首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines > borer tunnels  galls > bark mines > mines in aquatic plants > upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors the evolution of cold-tolerant gallers, which do not perform well at high temperatures, and (ii) normoxia (ambient O2 level) in mines allows miners to develop at high temperatures. Little is known, however, about physiological and morphological adaptations to hypoxia and hypercarbia in endophagous insects. Endophagy strongly constrains the diffusion processes with cascading consequences on the evolutionary ecology of endophagous insects.  相似文献   

2.
Heat acclimation over consecutive days has been shown to improve aerobic-based performance. Recently, it has been suggested that heat training can improve performance in a temperate environment. However, due to the multifactorial training demands of athletes, consecutive-day heat training may not be suitable. The current study aimed to investigate the effect of brief (8×30 min) intermittent (every 3–4 days) supplemental heat training on the second lactate threshold point (LT2) in temperate and hot conditions. 21 participants undertook eight intermittent-day mixed-intensity treadmill exercise training sessions in hot (30 °C; 50% relative humidity [RH]) or temperate (18 °C; 30% RH) conditions. A pre- and post-incremental exercise test occurred in temperate (18 °C; 30% RH) and hot conditions (30 °C; 50% RH) to determine the change in LT2. The heat training protocol did not improve LT2 in temperate (Effect Size [ES]±90 confidence interval=0.10±0.16) or hot (ES=0.26±0.26) conditions. The primary finding was that although the intervention group had a change greater than the SWC, no statistically significant improvements were observed following an intermittent eight day supplemental heat training protocol comparable to a control group training only in temperate conditions. This is likely due to the brief length of each heat training session and/or the long duration between each heat exposure.  相似文献   

3.
A 60 day feeding trial was conducted to study the effect of dietary l-tryptophan on thermal tolerance and oxygen consumption rate of freshwater fish, mrigala, Cirrhinus mrigala reared under ambient temperature at low and high stocking density. Four hundred eighty fingerlings were distributed into eight experimental groups. Four groups each of low density group (10 fishes/75 L water) and higher density group (30 fishes/75 L water) were fed a diet containing 0, 0.68, 1.36 or 2.72% l-tryptophan in the diet, thus forming eight experimental groups namely, Low density control (LC) (basal feed +0% l-tryptophan); LT1 (basal feed+0.68% l-tryptophan); LT2 (basal feed+1.36% l-tryptophan); LT3 (basal feed+2.72% l-tryptophan); high density control (HC) (basal feed+0% l-tryptophan); HT1 (basal feed+0.68% l-tryptophan); HT2 (basal feed+1.36% l-tryptophan); and HT3 (basal feed+2.72% l-tryptophan) were fed at 3% of the body weight. The test diets having crude protein 34.33±0.23 to 35.81±0.18% and lipid 423.49±1.76 to 425.85±0.31 K Cal/100 g were prepared using purified ingredients. The possible role of dietary l-tryptophan on thermal tolerance and oxygen consumption rate was assessed in terms of critical thermal maxima (CTMax), critical thermal minima (CTMin), lethal thermal maxima (LTMax) and lethal thermal minima (LTMin). The CTMax, CTMin, LTMax and LTMin values were found to be significantly higher (p<0.05) in the treatment groups with CTMax 42.94±0.037 (LT2); LT Max 43.18±0.070 (LT2); CTMin 10.47±0.088 (LT2) and LTMin 9.42±0.062 (LT3), whereas the control group showed a lower tolerance level. The same trend was observed in the high density group (CTMax 42.09±0.066 (LT3); LTMax 43 23±0.067 (HT3); CTMin 10.98±0.040 (HT3) and LTMin 9.74±0.037 (HT3). However, gradual supplementation of dietary l-tryptophan in the diet significantly reduced the oxygen consumption rate in both the low density group (Y=−26.74x+222.4, r²=0.915) and the high density group (Y=−32.96x+296.5, r²=0.8923). Dietary supplementation of l-tryptophan at a level of 1.36% improved the thermal tolerance level and reduced the oxygen consumption rate in C. mrigala fingerlings.  相似文献   

4.
This study aimed at evaluating the toxicity of some insecticides (abamectin and deltamethrin) on the lethal time (LT50) and midgut of foragers honeybee workers of Apis mellifera jemenatica were studied under laboratory conditions. The bees were provided with water, food, natural protein and sugar solution with insecticide (concentration: 2.50 ppm deltamethrin and 0.1 ppm abamectin). The control group was not treated with any kind of insecticides. The mortality was assessed at 1, 2, 4, 6, 12, 24, 48, and 72 hour (h) after insecticides treatment and period to calculate the value of lethal time (LT50). But the samples the histology study of midgut collected after 24 h were conducted by Scanning Electron Microscope. The results showed the effects of insecticides on the current results show that abamectin has an adverse effect on honeybees, there is a clear impact on the lethal time (LT50) was the abamectin faster in the death of honeybee workers compared to deltamethrin. Where have reached to abamectin (LT50 = 21.026) h, deltamethrin (LT50 = 72.011) h. However, abamectin also effects on cytotoxic midgut cells that may cause digestive disorders in the midgut, epithelial tissue is formed during morphological alterations when digestive cells die. The extends into the internal cavity, and at the top, there is epithelial cell striated border that has many holes and curves, abamectin seems to have crushed the layers of muscle. Through the current results can say abamectin most toxicity on honeybees colony health and vitality, especially foragers honeybee workers.  相似文献   

5.
The ground beetle Merizodus soledadinus was introduced a century ago to the Kerguelen Islands. It has since become invasive and has colonized most coastlines east of this archipelago. In invaded intertidal zones, M. soledadinus has to deal with substrates that can reach high salinity levels. In addition to saline stress, the rapid spread of this invasive insect on the Kerguelen Islands may result in starving during dispersal, especially during winter periods. In order to gain a further understanding of the factors that have contributed to the success of this insect in invading the Kerguelen Islands, we assessed the variability in the expression of heat shock cognate 70 (HSC70) in M. soledadinus. HSC70 are constitutively expressed by insects, and we examined if the expression of HSC70 could picture the health degree of the ground beetles exposed at a range of environmental conditions, for example, varying temperatures (0, 4, 8, 12, and 20 °C), trophic status (fed and food-deprived individuals), and saline conditions (salinities of 0, 35, and 70). We found that HSC70 expression decreased with increasing salinity. HSC70 expression was not modified in response to non-extreme thermal variations or short-term food deprivation, which did not appear to be stressful conditions for M. soledadinus given the survival results. We concluded that HSC70 expression may serve as a molecular indicator of the levels of well-being of this ground beetle when exposed to a range of environmental perturbations.  相似文献   

6.
Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae), an invasive scale insect, attacks different species of Cycas (Cycadales: Cycadaceae) in Taiwan. Development, survival and fecundity of A. yasumatsui were studied on Cycas taitungensis at 24 °C, 70 ± 10% RH, and a photoperiod of 12:12 (L:D) h under laboratory conditions. Data on the life history of A. yasumatsui were analyzed using the age-stage, two-sex life table, to address variable development rates among individuals and between sexes. The egg incubation time was 7.26 days for both females and males and female nymphal development duration was 28.65 days. The development duration of male nymphal stages + pupal stage was 19 days. The total pre-oviposition period (TPOP) was 35.92 days. The maximum longevity of female adults was 67 days and 1 day for males. The intrinsic rate of increase (r) was 0.100 day-1, the finite rate of increase (λ) was 1.11 day-1, the net reproduction rate (Ro) was 111.51 offspring /individual, and the mean generation time (T) was 47.24 day. Life table data can be used to project population growth, to design mass rearing programs and to establish management tactics to control insect pests.  相似文献   

7.
《Endocrine practice》2005,11(4):223-233
ObjectiveTo attempt to confirm a previous report of superior effectiveness of using two thyroid hormones rather than one hormone to treat hypothyroidism.MethodsThis trial attempted to replicate prior findings, which suggested that substituting 12.5 μg of liothyronine (LT3) for 50 μg of levothyroxine (LT4) might improve mood, cognition, and physical symptoms in patients with primary hypothyroidism. Additionally, this trial aimed to extend the previous findings to fatigue and to assess for differential effects in subjects with low fatigue and high fatigue at baseline. A randomized, double-blind, two-period, crossover design was used. At an endocrinology and diabetes clinic, 30 adult subjects with primary hypothyroidism stabilized on LT4 were recruited. Patients randomly assigned to treatment sequence 1 received their standard LT4 dose in one capsule and placebo in another. Patients assigned to sequence 2 received their usual LT4 dose minus 50 μg in one capsule and 10 μg of LT3 in the other. At the end of the first 6 weeks, subjects were crossed over to receive the other treatment. Carryover and treatment effects were assessed by t tests.ResultsOf the 30 enrolled study subjects, 27 completed the trial. The mean LT4 dose was 121 ± 26 μg/day at baseline. No significant differences in fatigue and symptoms of depression were found between treatments. Measures of working memory were unchanged. During substitution treatment, the free thyroxine index was reduced by 0.7 (P < 0.001), total serum thyroxine was reduced by 3.0 μg/dL (P < 0.001), and total serum triiodothyronine was increased by 20.5 ng/dL (P = 0.004).ConclusionWith regard to the outcomes measured, substitution of LT3 at a 1:5 ratio for a portion of baseline LT4 yielded no better results than did treatment with the original dose of LT4 alone. (Endocr Pract. 2005;11:223-233)  相似文献   

8.
The ghost ant, Tapinoma melanocephalum (F.), is a household pest and a considerable nuisance. The aim of this study is to demonstrate the toxicity and control efficacy of boric acid in liquid bait against queen and worker ghost ants. The LT50 values for workers fed with 0.5%–2.5% boric acid and 2% chicken peptone in 20% sucrose water solutions were 4.3–2.4 days. The lethal times (LT50 = 5.2–7.6 days) for queen ghost ants fed with various concentrations of a boric acid solution depended on the feeding behavior of the queens. The high boric acid (4%) content solutions were not repellent to the ghost ant workers. The liquid bait formulation of 1% boric acid, which caused a 100% worker, brood, and queen population reduction in 4, 4, and 5 weeks, respectively, was significantly more effective than the solid bait formulation containing the same concentration (p  0.05). The simulation tests involved using chicken peptone and sucrose as the attractant, and colonies were provided an alternate food source (20% sucrose solution and dog food) to achieve a more accurate assessment of bait acceptability in screening for the efficacy of the liquid boric acid bait. The control efficiency attained 99.9% in week 4. The results demonstrated that liquid bait, containing 2% chicken peptone, 20% sucrose as a food attractant, and 1% boric acid as the toxin, is efficient and highly recommended for ghost ant control.  相似文献   

9.
All entomopathogenic fungi infect insects by direct penetration through the cuticle rather than per os through the gut. Genetic transformation can confer fungi with per os virulence. However, unless the recipient isolate is nonpathogenic to the target insect, mortality caused by a transgenic isolate cannot be attributed solely to oral virulence due to the potential for some simultaneous cuticular infection. Here, a Metarhizium anisopliae wild-type isolate (MaWT) nonpathogenic to Spodoptera litura was genetically engineered to provide a transformed isolate (MaVipT31) expressing the insect midgut-specific toxin Vip3Aa1. Toxin expression was confirmed in MaVipT31 hyphae and conidia using Western blotting. Mortality, leaf consumption and body weight of S. litura larvae (instars I–IV) exposed to a range of concentrations of MaWT conidia were not significantly different to controls although the number of conidia ingested by surviving larvae during the bioassay ranged from 2.3 × 105 (instar I) to 8.1 × 106 (instar IV). In contrast, consumption of MaVipT31 conidia caused high mortalities, reduced leaf consumption rates and decreased body weights in all instars evaluated, demonstrating that oral virulence had been acquired by MaVipT31. Larval mortalities were much more dependent on the number of MaVipT31 conidia ingested than the duration of time spent feeding on conidia-treated leaves (r2: 0.83–0.94 for instars I–IV). LC50 and LT50 trends for MaVipT31 estimated by time-concentration-mortality modeling analyses differed greatly amongst the instars. For 50% kill to be achieved, instar I larvae required 3, 4 and 5 days feeding on the leaves bearing 103, 28 and 8 conidia/mm2 respectively; instar IV larvae required 6, 7 and 8 days feeding on leaves bearing 1760, 730 and 410 conidia/mm2 respectively. Our results provide a deeper insight into the high oral virulence acquired by an engineered isolate and highlight its great potential for biological control.  相似文献   

10.
We determined the cold (freezing) tolerance for field-grown plants of Atriplex halimus L. (Chenopodiaceae) in relation to plant ploidy level, leaf water relations and accumulation of osmolytes. Plants were grown at two sites in Murcia (Spain), having average minimum temperatures in the coldest month of 0.6 and 12.1 °C, respectively. LT50 values derived from laboratory freezing tests, using leaves taken from the plants in early winter and in spring, showed greater tolerance for winter-harvested leaves; the acclimation was more pronounced at the cold-winter site. Cold tolerance was related positively with leaf K and/or Na accumulation. Analysis of compatible organic solutes (soluble sugars, total amino acids and quaternary ammonium compounds) showed that cold tolerance (measured both as LT50 and as winter freezing damage in situ) was related most closely with leaf concentrations of soluble sugars. The leaf percentage dry matter content was related to both in vitro and in vivo tolerance, while tolerance in vitro was correlated also with the osmotic (potential ψs) and the relative water content. The two diploid (2n = 2x = 18) populations, from Spain, showed greater cold tolerance than the three tetraploid (2n = 4x = 36) populations, from North Africa and Syria, which may be related to the latter's greater cell size and consequent dilution of osmolytes. In this halophytic species, cold tolerance, like salinity and drought tolerance, seems to depend on osmotic adjustment, driven by vacuolar accumulation of K and Na and cytoplasmic accumulation of compatible solutes.  相似文献   

11.
We determined the cold (freezing) tolerance for field-grown plants of Atriplex halimus L. (Chenopodiaceae) in relation to plant ploidy level, leaf water relations and accumulation of osmolytes. Plants were grown at two sites in Murcia (Spain), having average minimum temperatures in the coldest month of 0.6 and 12.1 °C, respectively. LT50 values derived from laboratory freezing tests, using leaves taken from the plants in early winter and in spring, showed greater tolerance for winter-harvested leaves; the acclimation was more pronounced at the cold-winter site. Cold tolerance was related positively with leaf K and/or Na accumulation. Analysis of compatible organic solutes (soluble sugars, total amino acids and quaternary ammonium compounds) showed that cold tolerance (measured both as LT50 and as winter freezing damage in situ) was related most closely with leaf concentrations of soluble sugars. The leaf percentage dry matter content was related to both in vitro and in vivo tolerance, while tolerance in vitro was correlated also with the osmotic (potential ψs) and the relative water content. The two diploid (2n = 2x = 18) populations, from Spain, showed greater cold tolerance than the three tetraploid (2n = 4x = 36) populations, from North Africa and Syria, which may be related to the latter's greater cell size and consequent dilution of osmolytes. In this halophytic species, cold tolerance, like salinity and drought tolerance, seems to depend on osmotic adjustment, driven by vacuolar accumulation of K and Na and cytoplasmic accumulation of compatible solutes.  相似文献   

12.
The insect kinins are a class of multifunctional insect neuropeptides present in a diverse variety of insects. Insect kinin analogs showed multiple bioactivities, especially, the aphicidal activity. To find a biostable and bioactive insecticide candidate with simplified structure, a series of N-terminal modified insect kinin analogs was designed and synthesized based on the lead compound [Aib]-Phe-Phe-[Aib]-Trp-Gly-NH2. Their aphicidal activity against the soybean aphid Aphis glycines was evaluated. The results showed that all the analogs maintained the aphicidal activity. In particular, the aphicidal activity of the pentapeptide analog X Phe-Phe-[Aib]-Trp-Gly-NH2 (LC50 = 0.045 mmol/L) was similar to the lead compound (LC50 = 0.048 mmol/L). This indicated that the N-terminal protective group may not play an important role in the activity and the analogs structure could be simplified to pentapeptide analogs while retaining good aphicidal activity. The core pentapeptide analog X can be used as the lead compound for further chemical modifications to discover potential insecticides.  相似文献   

13.
Permethrin resistance status of a laboratory strain, a permethrin-selected strain and three field strains of Aedes aegypti collected in Kuala Lumpur, Malaysia were evaluated using three standard laboratory bioassays: WHO larval bioassay, WHO adult mosquito bioassay, and mixed function oxidase (MFO) enzyme microassay. The LC50 values of field strains from the WHO larval bioassay did not differ significantly. The highest LC50 value was from the Taman Melati field strain (0.39 mg/L). The resistance ratio for the permethrin-selected strain and the field strains ranged from 1.86 fold to 5.57 fold. Pre-exposure to piperonyl butoxide (PBO) in the WHO adult bioassay and MFOs enzyme microassay reduced the LT50 values and reduced the mean optical density of elevated oxidase activity (0.28–0.42) at 630 nm. The LC50 or LT50 values and the level of oxidases were significantly correlated (r = 0.825; p< 0.05). This study confirmed the presence of permethrin resistance in these mosquito populations.  相似文献   

14.
Arsenic hyperaccumulation by Pteris vittata L. (Chinese brake fern) may serve as a defense mechanism against herbivore attack. This study examined the effects of arsenic exposure (0, 5, 15 and 30 mg kg?1) on scale insect (Saissetia neglecta) infestation of P. vittata. Scale insects were counted as a percentage fallen from the plant to the total number of insects after 1 week of As-treatment. The arsenic concentrations in the fronds ranged from 5.40 to 812 mg kg?1. Greater arsenic concentrations resulted in higher percentage of fallen-scale insects (17.2–55.0%). Lower arsenic concentrations (≤5 mg kg?1) showed significantly lower effect on the population compared to 15–30 mg kg?1 (p < 0.05). Arsenic content in the fallen-scale insects was as high as 194 mg kg?1, which indicated that arsenic has been ingested by the scale insects via plant sap. This study is consistent with the hypothesis that arsenic may help P. vittata defend against herbivore's attack.  相似文献   

15.
This study examined correlations between type I percent myosin heavy chain isoform content (%MHC) and mechanomyographic amplitude (MMGRMS) during isometric muscle actions. Fifteen (age = 21.63 ± 2.39) participants performed 40% and 70% maximal voluntary contractions (MVC) of the leg extensors that included increasing, steady force, and decreasing segments. Muscle biopsies were collected and MMG was recorded from the vastus lateralis. Linear regressions were fit to the natural-log transformed MMGRMS–force relationships (increasing and decreasing segments) and MMGRMS was selected at the targeted force level during the steady force segment. Correlations were calculated among type I%MHC and the b (slopes) terms from the MMGRMS–force relationships and MMGRMS at the targeted force. For the 40% MVC, correlations were significant (P < 0.02) between type I%MHC and the b terms from the increasing (r = −0.804) and decreasing (r = −0.568) segments, and MMGRMS from the steady force segment (r = −0.606). Type I%MHC was only correlated with MMGRMS during the steady force segment (P = 0.044, r = −0.525) during the 70% MVC. Higher type I%MHC reduced acceleration in MMGRMS (b terms) during the 40% MVC and the amplitude during the steady force segments. The surface MMG signal recorded during a moderate intensity contraction provided insight on the contractile properties of the VL in vivo.  相似文献   

16.
Recently we reported on raw-starch-digesting ability of alpha-amylase from an insect Sitophilus oryzae (SoAMY) expressed in recombinant Yarrowia lipolytica cells, and demonstrated its usefulness in simultaneous saccharification and fermentation processes with industrial yeasts. In this study we applied fed-batch cultures of Y. lipolytica 4.29 strain reaching high-cell-densities (up to 70 [gDCW/L]), to enhance SoAMY production. SoAMY activity in the medium reached the peak value of 22,979.23 ± 184 [AU/L], at volumetric productivity of 121.58 ± 1.75 [AU/L/h], and yield of 71.83 ± 3.08 [AU/gglycerol], constituting roughly 160-fold improvement, compared to the best previous result. The cultivations were accompanied by high production of erythritol (83.58 [g/L]), at the marginal production of mannitol (5.46 [g/L]). Elementary analyses of media constituents, the enzyme and the yeast biomass gave better insight into carbon and nitrogen fluxes distribution. Due to application of genetic engineering and bioprocess engineering strategies, the insect-derived enzyme can be produced at the quantities competitive to microbial catalysts.  相似文献   

17.
《Biological Control》2006,36(1):22-31
A three-year survey of kudzu foliage, seed, stems, and roots for associated phytophagous insects was conducted to establish basic information about the insect communities that kudzu harbors in China and to assess the abundance, diversity and damage caused by these insects. Diseases of kudzu were also surveyed in southern China. A total of 116 phytophagous insect species in 31 families and 5 orders were collected from kudzu in China, in six feeding guilds: foliage, sap, stem, terminal, seed and root feeders. The impact of foliage feeders varied from site to site and year to year, and over the course of the growing season. The mean percent defoliation of kudzu over all plots and years was 13.3 ± 1.9%, but ranged as high as 34%. Two insect species fed on shoots and clipped off terminals. Infestation of new shoots was high, with nearly half of all shoots clipped. Nearly half of the vines showed damage from stem borers, again varying through the season. Two species of insects attacked kudzu roots, mainly the cerambycid beetle Paraleprodera diophthalma (Pascoe), which caused considerable damage to both small (young, <3.4 cm diameter) and large (older, >6 cm diameter) roots. Insects also caused substantial seed damage. Imitation rust, caused by Synchytrium minutum [=S. puerariae (P. Henning) Miyabe], was the most commonly observed disease of kudzu. Several of these species have potential as biological control agents for kudzu in the US.  相似文献   

18.
Aspartic acid, glutamic acid, γ-amino-n-butyric acid (GABA) and 2-aminoethanesulfonic acid are neuroactive amino acids. They are found in the central rat nervous system. Here, we have studied if a relationship exists between the presence of saxitoxin (STX) a paralytic poisoning shellfish (PSP) and the neuroactive amino acids. Samples of striatum (S), hypothalamus (H), mid brain (MB), frontal cortex (FC), brain stem (BS), right hemisphere (RH) and left hemisphere (LH) of rat brain were collected and analyzed for neuroactive amino acids (AAnt) by Aswad method (1984). Experiments, consisting of intraperitoneal injection of SXT (5 and 10 μg kg?1 body weight) to young male rats, evoked significant changes in AAnt above basal values. Aspartic and glutamic acid significantly increased for RH and LH (after 30 min the increased was 116% and 210%, P  0.001 over basal values, respectively). On the other hand, aspartic, glutamic, taurine and GABA significantly decreased for S (after 30 min the decreased was 77.4%; 84%; 93.8% and 95.3%, P  0.001 over basal values, respectively). These results suggest that STX alters AAnt. It is produced at least in part, because STX blocks voltage-gated sodium channels and this blockade could decrease AAnt release by exocytotic dependent mechanism of depolarization.  相似文献   

19.
20.
The effect of relative humidity (RH) and temperature on CO2 assimilation (An), stomatal conductance (Sc), transpiration rate (Tr), chlorophyll content, fresh and dry weight, leaf length, leaf area, leaf width, formation of new root and survival rate have been assayed in Doritaenopsis in growth chamber after 1 month of acclimatization. Reduced growth was observed at below and above 25 °C whereas it was increased with increasing humidity. Relative water content (RWC) was decreased at 50% and 70% humidity after second day of transfer and recovered completely with the progression of acclimatization. RWC also reduced at high temperature but recovered slowly and a gradual decrease of RWC was observed at 15 °C. A visual symptom of severe leaf tip burn was observed at 50–70% humidity and at 35 °C during acclimatization. At 15 °C and 50% humidity sudden decrease of photosynthetic efficiency (Fv/Fm) was observed, which could not recover in temperature treated plantlets during acclimatization period. Chlorophyll content increased with increasing humidity and at 15 and 35 °C chlorophyll content was decreased compared to 25 °C. Chlorophyll a/b ratio was unchanged while total chlorophyll/carotenoids ratio was increased from low to high temperature. Exposure of plantlets to high temperature led to a noticeable decrease in An, Sc and Tr, and at 15 °C they were more decreased whereas significant differences were not observed in the parameters tested under humidity after 25 days of acclimatization. During daytime at 15 °C, increase in An, Sc and Tr indicates the plantlets adaptability in the new environment. The peroxidase activity remained unaffected in all humidity stress whereas low temperature increased the peroxidase activity compared to high temperature. These finding suggests that photosynthetic properties was greatly affected by air temperature conditions with a reduction of An, Sc and Tr at 15 and 35 °C compared to humidity stress that played a greater role in limiting photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号