首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Magnetic resonance elastography (MRE) can non-invasively determine material stiffness based on the propagating shear wavelength. Shear wave propagation in a finite homogenous isotropic material can be affected by multiple factors. In this study we examined the effects of pre-tension and frequency on MRE shear measurements of gel phantoms with different boundary conditions, frequencies, and geometries. Results from MRE measurements were compared to wave motion theory in elastic solids and qualitatively to a finite element (FE) model. Results indicated that boundary conditions, geometry and pre-tension are important factors to be considered when performing MRE tests on a finite material, and that FE modeling can help explore how the shear wave propagation is affected under various boundary conditions and axial stresses, among other potential factors.  相似文献   

2.
Magnetic resonance elastography (MRE) is a novel non-invasive approach to determine material stiffness by using a conventional magnetic resonance imaging (MRI) system incorporated with an oscillating motion-sensitizing gradient to detect nodal displacements produced by a shear excitation wave. The effects of material properties, excitation frequency, boundary conditions, and applied tension on shear wavelength measurement must be examined before MRE can become a useful diagnostic tool. We propose finite element (FE) modeling as a robust method to systematically study the effects of these parameters. An axisymmetric FE model was generated with ABAQUS to simulate agarose gel phantoms. The effects of material stiffness, density, and excitation frequency on propagating shear wavelength were examined individually. The effect of the boundary conditions on shear wavelength was also demonstrated. Results of shear wavelength from MRE measurement were compared with the results of FE model, which showed good agreement between the methods.  相似文献   

3.

Characterisation of soft tissue mechanical properties is a topic of increasing interest in translational and clinical research. Magnetic resonance elastography (MRE) has been used in this context to assess the mechanical properties of tissues in vivo noninvasively. Typically, these analyses rely on linear viscoelastic wave equations to assess material properties from measured wave dynamics. However, deformations that occur in some tissues (e.g. liver during respiration, heart during the cardiac cycle, or external compression during a breast exam) can yield loading bias, complicating the interpretation of tissue stiffness from MRE measurements. In this paper, it is shown how combined knowledge of a material’s rheology and loading state can be used to eliminate loading bias and enable interpretation of intrinsic (unloaded) stiffness properties. Equations are derived utilising perturbation theory and Cauchy’s equations of motion to demonstrate the impact of loading state on periodic steady-state wave behaviour in nonlinear viscoelastic materials. These equations demonstrate how loading bias yields apparent material stiffening, softening and anisotropy. MRE sensitivity to deformation is demonstrated in an experimental phantom, showing a loading bias of up to twofold. From an unbiased stiffness of \(4910.4 \pm 635.8\) Pa in unloaded state, the biased stiffness increases to 9767.5 \(\pm \,\)1949.9 Pa under a load of \(\approx \) 34% uniaxial compression. Integrating knowledge of phantom loading and rheology into a novel MRE reconstruction, it is shown that it is possible to characterise intrinsic material characteristics, eliminating the loading bias from MRE data. The framework introduced and demonstrated in phantoms illustrates a pathway that can be translated and applied to MRE in complex deforming tissues. This would contribute to a better assessment of material properties in soft tissues employing elastography.

  相似文献   

4.
The purpose of this study was to create a polymer phantom mimicking the mechanical properties of soft tissues using experimental tests and rheological models. Multifrequency Magnetic Resonance Elastography (MMRE) tests were performed on the present phantom with a pneumatic driver to characterize the viscoelastic (μ, η) properties using Voigt, Maxwell, Zener and Springpot models. To optimize the MMRE protocol, the driver behavior was analyzed with a vibrometer. Moreover, the hyperelastic properties of the phantom were determined using compressive tests and Mooney-Rivlin model. The range of frequency to be used with the round driver was found between 60 Hz and 100 Hz as it exhibits one type of vibration mode for the membrane. MRE analysis revealed an increase in the shear modulus with frequency reflecting the viscoelastic properties of the phantom showing similar characteristic of soft tissues. Rheological results demonstrated that Springpot model better revealed the viscoelastic properties (μ=3.45 kPa, η=6.17 Pas) of the phantom and the Mooney-Rivlin coefficients were C(10)=1.09.10(-2) MPa and C(01)=-8.96.10(-3) MPa corresponding to μ=3.95 kPa. These studies suggest that the phantom, mimicking soft tissue, could be used for preliminary MRE tests to identify the optimal parameters necessary for in vivo investigations. Further developments of the phantom may allow clinicians to more accurately mimic healthy and pathological soft tissues using MRE.  相似文献   

5.
Elastic properties of materials can be measured by observing shear wave propagation following localized, impulsive excitations and relating the propagation velocity to a model of the material. However, characterization of anisotropic materials is difficult because of the number of elasticity constants in the material model and the complex dependence of propagation velocity relative to the excitation axis, material symmetries, and propagation directions. In this study, we develop a model of wave propagation following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation modes identified by their polarization relative to the material symmetry axis and propagation direction. Phase velocities for these propagation modes are expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms of three constants after the application of two constraints that hold in the limit of an incompressible material. Group propagation velocities are derived from the phase velocities to describe the propagation of wave packets away from the excitation region following localized excitation. The theoretical model is compared to the results of finite element (FE) simulations performed using a nearly incompressible material model with the five elasticity constants chosen to preserve the essential properties of the material in the incompressible limit. Propagation velocities calculated from the FE displacement data show complex structure that agrees quantitatively with the theoretical model and demonstrates the possibility of measuring all three elasticity constants needed to characterize an incompressible, TI material.  相似文献   

6.
Traditional magnetic resonance elastography (MRE) applies small amplitude vibration to tissues. Thus currently MRE measures only the small deformation behaviour of tissues. MRE has the potential to estimate the strain-varying shear modulus of soft tissues, if applied at different static strains, which may allow prediction of the large-strain behaviour of tissues. This study uses MRE of bovine liver specimens under various levels of static compressive pre-strain up to 30%. Storage and loss moduli measured using MRE increased non-linearly with static compressive pre-strain, and exponential models fit well to these data to describe this relationship (R2>0.93). Based on these models, a 10% linear compression of liver would result in a 47% overestimate of the ‘true’ storage modulus of the uncompressed tissue. The results of this study have implications for MRE transducer design and interpretation of results from in vivo MRE studies.  相似文献   

7.
Traditional mechanical testing often results in the destruction of the sample, and in the case of long term tissue engineered construct studies, the use of destructive assessment is not acceptable. A proposed alternative is the use of an imaging process called magnetic resonance elastography. Elastography is a nondestructive method for determining the engineered outcome by measuring local mechanical property values (i.e., complex shear modulus), which are essential markers for identifying the structure and functionality of a tissue. As a noninvasive means for evaluation, the monitoring of engineered constructs with imaging modalities such as magnetic resonance imaging (MRI) has seen increasing interest in the past decade1. For example, the magnetic resonance (MR) techniques of diffusion and relaxometry have been able to characterize the changes in chemical and physical properties during engineered tissue development2. The method proposed in the following protocol uses microscopic magnetic resonance elastography (μMRE) as a noninvasive MR based technique for measuring the mechanical properties of small soft tissues3. MRE is achieved by coupling a sonic mechanical actuator with the tissue of interest and recording the shear wave propagation with an MR scanner4. Recently, μMRE has been applied in tissue engineering to acquire essential growth information that is traditionally measured using destructive mechanical macroscopic techniques5. In the following procedure, elastography is achieved through the imaging of engineered constructs with a modified Hahn spin-echo sequence coupled with a mechanical actuator. As shown in Figure 1, the modified sequence synchronizes image acquisition with the transmission of external shear waves; subsequently, the motion is sensitized through the use of oscillating bipolar pairs. Following collection of images with positive and negative motion sensitization, complex division of the data produce a shear wave image. Then, the image is assessed using an inversion algorithm to generate a shear stiffness map6. The resulting measurements at each voxel have been shown to strongly correlate (R2>0.9914) with data collected using dynamic mechanical analysis7. In this study, elastography is integrated into the tissue development process for monitoring human mesenchymal stem cell (hMSC) differentiation into adipogenic and osteogenic constructs as shown in Figure 2.  相似文献   

8.
The purpose of this study is to characterize the muscle architecture of children and adults using magnetic resonance elastography and ultrasound techniques. Five children (8-12 yr) and seven adults (24-58 yr) underwent both tests on the vastus medialis muscle at relaxed and contracted (10% and 20% of MVC) states. Longitudinal ultrasonic images were performed in the same area as the phase image showing the shear wave's propagation. Two geometrical parameters were defined: the wave angle (α(_MRE)) corresponding to the shear wave propagation and the fascicule angle (α(_US)) tracking the path of fascicles. Moreover, shear modulus was measured at different localizations within the muscle and in the subcutaneous adipose tissue. The association of both techniques demonstrates that the shear wave propagation follows the muscle fascicles path, reflecting the internal muscle architecture. At rest, ultrasound images revealed waves propagating parallel to the children fascicle while adults showed oblique waves corresponding to already oriented (α(_US)=15.4±2.54°) muscle fascicles. In contraction, the waves' propagation were in an oblique direction for children (α(_US_10%MVC)=10.6±2.27°, α(_US_20%MVC)=10.2±2.29°) as well as adults (α(_US_10%MVC)=15.4±2.54°, α(_US_20%MVC)=17.2±2.44°). A stiffness variation (1 kPa) was found between the upper and lower parts of the adult VM muscle and a lower stiffness (1.85±0.17 kPa) was measured in the subcutaneous adipose tissue. This study demonstrates the feasibility of the MRE technique to provide geometrical insights from the children and adults muscles and to characterize different physiological media.  相似文献   

9.
BackgroundPathologies of the muscles can manifest different physiological and functional changes. To adapt treatment, it is necessary to characterize the elastic property (shear modulus) of single muscles. Previous studies have used magnetic resonance elastography (MRE), a technique based on MRI technology, to analyze the mechanical behavior of healthy and pathological muscles. The purpose of this study was to develop protocols using MRE to determine the shear modulus of nine thigh muscles at rest.MethodsTwenty-nine healthy volunteers (mean age = 26 ± 3.41 years) with no muscle abnormalities underwent MRE tests (1.5 T MRI). Five MRE protocols were developed to quantify the shear moduli of the nine following thigh muscles at rest: rectus femoris (RF), vastus medialis (VM), vastus intermedius (VI), vastus lateralis (VL), sartorius (Sr), gracilis (Gr), semimembranosus (SM), semitendinosus (ST), and biceps (BC). In addition, the shear modulus of the subcutaneous adipose tissue was analyzed.ResultsThe gracilis, sartorius, and semitendinosus muscles revealed a significantly higher shear modulus (μ_Gr = 6.15 ± 0.45 kPa, μ_ Sr = 5.15 ± 0.19 kPa, and μ_ ST = 5.32 ± 0.10 kPa, respectively) compared to other tissues (from μ_ RF = 3.91 ± 0.16 kPa to μ_VI = 4.23 ± 0.25 kPa). Subcutaneous adipose tissue had the lowest value (μ_adipose tissue = 3.04 ± 0.12 kPa) of all the tissues tested.ConclusionThe different elasticities measured between the tissues may be due to variations in the muscles'' physiological and architectural compositions. Thus, the present protocol could be applied to injured muscles to identify their behavior of elastic property. Previous studies on muscle pathology found that quantification of the shear modulus could be used as a clinical protocol to identify pathological muscles and to follow-up effects of treatments and therapies. These data could also be used for modelling purposes.  相似文献   

10.
Use of finite element (FE) foot model as a clinical diagnostics tool is likely to improve the specificity of foot injury predictions in the diabetic population. Here we proposed a novel workflow for rapid construction of foot FE model incorporating realistic geometry of metatarsals encapsulated into lumped forefoot’s soft tissues. Custom algorithms were implemented to perform unsupervised segmentation and mesh generation to directly convert CT data into a usable FE model. The automatically generated model provided higher efficiency and comparable numerical accuracy when compared to the model constructed using a traditional solid-based mesh process. The entire procedure uses MATLAB as the main platform, and makes the present approach attractive for creating personalized foot models to be used in clinical studies.  相似文献   

11.
This paper addresses an important issue raised for the clinical relevance of Computer-Assisted Surgical applications, namely the methodology used to automatically build patient-specific finite element (FE) models of anatomical structures. From this perspective, a method is proposed, based on a technique called the mesh-matching method, followed by a process that corrects mesh irregularities. The mesh-matching algorithm generates patient-specific volume meshes from an existing generic model. The mesh regularization process is based on the Jacobian matrix transform related to the FE reference element and the current element.This method for generating patient-specific FE models is first applied to computer-assisted maxillofacial surgery, and more precisely, to the FE elastic modelling of patient facial soft tissues. For each patient, the planned bone osteotomies (mandible, maxilla, chin) are used as boundary conditions to deform the FE face model, in order to predict the aesthetic outcome of the surgery. Seven FE patient-specific models were successfully generated by our method. For one patient, the prediction of the FE model is qualitatively compared with the patient's post-operative appearance, measured from a computer tomography scan. Then, our methodology is applied to computer-assisted orbital surgery. It is, therefore, evaluated for the generation of 11 patient-specific FE poroelastic models of the orbital soft tissues. These models are used to predict the consequences of the surgical decompression of the orbit. More precisely, an average law is extrapolated from the simulations carried out for each patient model. This law links the size of the osteotomy (i.e. the surgical gesture) and the backward displacement of the eyeball (the consequence of the surgical gesture).  相似文献   

12.
Tissue mechanical parameters have been shown to be highly sensitive to disease by elastography. Magnetic resonance elastography (MRE) in the human body relies on the low-dynamic range of tissue mechanics <100 Hz. In contrast, MRE suited for investigations of mice or small tissue samples requires vibration frequencies 10–20 times higher than those used in human MRE. The dispersion of the complex shear modulus (G?) prevents direct comparison of elastography data at different frequency bands and, consequently, frequency-independent viscoelastic models that fit to G* over a wide dynamic range have to be employed. This study presents data of G* of samples of agarose gel, liver, brain, and muscle measured by high-resolution MRE in a 7T-animal scanner at 200–800 Hz vibration frequency. Material constants μ and α according to the springpot model and related to shear elasticity and slope of the G*-dispersion were determined. Both μ and α of calf brain and bovine liver were found to be similar, while a sample of fibrotic human liver (METAVIR score of 3) displayed about fifteen times higher shear elasticity, similar to μ of bovine muscle measured in muscle fiber direction. α was the highest in fibrotic liver, followed by normal brain and liver, while muscle had the lowest α-values of all biological samples investigated in this study. As expected, the least G*-dispersion was seen in soft gel. The proposed technique of wide-range dynamic MRE can provide baseline data for both human MRE and high-dynamic MRE for better understanding tissue mechanics of different tissue structures.  相似文献   

13.
Non‐invasive photoacoustic tomography (PAT) of mouse brains with intact skulls has been a challenge due to the skull's strong acoustic attenuation, aberration, and reverberation, especially in the high‐frequency range (>15 MHz). In this paper, we systematically investigated the impacts of the murine skull on the photoacoustic wave propagation and on the PAT image reconstruction. We studied the photoacoustic acoustic wave aberration due to the acoustic impedance mismatch at the skull boundaries and the mode conversion between the longitudinal wave and shear wave. The wave's reverberation within the skull was investigated for both longitudinal and shear modes. In the inverse process, we reconstructed the transcranial photoacoustic computed tomography (PACT) and photoacoustic microscopy (PAM) images of a point target enclosed by the mouse skull, showing the skull's different impacts on both modalities. Finally, we experimentally validated the simulations by imaging an in vitro mouse skull phantom using representative transcranial PAM and PACT systems. The experimental results agreed well with the simulations and confirmed the accuracy of our forward and inverse models. We expect that our results will provide better understanding of the impacts of the murine skull on transcranial photoacoustic brain imaging and pave the ways for future technical improvements.   相似文献   

14.
A number of biomechanical models have been proposed to improve nonrigid registration techniques for multimodal breast image alignment. A deformable breast model may also be useful for overcoming difficulties in interpreting 2D X-ray projections (mammograms) of 3D volumes (breast tissues). If a deformable model could accurately predict the shape changes that breasts undergo during mammography, then the model could serve to localize suspicious masses (visible in mammograms) in the unloaded state, or in any other deformed state required for further investigations (such as biopsy or other medical imaging modalities). In this paper, we present a validation study that was conducted in order to develop a biomechanical model based on the well-established theory of continuum mechanics (finite elasticity theory with contact mechanics) and demonstrate its use for this application. Experimental studies using gel phantoms were conducted to test the accuracy in predicting mammographic-like deformations. The material properties of the gel phantom were estimated using a nonlinear optimization process, which minimized the errors between the experimental and the model-predicted surface data by adjusting the parameter associated with the neo-Hookean constitutive relation. Two compressions (the equivalent of cranio-caudal and medio-lateral mammograms) were performed on the phantom, and the corresponding deformations were recorded using a MRI scanner. Finite element simulations were performed to mimic the experiments using the estimated material properties with appropriate boundary conditions. The simulation results matched the experimental recordings of the deformed phantom, with a sub-millimeter root-mean-square error for each compression state. Having now validated our finite element model of breast compression, the next stage is to apply the model to clinical images.  相似文献   

15.
In order to predict and evaluate injury mechanism and biomechanical response of the facial impact on head injury in a crash accident. With the combined modern medical imaging technologies, namely computed tomography (CT) and magnetic resonance imaging (MRI), both geometric and finite element (FE) models for human head-neck with detailed cranio-facial structure were developed. The cadaveric head impact tests were conducted to validate the headneck finite element model. The intracranial pressure, skull dynamic response and skull-brain relative displacement of the whole head-neck model were compared with experimental data. Nine typical cases of facial traffic accidents were simulated, with the individual stress wave propagation paths to the intracranial contents through the facial and cranial skeleton being discussed thoroughly. Intracranial pressure, von Mises stress and shear stress distribution were achieved. It is proved that facial structure dissipates a large amount of impact energy to protect the brain in its most natural way. The propagation path and distribution of stress wave in the skull and brain determine the mechanism of brain impact injury, which provides a theoretic basis for the diagnosis, treatment and protection of craniocerebral injury caused by facial impact.  相似文献   

16.
Advances in imaging technologies such as magnetic resonance elastography (MRE) have allowed researchers to gain insights into muscle function in vivo. MRE has been used to examine healthy and diseased muscle by calculating shear modulus. However, additional information can be measured from visualizing a mechanical wave as it passes through a tissue. One such measurable quantity is wave attenuation. The purpose of this study was to determine if a simple measure of wave attenuation could be used to distinguish between healthy and diseased muscle. Twenty seven subjects (14 healthy controls, 7 hyperthyroid myopathy patients, 6 myositis patients) participated in this study. Wave amplitude was determined along a linear profile through the center of the muscle, and an exponential decay curve was fit to the data. This measure was able to find significant differences in attenuation between healthy and diseased muscle. Furthermore, four hyperthyroid myopathy subjects who were tested following treatment all showed improvement by this measure. A likely reason for patients with hyperthyroid myopathy and myositis behaving similarly is that this measurement may reflect similar changes in the muscle extracellular matrix. In addition to modulus, attenuation seems to be an important parameter to measure in skeletal muscle. Further research is needed to investigate other potential measures of attenuation as well as examining other potential measures that can be found from visualizing wave propagation. Future studies should also include muscle biopsies to confirm that the changes seen are as a result of changes in extracellular matrix structure.  相似文献   

17.
The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies.  相似文献   

18.
The identifiability of the two damping components of a Generalized Rayleigh Damping model is investigated through analysis of the continuum equilibrium equations as well as a simple spring-mass system. Generalized Rayleigh Damping provides a more diversified attenuation model than pure Viscoelasticity, with two parameters to describe attenuation effects and account for the complex damping behavior found in biological tissue. For heterogeneous Rayleigh Damped materials, there is no equivalent Viscoelastic system to describe the observed motions. For homogeneous systems, the inverse problem to determine the two Rayleigh Damping components is seen to be uniquely posed, in the sense that the inverse matrix for parameter identification is full rank, with certain conditions: when either multi-frequency data is available or when both shear and dilatational wave propagation is taken into account. For the multi-frequency case, the frequency dependency of the elastic parameters adds a level of complexity to the reconstruction problem that must be addressed for reasonable solutions. For the dilatational wave case, the accuracy of compressional wave measurement in fluid saturated soft tissues becomes an issue for qualitative parameter identification. These issues can be addressed with reasonable assumptions on the negligible damping levels of dilatational waves in soft tissue. In general, the parameters of a Generalized Rayleigh Damping model are identifiable for the elastography inverse problem, although with more complex conditions than the simpler Viscoelastic damping model. The value of this approach is the additional structural information provided by the Generalized Rayleigh Damping model, which can be linked to tissue composition as well as rheological interpretations.  相似文献   

19.
Voice is the essential part of singing and speech communication. Voice disorders significantly affect the quality of life. The viscoelastic mechanical properties of the vocal fold mucosa determine the characteristics of the vocal folds oscillations, and thereby voice quality. In the present study, a non-invasive method was developed to determine the shear modulus of human vocal fold tissue in vivo via measurements of the mucosal wave propagation speed during phonation. Images of four human subjects' vocal folds were captured using high speed digital imaging (HSDI) and magnetic resonance imaging (MRI) for different phonation pitches, specifically fundamental frequencies between 110 and 440 Hz. The MRI images were used to obtain the morphometric dimensions of each subject's vocal folds in order to determine the pixel size in the high-speed images. The mucosal wave propagation speed was determined for each subject and at each pitch value using an automated image processing algorithm. The transverse shear modulus of the vocal fold mucosa was then calculated from a surface (Rayleigh) wave propagation dispersion equation using the measured wave speeds. It was found that the mucosal wave propagation speed and therefore the shear modulus of the vocal fold tissue were generally greater at higher pitches. The results were in good agreement with those from other studies obtained via in vitro measurements, thereby supporting the validity of the proposed measurement method. This method offers the potential for in vivo clinical assessments of vocal folds viscoelasticity from HSDI.  相似文献   

20.
Improvised explosive devices (IEDs) were used extensively to target occupants of military vehicles during the conflicts in Iraq and Afghanistan (2003–2011). War fighters exposed to an IED attack were highly susceptible to lower limb injuries. To appropriately assess vehicle safety and make informed improvements to vehicle design, a novel Anthropomorphic Test Device (ATD), called the Warrior Injury Assessment Manikin (WIAMan), was designed for vertical loading. The main objective of this study was to develop and validate a Finite Element (FE) model of the WIAMan lower limb (WIAMan-LL). Appropriate materials and contacts were applied to realistically model the physical dummy. Validation of the model was conducted based on experiments performed on two different test rigs designed to simulate the vertical loading experienced during an under-vehicle explosion. Additionally, a preliminary evaluation of the WIAMan and Hybrid-III test devices was performed by comparing force responses to post-mortem human surrogate (PMHS) corridors. The knee axial force recorded by the WIAMan-LL when struck on the plantar surface of the foot (2 m/s) fell mostly within the PMHS corridor, but the corresponding data predicted by the Hybrid-III was almost 60% higher. Overall, good agreements were observed between the WIAMan-LL FE predictions and experiments at various pre-impact speeds ranging from 2 m/s up to 5.8 m/s. Results of the FE model were backed by mean objective rating scores of 0.67–0.76 which support its accuracy relative to the physical lower limb dummy. The observations and objective rating scores show the model is validated within the experimental loading conditions. These results indicate the model can be used in numerical studies related to possible dummy design improvements once additional PMHS data is available. The numerical lower limb is currently incorporated into a whole body model that will be used to evaluate the vehicle design for underbody blast protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号