首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that translation fidelity in Saccharomyces yeast is determined by factors of genetic and epigenetic (prion) nature. The work represents results of further analysis of strains containing non-chromosomal determinant [ISP+], described earlier. This determinant is involved in the control of translation fidelity and some of its properties indicate that it is a prion. [ISP+] manifests phenotypically as antisuppressor of two sup35 mutations and can be cured by guanidine hydrochloride (GuHCl). Here we have shown that sup35 mutants containing [ISP+] contain also additional sup45 mutations. These mutations cause amino acid replacements in different regions of eRF1 translation termination factor, encoded by SUP45 gene. Strains bearing sup35-25 mutation contain sup45 mutation, which causes amino acid replacement at position 400 of eRF1; strains bearing sup35-10 contain mutation causing replacement, which alters eRF1 at position 75. Thus, antisuppressor phenotype of [ISP+] strains depends on interaction of sup35 and sup45 mutations, as well as on the GuHCl-curable epigenetic determinant.  相似文献   

2.
Over the course of thousands of generations of growth in a glucose-limited environment, 3 of 12 experimental populations of Escherichia coli spontaneously and independently evolved greatly increased mutation rates. In two of the populations, the mutations responsible for this increased mutation rate lie in the same region of the mismatch repair gene mutL. In this region, a 6-bp repeat is present in three copies in the gene of the wild-type ancestor of the experimental populations but is present in four copies in one of the experimental populations and two copies in the other. These in-frame mutations either add or delete the amino acid sequence LA in the MutL protein. We determined that the replacement of the wild-type sequence with either of these mutations was sufficient to increase the mutation rate of the wild-type strain to a level comparable to that of the mutator strains. Complementation of strains bearing the mutator mutations with wild-type copies of either mutL or the mismatch repair gene uvrD rescued the wild-type mutation rate. The position of the mutator mutations-in the region of MutL known as the ATP lid-suggests a possible deficiency in MutL's ATPase activity as the cause of the mutator phenotype. The similarity of the two mutator mutations (despite the independent evolutionary histories of the populations that gave rise to them) leads to a discussion of the potential adaptive role of DNA repeats.  相似文献   

3.
We have attempted to identify amino acid residues of the yeast adenylyl cyclase that are involved in the regulation of its activity, by isolating adenylyl cyclase-linked spontaneous mutations capable of suppressing the temperature-sensitive phenotype of ras1- ras2-ts1 strains. We previously identified a mutated adenylyl cyclase in which a single point mutation, called CR14, led to the replacement of threonine 1651 with isoleucine. We have now investigated the biological effects of CR14, and of other mutations that cause the replacement of threonine 1651 by distinct amino acids. We have observed that the response of adenylyl cyclase to Ras can be either enhanced or attenuated, without significant effects on the steady-state level of the former enzyme in vivo, depending on the amino acid side chain at position 1651. Therefore, this residue identifies a regulatory region on the adenylyl cyclase molecule. We have also taken advantage of the attenuation of adenylyl cyclase function caused by the replacement of threonine 1651 with aspartic acid to isolate intragenic suppressor mutations. We have identified several point mutations, leading to single amino acid substitutions, individually capable of reactivating the attenuated adenylyl cyclase. The corresponding amino acid changes are located within a relatively small region, including residues 1331, 1345, 1348 and 1374. This region could be physiologically involved in the negative control of the carboxy-terminal catalytic domain.  相似文献   

4.
Two esterase cDNA sequences were obtained from susceptible and organophosphorus resistant strains of Boophilus microplus. Both sequences have a high degree of homology to carboxylesterase B. One gene has identical sequences in both strains and the other showed two point mutations. One mutation produces an amino acid substitution when the amino acid sequence is deduced, this mutation was detected in six different populations susceptible and resistant to insecticides, but a pyrethroid resistant strain was the only one that showed only the mutant allele. Identification of this mutation and the strong signal detected in southern blot with this strain, suggest that esterases are contributing to detoxification of pyrethroid compounds, as a resistant mechanism in Mexican strains of the southern cattle tick.  相似文献   

5.
The molecular diversity of inhibitor-resistant TEM (IRT) enzymes was explored using a strategy which involved DNA amplification by polymerase chain reaction (PCR), analysis of restriction fragment length polymorphism (RFLP), and direct nucleotide sequencing. The study of plasmid-borne genes from 27 strains, resistant to amoxicillin and β-lactamase-inhibitor combinations, identified mutations resulting in amino acid change at positions 69, 244, 275, and 276 known to be associated with the IRT phenotype and a mutation at nucleotide position 162 in the promoter region. These mutations were found to lie on two different gene sequences, described here as ``TEM-1B like' and ``TEM-2 like' restriction linkage groups. Further analysis, of nucleotide sequences of promoter and coding regions of the β-lactamases, confirmed that a given mutation causing IRT phenotype could be associated with two different gene sequence frameworks and two different causal mutations could lie on identical gene sequence framework. These data argue in favor of convergent phenotypic evolution of IRT enzymes under the selective pressure imposed by the intensive clinical use of β-lactam–β-lactamase inhibitor combinations. Received: 18 March 1996 / Accepted: 15 July 1996  相似文献   

6.
Protocatechuate 3,4-dioxygenase is a member of a family of bacterial enzymes that cleave the aromatic rings of their substrates between two adjacent hydroxyl groups, a key reaction in microbial metabolism of varied environmental chemicals. In an appropriate genetic background, it is possible to select for Acinetobacter strains containing spontaneous mutations blocking expression of pcaH or -G, genes encoding the alpha and beta subunits of protocatechuate 3, 4-dioxygenase. The crystal structure of the Acinetobacter oxygenase has been determined, and this knowledge affords us the opportunity to understand how mutations alter function in the enzyme. An earlier investigation had shown that a large fraction of spontaneous mutations inactivating Acinetobacter protocatechuate oxygenase are either insertions or large deletions. Therefore, the prior procedure of mutant selection was modified to isolate Acinetobacter strains in which mutations within pcaH or -G cause a heat-sensitive phenotype. These mutations affected residues distributed throughout the linear amino acid sequences of PcaH and PcaG and impaired the dioxygenase to various degrees. Four of 16 mutants had insertions or deletions in the enzyme ranging in size from 1 to 10 amino acid residues, highlighting areas of the protein where large structural changes can be tolerated. To further understand how protein structure influences function, we isolated strains in which the phenotypes of three different deletion mutations in pcaH or -G were suppressed either by a spontaneous mutation or by a PCR-generated random mutation introduced into the Acinetobacter chromosome by natural transformation. The latter procedure was also used to identify a single amino acid substitution in PcaG that conferred activity towards catechol sufficient for growth with benzoate in a strain in which catechol 1,2-dioxygenase was inactivated.  相似文献   

7.
The poliovirus type 3 Sabin oral poliovirus vaccine strain P3/Leon/12a1b differs in nucleotide sequence from its neurovirulent progenitor P3/Leon/37 by just 10 point mutations. The contribution of each mutation to the attenuation phenotype of the vaccine strain was determined by the construction of a series of recombinant viruses from infectious cDNA clones. The neurovirulence testing of recombinant viruses indicated that the attenuation phenotype is determined by just two point mutations: a C to U in the noncoding region at position 472 and a C to U at nucleotide 2034 which results in a serine-to-phenylalanine amino acid substitution in the structural protein VP3.  相似文献   

8.
The J-variant of human serum butyrylcholinesterase (BChE) causes both an approximately two-thirds reduction of circulating enzyme molecules and a corresponding decrease in the level of BChE activity present in serum. Since the level of serum BChE activity and the duration of succinylcholine apnea are inversely correlated, this marked decrease in activity makes individuals with the J-variant more susceptible than usual subjects to prolonged apnea from succinylcholine. We reinvestigated the same family in which Garry et al. identified the J-variant phenotype. The atypical, fluoride, and K-variant mutations were also identified in members of the 47-person pedigree. DNA amplification by PCR, followed by direct sequencing of the amplified DNA, led to the finding that the J-variant phenotype of human serum BChE was associated with two DNA point mutations in the coding region. One of these was the mutation previously identified with the K-variant phenotype (GCA----ACA; Ala539----Thr). The other was an adenine-to-thymine transversion at nucleotide 1490, which changed amino acid 497 from glutamic acid to valine (GAA----GTA; Glu497----Val). This latter point mutation was named the J-variant mutation (formal name BCHE*497V). The J-variant mutation has not been identified without the K-variant mutation. The J-variant mutation created an RsaI-enzyme RFLP. Two additional point mutations, located in the noncoding regions of the gene, were also found to be linked with the J-variant and K-variant point mutations on the same allele. These noncoding polymorphic mutations had previously been found linked to the atypical and K-variant point mutations. A summary table shows dibucaine, fluoride, and Hoffmann-La Roche compound Ro 2-0683 inhibition numbers for 119 samples whose DNA has been sequenced. Eighteen BChE genotypes are represented.  相似文献   

9.
Genomic DNA from two families exhibiting the K-variant phenotype of serum butyrylcholinesterase was amplified by PCR and sequenced to determine the molecular basis of this variant. The K-variant phenotype was found to be associated with a DNA transition from guanine to adenine at nucleotide 1615, which caused an amino acid change from alanine 539 to threonine (GCA----ACA; Ala539----Thr). There was a 30% reduction of serum butyrylcholinesterase activity associated with this mutation. Amplification and sequencing of DNA from a random sample of 47 unrelated people gave a frequency of .128 for the K-variant allele. Thus, 1 person in 63 should be homozygous for the K-variant, making the K-variant the most common butyrylcholinesterase variant. The K-variant mutation was also found to be present in 17 (89%) of 19 butyrylcholinesterase genes containing the point mutation which causes the atypical phenotype of butyrylcholinesterase (GAT----GGT; Asp70----Gly). The presence of the K-variant in the same molecule as the atypical variant does not contribute to the qualitative change in the atypical enzyme, but it most likely accounts for the approximately one-third reduction in Vmax of butyrylcholinesterase activity in atypical serum. Two additional point mutations located in noncoding regions of the gene were also observed to be in linkage disequilibrium with the K-variant mutation. As many as four different point mutations have been identified within a single butyrylcholinesterase gene. Inhibition tests of the enzyme in plasma are usually used to distinguish the K-variant from the usual enzyme when the former is present with the heterozygous atypical variant (AK phenotype vs. UA phenotype). Inhibition tests were performed on plasma enzyme from the four possible genotypic combinations of the heterozygous atypical mutation with or without the K-variant mutation on either allele; we found that the AK phenotype was caused by three genotypes (A/K, AK/K, and U/A) and that the UA phenotype was caused by two genotypes (U/A and U/AK).  相似文献   

10.
11.
Chocolate coated cats: TYRP1 mutations for brown color in domestic cats   总被引:2,自引:0,他引:2  
Brown coat color phenotypes caused by mutations in tyrosinase-related protein-1 (TYRP1) are recognized in many mammals. Brown variations are also recognized in the domestic cat, but the causative mutations are unknown. In cats, Brown, B, has a suggested allelic series, B > b > bl. The B allele is normal wild-type black coloration. Cats with the brown variation genotypes, bb or bbl, are supposedly phenotypically chocolate (aka chestnut) and the light brown genotype, blbl, are supposedly phenotypically cinnamon (aka red). The complete coding sequence of feline TYRP1 and a portion of the 5′ UTR was analyzed by direct sequencing of genomic DNA of wild-type and brown color variant cats. Sixteen single nucleotide polymorphisms (SNPs) were identified. Eight SNPs were in the coding regions, six are silent mutations. Two exon 2 on mutations cause amino acid changes. The C to T nonsense mutation at position 298 causes an arginine at amino acid 100 to be replaced by the opal (UGA) stop codon. This mutation is consistent with the cinnamon phenotype and is the putative light brown, bl, mutation. An intron 6 mutation that potentially disrupts the exon 6 downstream splice-donor recognition site is associated with the chocolate phenotype and is the putative brown, b, mutation. The allelic series was confirmed by segregation and sequence analyses. Three microsatellite makers had significant linkage to the brown phenotype and two for the TYRP1 mutations in a 60-member pedigree. These mutations could be used to identify carriers of brown phenotypes in the domestic cat.  相似文献   

12.
Single mutations in the mglA gene in Myxococcus xanthus render cells incapable of gliding. The mglA strains are unique in that all other nonmotile strains of M. xanthus isolated are the result of at least two independent mutations in separate motility system genes. Translational fusions of trpE, or of lacZ, to mglA were constructed, and the resulting fusion polypeptides were used to generate antibodies. Antibodies specific to MglA protein were purified. Antibody-tagged MglA was found localized to the cytoplasm of M. xanthus cells both by fractionation of cell extracts and by electron microscopy of thin sections of whole cells. Four of the five mglA missense mutants tested failed to produce detectable levels of the MglA antigen in whole cell extracts. Nonmotile double mutants (A-S-), which have one mutation in a gene of system A and one mutation in a gene of system S, have the same phenotype as null mglA mutants but produce wild-type levels of MglA protein. MglA protein is conserved in all strains of myxobacteria tested. The amino acid sequence of MglA protein includes three sequence motifs characteristic of GDP/GTP-binding proteins. On the basis of its genetic properties, intracellular location, and amino acid sequence, it is argued that MglA protein is a regulator in the sequence of functions leading to cell movement.  相似文献   

13.
We have sequenced 11 representative mutations of the unc-54 myosin heavy chain gene of Caenorhabditis elegans that affect the synthesis, assembly or enzymatic activity of the encoded myosin heavy chain. Six of the sequenced unc-54 mutations cause premature termination of protein synthesis. Four mutations (e1092, e1115, e1213, e1328) were ochre mutations, one mutation (e903) was a frameshift, which caused premature termination at a nearby UGA terminator, and one mutation (e190) was a deletion that altered the reading frame and caused termination at an ochre codon. Two mutations (e675 and s291) were inphase deletions, which resulted in a shortened myosin rod segment. These aberrant myosins fail to assemble into normal thick filaments. The sequence alterations of the missense mutations (e1152, s74, s95) indicated amino acid residues that are critical for myosin function. The mutation e1152 causes the production of a myosin heavy chain that fails to assemble into thick filaments. It had two adjacent amino acid substitutions at the extreme amino terminus of the rod, indicating a role for subfragment-2 in thick filament assembly. Mutants homozygous for s74 or s95 are very slow-moving, although they make myosin heavy chains that assemble normally. The encoded amino acid substitutions of s95 and s74 are in the 23 X 10(3) Mr and 50 X 10(3) Mr domains of the myosin head, flanking the ATP binding site. The sequenced mutations are distributed throughout the gene in the order predicted from genetic fine-structure mapping experiments. Seven of eight point mutations isolated following ethylmethane sulphonate mutagenesis were G X C to A X T transitions. A single X-ray-induced allele proved to be a deletion of two adjacent thymidine residues. The three deletion mutations were found in a region of the myosin rod with numerous direct and inverted nucleotide sequence repeats, but their origin cannot be accounted for by homologous recombination. Instead, a comparison of the deletion junctions suggests that the deletions arose by a site-specific mechanism.  相似文献   

14.
Two deletions of the low-density lipoprotein (LDL) receptor gene were previously shown to account for about two thirds of all mutations causing familial hypercholesterolemia (FH) in Finland. We screened the DNA samples from a cohort representing the remaining 30% of Finnish heterozygous FH patients by amplifying all the 18 exons of the receptor gene by PCR and searching for DNA variations with the SSCP technique. Ten novel mutations were identified, comprising two nonsense and seven missense mutations as well as one frameshift mutation caused by a 13-bp deletion. A single nucleotide change, substituting adenine for guanidine at position 2533 and resulting in an amino acid change of glycine to aspartic acid at codon 823, was found in DNA samples from 14 unrelated FH probands. This mutation (FH-Turku) affects the sequence encoding the putative basolateral sorting signal of the LDL receptor protein; however, the exact functional consequences of this mutation are yet to be examined. The FH-Turku gene and another point mutation (Leu380-->His or FH-Pori) together account for approximately 8% of the FH-causing genes in Finland and are particularly common among FH patients from the southwestern part of the country (combined, 30%). Primer-introduced restriction analysis was applied for convenient assay of the FH-Turku and FH-Pori point mutations. In conclusion, this paper demonstrates the unique genetic background of FH in Finland and describes a commonly occurring FH gene with a missense mutation closest to the C terminus thus far reported.  相似文献   

15.
16.
We report 31 point mutations in the factor IX gene and explore the relationship between the level of evolutionary conservation of an amino acid and the probability of a mutation causing hemophilia B. From our total sample of 125 hemophiliacs and from those reported by others, we identify 95 independent missense mutations, 94 of which occur at amino acids that are evolutionarily conserved in the available mammalian factor IX sequences. The likelihood of a missense mutation causing hemophilia B depends on whether the residue is also conserved in the factor IX-related proteases: factor VII, factor X, and protein C. Most of the possible missense mutations in generically conserved residues (i.e., those conserved in factor IX and in all the related proteases) should cause disease. In contrast, missense mutations in factor IX-specific residues (i.e., those conserved in human, cow, dog, and mouse factor IX but not in the related proteases) are sixfold less likely to cause disease. Missense mutations at nonconserved residues are 33-fold less likely to cause disease. At least three models are compatible with these observations. A comparison of sequence alignments from four and nine species of factor IX and an examination of the missense mutations occurring at CpG residues suggest a model in which most residues fall on opposite ends of a spectrum. In about 40% of residues, virtually any missense mutation in a minority of the residues will cause disease, while virtually no missense mutations will cause disease in most of the remaining residues. Thus, many of the residues in factor IX are spacers; that is, the main chains are presumably necessary to keep other amino acid interactions in register, but the nature of the side chain is unimportant.  相似文献   

17.
18.
19.
Dysferlin protein (DYSF) is a ferlin family member found in sarcolemma and is involved in membrane repair, muscle differentiation, membrane fusion, etc. The deficiency of DYSF due to mutations is associated with different pathologic phenotypes including the autosomal recessive limb-girdle type 2B phenotype (LGMD2B), a distal anterior compartment myopathy (DMAT), and the Miyoshi myopathy (MM). In this study, we determined a missense mutation c.4253G>A on the DYSF gene in a Mexican family from an endogamic population. This mutation was assumed to be the cause of dystrophy because only homozygous individuals of the family manifest a clinical phenotype. Structural implications caused by G/D substitution at amino acid position 1418 are discussed in terms of potential importance of the dysferlin neighboring sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号