical bone matrix near the periosteum. Moreover, it leads to non-uniform cortical wall thickness due to the asymmetry of macroscopic loads introduced by the bending moment. The effect of mechanical adaptation near the endosteum can be greatly affected by whether the mechanical stimulus includes stress concentration effects or not.  相似文献   

7.
The alveolar bone is a suitable in vivo physiological model for the study of apoptosis and interactions of bone cells because it undergoes continuous, rapid and intense resorption/remodelling, during a long period of time, to accommodate the growing tooth germs. The intensity of alveolar bone resorption greatly enhances the chances of observing images of the extremely rapid events of apoptosis of bone cells and also of images of interactions between osteoclasts and osteocytes/osteoblasts/bone lining cells. To find such images, we have therefore examined the alveolar bone of young rats using light microscopy, the TUNEL method for apoptosis, and electron microscopy. Fragments of alveolar bone from young rats were fixed in Bouin and formaldehyde for morphology and for the TUNEL method. Glutaraldehyde-formaldehyde fixed specimens were processed for transmission electron microscopy. Results showed TUNEL positive round/ovoid structures on the bone surface and inside osteocytic lacunae. These structures--also stained by hematoxylin--were therefore interpreted, respectively, as osteoblasts/lining cells and osteocytes undergoing apoptosis. Osteoclasts also exhibited TUNEL positive apoptotic bodies inside large vacuoles; the nuclei of osteoclasts, however, were always TUNEL negative. Ultrathin sections revealed typical apoptotic images--round/ ovoid bodies with dense crescent-like chromatin--on the bone surface, corresponding therefore to apoptotic osteoblasts/lining cells. Osteocytes also showed images compatible with apoptosis. Large osteoclast vacuoles often contained fragmented cellular material. Our results provide further support for the idea that osteoclasts internalize dying bone cells; we were however, unable to find images of osteoclasts in apoptosis.  相似文献   

8.
CD44 is a multifunctional adhesion molecule that binds to hyaluronic acid, type I collagen, and fibronectin. We have studied the immunohistochemical localization of CD44 in bone cells by confocal laser scanning microscopy and transmission electron microscopy in order to clarify its role in the cell-cell and/or cell-matrix interaction of bone cells. In round osteoblasts attached to bone surfaces, immunoreactivity is restricted to their cytoplasmic processes. On the other hand, osteocytes in bone matrices show intense immunoreactivity on their plasma membrane. Intense immunoreactivity for CD44 can be detected on the basolateral plasma membranes of osteoclasts. There is considerably less reactivity observed in the area of the plasma membrane that is in direct contact with bone. The pre-embedding electron-microscopical method has revealed that CD44 is mainly localized on the basolateral plasma membrane of osteoclasts. However, the ruffled border and clear zone show little immunoreactivity. A CD44-positive reaction can be detected on both plasma membranes in the contact region between osteoclasts and osteocytes. These findings suggest that: 1) cells of the osteoblast lineage express CD44 in accordance with their morphological changes from osteoblasts into osteocytes; 2) osteoclasts express CD44 on their basolateral plasma membrane; 3) CD44 in osteoclasts and osteocytes may play an important role in cell-cell and/or cell-matrix attachment via extracellular matrices.  相似文献   

9.
Osteoclasts are unique cells that resorb bone, and are involved in not only bone remodeling but also pathological bone loss such as osteoporosis and rheumatoid arthritis. The regulation of osteoclasts is based on a number of molecules but full details of these molecules have not yet been understood. MicroRNAs are produced by Dicer cleavage an emerging regulatory system for cell and tissue function. Here, we examine the effects of Dicer deficiency in osteoclasts on osteoclastic activity and bone mass in vivo. We specifically knocked out Dicer in osteoclasts by crossing Dicer flox mice with cathepsin K‐Cre knock‐in mice. Dicer deficiency in osteoclasts decreased the number of osteoclasts (N.Oc/BS) and osteoclast surface (Oc.S/BS) in vivo. Intrinsically, Dicer deficiency in osteoclasts suppressed the levels of TRAP positive multinucleated cell development in culture and also reduced NFATc1 and TRAP gene expression. MicroRNA analysis indicated that expression of miR‐155 was suppressed by RANKL treatment in Dicer deficient cells. Dicer deficiency in osteoclasts suppressed osteoblastic activity in vivo including mineral apposition rate (MAR) and bone formation rate (BFR) and also suppressed expression of genes encoding type I collagen, osteocalcin, Runx2, and Efnb2 in vivo. Dicer deficiency in osteoclasts increased the levels of bone mass indicating that the Dicer deficiency‐induced osteoclastic suppression was dominant over Dicer deficiency‐induced osteoblastic suppression. On the other hand, conditional Dicer deletion in osteoblasts by using 2.3 kb type I collagen‐Cre did not affect bone mass. These results indicate that Dicer in osteoclasts controls activity of bone resorption in vivo. J. Cell. Biochem. 109: 866–875, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
We investigated the immunohistochemical localization of osteocalcin in demineralized, paraffin-embedded normal and pathological human bone. Acid decalcification protocols appeared to be more suitable for osteocalcin detection than mild chelating agents. In normal lamellar bone, osteocalcin was detected in osteocytes and along the lamellar bone matrix in fine granular deposits. Under pathological conditions (osteomyelitis, neoplasia), appositional bone showed immunoreactivity in osteoblasts and osteocytes but not in the provisory woven bone matrix. Intense immunoreactivity could be seen at the cell borders of osteoclasts and the bone margins of Howship lacunae. In primary bone-forming tumors, osteocalcin immunoreactivity was detected in osteoblasts and their malignant counterparts. On the basis of these results, we conclude that optimal preservation of osteocalcin is obtained through mild acid decalcifiers. Osteocalcin is deposited in bone matrix, especially that of metabolically inactive bone. In neoplasms, osteocalcin could be a marker of osteoblastic differentiation.  相似文献   

11.
Bone remodelling is a continuous process by which bone resorption by osteoclasts is followed by bone formation by osteoblasts to maintain skeletal homeostasis. These two forces must be tightly coordinated not only quantitatively, but also in time and space, and its malfunction leads to diseases such as osteoporosis. Recent research focusing on the cross‐talk and coupling mechanisms associated with the sequential recruitment of osteoblasts to areas where osteoclasts have removed bone matrix have identified a number of osteogenic factors produced by the osteoclasts themselves. Osteoclast‐derived factors and exosomal‐containing microRNA (miRNA) can either enhance or inhibit osteoblast differentiation through paracrine and juxtacrine mechanisms, and therefore may have a central coupling role in bone formation. Entwined with angiocrine factors released by vessel‐specific endothelial cells and perivascular cells or pericytes, these factors play a critical role in angiogenesis–osteogenesis coupling essential in bone remodelling.  相似文献   

12.
Bone remodelling is carried out by ‘bone multicellular units’ ( $\text{ BMU }$ s) in which active osteoclasts and active osteoblasts are spatially and temporally coupled. The refilling of new bone by osteoblasts towards the back of the $\text{ BMU }$ occurs at a rate that depends both on the number of osteoblasts and on their secretory activity. In cortical bone, a linear phenomenological relationship between matrix apposition rate and $\text{ BMU }$ cavity radius is found experimentally. How this relationship emerges from the combination of complex, nonlinear regulations of osteoblast number and secretory activity is unknown. Here, we extend our previous mathematical model of cell development within a single cortical $\text{ BMU }$ to investigate how osteoblast number and osteoblast secretory activity vary along the $\text{ BMU }$ ’s closing cone. The mathematical model is based on biochemical coupling between osteoclasts and osteoblasts of various maturity and includes the differentiation of osteoblasts into osteocytes and bone lining cells, as well as the influence of $\text{ BMU }$ cavity shrinkage on osteoblast development and activity. Matrix apposition rates predicted by the model are compared with data from tetracycline double labelling experiments. We find that the linear phenomenological relationship observed in these experiments between matrix apposition rate and $\text{ BMU }$ cavity radius holds for most of the refilling phase simulated by our model, but not near the start and end of refilling. This suggests that at a particular bone site undergoing remodelling, bone formation starts and ends rapidly, supporting the hypothesis that osteoblasts behave synchronously. Our model also suggests that part of the observed cross-sectional variability in tetracycline data may be due to different bone sites being refilled by $\text{ BMU }$ s at different stages of their lifetime. The different stages of a $\text{ BMU }$ ’s lifetime (such as initiation stage, progression stage, and termination stage) depend on whether the cell populations within the $\text{ BMU }$ are still developing or have reached a quasi-steady state whilst travelling through bone. We find that due to their longer lifespan, active osteoblasts reach a quasi-steady distribution more slowly than active osteoclasts. We suggest that this fact may locally enlarge the Haversian canal diameter (due to a local lack of osteoblasts compared to osteoclasts) near the $\text{ BMU }$ ’s point of origin.  相似文献   

13.
Prostacyclin (PGI(2)) is an important mediator implicated in bone metabolism. Among the natural prostaglandins it is the most potent inhibitor of bone resorption and mediates bone modelling and remodelling induced by strain changes. The effects of prostacyclin depend on its interaction with a specific receptor (IP). Despite its well documented effects on bone the localization and distribution of the IP receptor in human bone remain unknown. The present study used specific antipeptide antibodies to IP receptor for immunolocalization of the IP receptor in normal, osteoporotic and Pagetic human adult bone and in human fetal bone. The IP receptor was detected in fetal and adult osteoclasts and osteoblasts. Fetal osteocytes also expressed IP receptor but not adult osteocytes. Interestingly, the expression of IP receptor in adult osteoblasts was gradually lost as these cells were trapped in the matrix and became osteocytes. The IP receptor showed a perinuclear distribution within the cells, but in multinuclear osteoclasts not all nuclei were positive. Our results showed differences in IP receptor expression in fetal and adult human bone and, in adult bone, with the differentiation of osteoblasts into osteocytes. They also showed that there is no difference on the expression of prostacyclin receptors in Pagetic, osteoporotic and normal human bone, and they confirm the presence of the IP receptor in human osteoblasts as had been demonstrated by our previous study with human osteoblasts in culture.  相似文献   

14.
With the use of the methods of electron microscopy and autoradiography employing 3H-glycine the study was made of some morpho-functional cells-cells interactions (osteoblasts, osteocytes, macrophages, fibroblasts) in zones of adaptive remodeling of bone structures of the metaepiphyseal femoral bones of white rats which were during 28 days under experimental hypokinesia conditions, as well as of rats, flown on SLS-2 during 2 weeks. It is established that in zones of an increase of mineral matrix resorption some osteoblasts and osteocytes undergo destruction; a part of osteoblasts remains intact. The osteoclasts don't take part in destruction of osteoblasts and osteocytes. The utilization of the osteogenic cells detritus is accomplished by macrophages, coming to these zones. The resorption loci are filled not with the differentiating osteoblastic cells, as it is the case in the norm, but with fibroblasts and the bundles of collagen fibrils (fibrotic tissue) which do not undergo mineralization. Such changes are considered as one of the mechanisms of bone tissue response to a reduction of the supporting load.  相似文献   

15.
16.
Tartrate-resistant acid phosphatase (TRAP) is well known as an osteoclast marker; however, a recent study from our group demonstrated enhanced number of TRAP + osteocytes as well as enhanced levels of TRAP located to intracellular vesicles in osteoblasts and osteocytes in experimental osteoporosis in rats. Such vesicles were especially abundant in osteoblasts and osteocytes in cancellous bone as well as close to bone surface and intracortical remodeling sites. To further investigate TRAP in osteoblasts and osteocytes, long bones from young, growing rats were examined. Immunofluorescence confocal microscopy displayed co-localization of TRAP with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in hypertrophic chondrocytes and diaphyseal osteocytes with Pearson’s correlation coefficient ≥0.8. Transmission electron microscopy showed co-localization of TRAP and RANKL in lysosomal-associated membrane protein 1 (LAMP1) + vesicles in osteoblasts and osteocytes supporting the results obtained by confocal microscopy. Recent in vitro data have demonstrated OPG as a traffic regulator for RANKL to LAMP1 + secretory lysosomes in osteoblasts and osteocytes, which seem to serve as temporary storage compartments for RANKL. Our in situ observations indicate that TRAP is located to RANKL-/OPG-positive secretory lysosomes in osteoblasts and osteocytes, which may have implications for osteocyte regulation of osteoclastogenesis.  相似文献   

17.
Pathological destructive bone diseases are primarily caused by the failure of a lifelong self‐renewal process of the skeletal system called bone remodelling. The mechanisms underlying this process include enhanced osteoclast activity and decreased generation of the osteoblast lineage. Intercellular interaction and crosstalk among these cell types are crucial for the maintenance of bone remodelling, either through the secretion of growth factors or direct cell–cell physical engagement. Recent studies have revealed that exosomes derived from bone cells, including osteoclasts, osteoblasts and their precursors, play pivotal roles on bone remodelling by transferring biologically active molecules to target cells, especially in the processes of osteoclast and osteoblast differentiation. Here, we review the contents of bone‐derived exosomes and their functions in the regulatory processes of differentiation and communication of osteoclasts and osteoblasts. In addition, we highlight the characteristics of microRNAs of bone‐derived exosomes involved in the regulation of bone remodelling, as well as the potential clinical applications of bone‐derived exosomes in bone remodelling disorders.  相似文献   

18.
PGE(2) is an important mediator of bone metabolism, but the precise localization of its receptors in human bone remains unknown. The present study used specific antibodies against EP(1), EP(2), EP(3) and EP(4) receptors for immunolocalization in normal, osteoporotic and pagetic human adult bone and in human foetal bone. No labelling was obtained for the EP(1) and EP(2) receptors. The EP(3) receptor was detected in foetal osteoclasts, osteoblasts and osteocytes, but only in osteoclasts and some osteoblasts from adult bone. The EP(4) receptor was detected in foetal osteoclasts, osteoblasts and osteocytes and in adult osteoclasts and osteoblasts, but not in adult osteocytes. Our results show differences in PGE(2) receptor expression in foetal and adult human bone but no difference in adult normal compared to pathologic bone. Finally, these results show that the distribution of EP receptors in human osteoblasts in bone corresponds in part to what we recently described in human osteoblasts in culture.  相似文献   

19.
The concept of bone remodelling by basic multicellular units is well established, but how the resorbing osteoclasts find their way through the pre-existing bone matrix remains unexplained. The alignment of secondary osteons along the dominant loading direction suggests that remodelling is guided by mechanical strain. This means that adaptation (Wolff's Law) takes place throughout life at each remodelling cycle. We propose that alignment during remodelling occurs as a result of different canalicular flow patterns around cutting cone and reversal zone during loading. Low canalicular flow around the tip of the cutting cone is proposed to reduce NO production by local osteocytes thereby causing their apoptosis. In turn, osteocyte apoptosis could be the mechanism that attracts osteoclasts, leading to further excavation of bone in the direction of loading. At the transition between cutting cone and reversal zone, however, enhanced canalicular flow will stimulate osteocytes to increase NO production, which induces osteoclast retraction and detachment from the bone surface. Together, this leads to a treadmill of attaching and detaching osteoclasts in the tip and the periphery of the cutting cone, respectively, and the digging of a tunnel in the direction of loading.  相似文献   

20.
In postnatal life, the skeleton undergoes continuous remodeling in which osteoclasts resorb aged or damaged bone, leaving space for osteoblasts to make new bone. The balance of proliferation, differentiation, and apoptosis of bone cells determines the size of osteoclast or osteoblast populations at any given time. Bone cells constantly receive signals from adjacent cells, hormones, and bone matrix that regulate their proliferation, activity, and survival. Thus, the amount of bone and its microarchitecture before and after the menopause or following therapeutic intervention with drugs, such as sex hormones, glucocorticoids, parathyroid hormone, and bisphosphonates, is determined in part by effects of these on survival of osteoclasts, osteoblasts, and osteocytes. Understanding the mechanisms and regulation of bone cell apoptosis will enhance our knowledge of bone cell function and help us to develop better therapeutics for the management of osteoporosis and other bone diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号