首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Group IB secretory phospholipase A2 (sPLA2-IB) mediates cell proliferation, cell migration, hormone release and eicosanoid production via its receptor in peripheral tissues. In the CNS, high-affinity binding sites of sPLA2-IB have been documented. However, it remains obscure whether sPLA2-IB causes biologic or pathologic response in the CNS. To this end, we examined effects of sPLA2-IB on neuronal survival in primary cultures of rat cortical neurons. sPLA2-IB induced neuronal cell death in a concentration-dependent manner. This death was a delayed response requiring a latent time for 6 h; sPLA2-IB-induced neuronal cell death was accompanied with apoptotic blebbing, condensed chromatin, and fragmented DNA, exhibiting apoptotic features. Before cell death, sPLA2-IB liberated arachidonic acid (AA) and generated prostaglandin D2 (PGD2) from neurons. PGD2 and its metabolite, Delta12-PGJ2, exhibited neurotoxicity. Inhibitors of sPLA2 and cyclooxygenase-2 (COX-2) significantly suppressed not only AA release, but also PGD2 generation. These inhibitors significantly prevented neurons from sPLA2-IB-induced neuronal cell death. In conclusion, we demonstrate a novel biological response, apoptosis, of sPLA2-IB in the CNS. Furthermore, the present study suggests that PGD2 metabolites, especially Delta12-PGJ2, might mediate sPLA2-IB-induced apoptosis.  相似文献   

2.
Cyclic ADP-ribose (cADPR), a known endogenous modulator of ryanodine receptor Ca2+ releasing channels, is found in the nervous system. Injection of cADPR into neuronal cells primarily induces a transient elevation of intracellular Ca2+ concentration ([Ca2+]i), and/or secondarily potentiates [Ca2+]i increases that are the result of depolarization-induced Ca2+ influx. Acetylcholine release from cholinergic neurons is facilitated by cADPR. cADPR modifies K+ currents or elicits Ca2+-dependent inward currents. cADPR is synthesized by both membrane-bound and cytosolic forms of ADP-ribosyl cyclase in neuronal cells. cADPR hydrolase activity is weak in the membrane fraction, but high in the cytoplasm. Cytosolic ADP-ribosyl cyclase activity is upregulated by nitric oxide/cyclic GMP-dependent phosphorylation. Stimulation of muscarinic and beta-adrenergic receptors activates membrane-bound ADP-ribosyl cyclase via G proteins within membranes of neuronal tumor cells and cortical astrocytes. These findings strongly suggest that cADPR is a second messenger in Ca2+ signaling in the nervous system, although many intriguing issues remain to be addressed before this identity is confirmed.  相似文献   

3.
In the central nervous system, fibroblast growth factor 2 (FGF2) is known to have important functions in cell survival and differentiation. In addition to its roles as a neurotrophic factor, we found that FGF2 caused cell death in the early primary culture of cortical neurons. FGF2-induced neuronal cell death showed apoptotic characters, e.g., chromatin condensation and DNA fragmentation. The ultrastructural morphology of FGF2-treated neurons indicated apoptotic features such as progressive cell shrinkage, blebbing of the plasma membrane, loss of cytosolic organelles, clumping of chromatin, and fragmentation of DNA. Tyrosine kinase inhibitors significantly rescued neurons from FGF2-induced apoptosis. FGF2 potentiated a marked influx of Ca2+ into neurons before apoptosis. Both a calcium chelator and L-type voltage-sensitive Ca2+ channel (L-VSCC) blockers attenuated FGF2-induced apoptosis, whereas other blockers of VSCCs such as N-type and P/Q-types did not. Blockers of L-VSCCs significantly suppressed FGF2-enhanced Ca2+ influx into neurons. Moreover, FGF2 also generated reactive oxygen species (ROS) before apoptosis. Radical scavengers reduced not only the FGF2-generated ROS, but also the FGF2-induced Ca2+ influx and apoptosis. In conclusion, we demonstrated that FGF2 caused apoptosis via L-VSCCs in the early neuronal culture.  相似文献   

4.
The regulatory mechanism of Ca2+ influx into the cytosol from the extracellular space in non-excitable cells is not clear. The "capacitative calcium entry" (CCE) hypothesis suggested that Ca2+ influx is triggered by the IP(3)-mediated emptying of the intracellular Ca2+ stores. However, there is no clear evidence for CCE and its mechanism remains elusive. In the present work, we have provided the reported evidences to show that inhibition of IP(3)-dependent Ca2+ release does not affect Ca2+ influx, and the experimental protocols used to demonstrate CCE can stimulate Ca2+ influx by means other than emptying of the Ca2+ stores. In addition, we have presented the reports showing that IP(3)-mediated Ca2+ release is linked to a Ca2+ entry from the extracellular space, which does not increase cytosolic [Ca2+] prior to Ca2+ release. Based on these and other reports, we have provided a model of Ca2+ signaling in non-excitable cells, in which IP(3)-mediated emptying of the intracellular Ca2+ store triggers entry of Ca2+ directly into the store, through a plasma membrane TRPC channel. Thus, emptying and direct refilling of the Ca2+ stores are repeated in the presence of IP(3), giving rise to the transient phase of oscillatory Ca2+ release. Direct Ca2+ entry into the store is regulated by its filling status in a negative and positive manner through a Ca2+ -binding protein and Stim1/Orai complex, respectively. The sustained phase of Ca2+ influx is triggered by diacylglycerol (DAG) through the activation of another TRPC channel, independent of Ca2+ release. The plasma membrane IP(3) receptor (IP(3)R) plays an essential role in Ca2+ influx, by interacting with the DAG-activated TRPC, without the requirement of binding to IP(3).  相似文献   

5.
The effect of peroxynitrite (OONO-) on voltage-dependent Ca2+ channels (VDCCs) was examined by measuring [45Ca2+] influx into mouse cerebral cortical neurones. OONO- time- and dose-dependently increased [45Ca2+] influx and this increase was abolished by manganese (III) tetrakis (4-benzoic acid) porphyrin, a scavenger for OONO-. Inhibition of cyclic GMP (cGMP) formation did not alter the OONO(-)-induced [45Ca2+] influx. OONO-, as well as 30 mm KCl, significantly increased fluorescence intensity of cell-associated bis-(1,3-dibutylbarbituric acid) trimethine oxonol (bis-oxonol). Tetrodotoxin and membrane stabilizers such as lidocaine dose-dependently suppressed OONO(-)-induced [45Ca2+] influx. Although each of 1 microM nifedipine and 1 microM omega-agatoxin VIA (omega-ATX) significantly inhibited the OONO(-)-induced [45Ca2+] influx and the concomitant presence of these agents completely abolished the influx, 1 microM omega-conotoxin GVIA (omega-CTX) showed no effect on the influx. On the other hand, OONO- itself reduced 30 mM KCl-induced [45Ca2+] influx to the level of [45Ca2+] influx induced by OONO- alone, and the magnitude of this reduction was as same as that of KCl-induced [45Ca2+] influx by omega-CTX. These results indicate that OONO- increases [45Ca2+] influx into the neurones through opening P/Q- and L-type VDCCs subsequent to depolarization, and inhibits the influx through N-type VDCCs.  相似文献   

6.
We investigated the existence of a capacitative Ca2+ entry (CCE) pathway in ROS 17/2.8 osteoblast-like cells and its responsiveness to 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3]. Depletion of inner Ca2+ stores with thapsigargin or 1,25(OH)2D3 in the absence of extracellular Ca2+ transiently elevated cytosolic Ca2+ ([Ca2+]i); after recovery of basal values, Ca2+ re-addition to the medium markedly increased Ca2+ entry, reflecting pre-activation of a CCE pathway. Recovery of the Ca2+ overshoot that followed the induced CCE was mainly mediated by the plasma membrane Ca2+-ATPase. Addition of 1,25(OH)2D3 to the declining phase of the thapsigargin-induced CCE did not modify further [Ca2+]i, indicating that steroid activation of CCE was dependent on store depletion. Pre-treatment with 1 microM Gd3+ inhibited 30% both thapsigargin- and 1,25(OH)2D3-stimulated CCE, whereas 2.5 microM Gd3+ was required for maximal inhibition ( approximately 85%). The activated CCE was permeable to both Mn2+ and Sr2+. Mn2+ entry sensitivity to Gd3+ was the same as that of the CCE. However, 1-microM Gd3+ completely prevented capacitative Sr2+ influx, whereas subsequent Ca2+ re-addition was reduced only 30%. These results suggest that in ROS 17/2.8 cells CCE induced by thapsigargin or 1,25(OH)2D3 is contributed by at least two cation entry pathways: a Ca2+/Mn2+ permeable route insensitive to very low micromolar (1 microM) Gd3+ accounting for most of the CCE and a minor Ca2+/Sr2+/Mn2+ permeable route highly sensitive to 1 microM Gd3+. The Ca2+-mobilizing agonist ATP also stimulated CCE resembling the Ca2+/Sr2+/Mn2+ permeable entry activated by 1,25(OH)2D3. The data demonstrates for the first time, the presence of a hormone-responsive CCE pathway in an osteoblast cell model, raising the possibility that it could be an alternative Ca2+ influx route through which osteotropic agents influence osteoblast Ca2+ homeostasis. Copyright Wiley-Liss, Inc.  相似文献   

7.
Glycerotoxin (GLTx) is capable of stimulating neurotransmitter release at the frog neuromuscular junction by directly interacting with N-type Ca2+ (Cav2.2) channels. Here we have utilized GLTx as a tool to investigate the functionality of Cav2.2 channels in various mammalian neuronal preparations. We first adapted a fluorescent-based high-throughput assay to monitor glutamate release from rat cortical synaptosomes. GLTx potently stimulates glutamate secretion and Ca2+ influx in synaptosomes with an EC50 of 50 pm. Both these effects were prevented using selective Cav2.2 channel blockers suggesting the functional involvement of Cav2.2 channels in mediating glutamate release in this system. We further show that both Cav2.1 (P/Q-type) and Cav2.2 channels contribute equally to depolarization-induced glutamate release. We then investigated the functionality of Cav2.2 channels at the neonatal rat neuromuscular junction. GLTx enhances both spontaneous and evoked neurotransmitter release causing a significant increase in the frequency of postsynaptic action potentials. These effects were blocked by specific Cav2.2 channel blockers demonstrating that either GLTx or its derivatives could be used to selectively enhance the neurotransmitter release from Cav2.2-expressing mammalian neurons.  相似文献   

8.
We evaluated whether both inert and catalytically active metalloporphyrin antioxidants, meso-substituted with either phenyl-based or N-alkylpyridinium-based groups, suppress Ca(2+)-dependent neurotoxicity in cell culture models of relevance to cerebral ischemia. Representatives from both metalloporphyrin classes, regardless of antioxidant strength, protected cultured cortical neurons or PC-12 cultures against the Ca(2+) ionophores ionomycin or A23187, by suppressing neurotoxic Ca(2+) influx. Some metalloporphyrins suppressed excitotoxic Ca(2+) influx indirectly induced by the Ca(2+) ionophores in cortical neurons. Metalloporphyrins did not quench intracellular fluorescence, suggesting localization to the plasma membrane interface and/or interference with Ca(2+) ionophores. Metalloporphyrins suppressed ionomycin-induced Mn(2+) influx, but did not protect cortical neurons against pyrithione, a Zn(2+) ionophore. In other Ca(2+)-dependent paradigms, Ca(2+) influx via plasma membrane depolarization, but not through reversal of plasmalemmal Na(+)/Ca(2+) exchangers, was modestly suppressed by Mn(III)meso-tetrakis(4-benzoic acid)porphyrin (Mn(III)TBAP) or by an inert analog, Zn(II)TBAP. Mn(III)TBAP and Zn(II)TBAP potently protected cortical neurons against long-duration oxygen-glucose deprivation (OGD), performed in the presence of antagonists of NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and L-type voltage-gated Ca(2+) channels, raising the possibility of an unconventional mode of blockade of transient receptor protein melastatin 7 channels by a metalloTBAP family of metalloporphyrins. The present study extends the range of Ca(2+)-dependent insults for which metalloporphyrins demonstrate unconventional neuroprotection. MetalloTBAPs appear capable of targeting an OGD temporal continuum.  相似文献   

9.
Neuronal cell death as a result of apoptosis is associated with cerebrovascular stroke and various neurodegenerative disorders. Pharmacological agents that maintain normal intracellular Ca2+ levels and inhibit cellular oxidative stress may be effective in blocking abnormal neuronal apoptosis. In this study, a spontaneous (also referred to as age-induced) model of apoptosis consisting of rat cerebellar granule cells was used to evaluate the antiapoptotic activities of voltage-sensitive Ca2+ channel blockers and various antioxidants. The results of these experiments demonstrated that the charged, dihydropyridine Ca2+ channel blocker amlodipine had very potent neuroprotective activity in this system, compared with antioxidants and neutral Ca2+ channel blockers (nifedipine and nimodipine). Within its effective pharmacological range (10-100 nM), amlodipine attenuated intracellular neuronal Ca2+ increases elicited by KCl depolarization but did not affect Ca2+ changes triggered by N-methyl-D-aspartate receptor activation. Amlodipine also inhibited free radical-induced damage to lipid constituents of the membrane in a dose-dependent manner, independent of Ca2+ channel modulation. In parallel experiments, spontaneous neuronal apoptosis was inhibited in dose- and time-dependent manners by antioxidants (U-78439G, alpha-tocopherol, and melatonin), nitric oxide synthase inhibitors (N-nitro-L-arginine and N-nitro-D-arginine), and a nitric oxide chelator (hemoglobin) in the micromolar range. These results suggest that spontaneous neuronal apoptosis is associated with excessive Ca2+ influx, leading to further intracellular Ca2+ increases and the generation of reactive oxygen species. Agents such as amlodipine that block voltage-sensitive Ca2+ channels and inhibit cellular oxidative stress may be effective in the treatment of cerebrovascular stroke and neurodegenerative diseases associated with excessive apoptosis.  相似文献   

10.
Danilo Guerini 《Biometals》1998,11(4):319-330
The Ca 2+ ATPases or Ca 2+ pumps transport Ca 2+ ions out of the cytosol, by using the energy stored in ATP. The Na + / Ca 2+ exchanger uses the chemical energy of the Na + gradient (the Na + concentration is much higher outside than inside the cell) to remove Ca 2+ from the cytosol. Ca 2+ pumps are found in the plasma membrane and in the endoplasmic reticulum of the cells. The pumps are probably present in the membrane of other organelles, but little experimental information is available on this matter. The Na + / Ca 2+ exchangers are located on the plasma membrane. A Na + / Ca 2+ exchanger was found in the mitochondria, but very little is known on its structure and sequence. These transporters control the Ca 2+ concentration in the cytosol and are vital to prevent Ca 2+ overload of the cells. Their activity is controlled by different mechanisms, that are still under investigation. A number of the possible isoforms for both types of proteins has been detected.© Kluwer Academic Publishers  相似文献   

11.
Beta-amyloid protein is thought to underlie the neurodegeneration associated with Alzheimer's disease by inducing Ca(2+)-dependent apoptosis. Elevated neuronal expression of the proinflammatory cytokine interleukin-1beta is an additional feature of neurodegeneration, and in this study we demonstrate that interleukin-1beta modulates the effects of beta-amyloid on Ca(2+) homeostasis in the rat cortex. beta-Amyloid-(1-40) (1 microM) caused a significant increase in (45)Ca(2+) influx into rat cortical synaptosomes via activation of L- and N-type voltage-dependent Ca(2+) channels and also increased the amplitude of N- and P-type Ca(2+) channel currents recorded from cultured cortical neurons. In contrast, interleukin-1beta (5 ng/ml) reduced the (45)Ca(2+) influx into cortical synaptosomes and inhibited Ca(2+) channel activity in cultured cortical neurons. Furthermore, the stimulatory effects of beta-amyloid protein on Ca(2+) influx were blocked following exposure to interleukin-1beta, suggesting that interleukin-1beta may govern neuronal responses to beta-amyloid by regulating Ca(2+) homeostasis.  相似文献   

12.
Treatment of Arabidopsis thaliana cells with oligogalacturonides (OG) initiates a transient production of reactive oxygen species (ROS), the concentration of which in the medium peaks after about 20 min of treatment. The analysis of OG effects on Ca (2+) fluxes shows that OG influence both Ca (2+) influx and Ca (2+) efflux (measured as (45)Ca (2+) fluxes) in a complex way. During the first 10 - 15 min, OG stimulate Ca (2+) influx and decrease its efflux, while at successive times of treatment, OG cause an increase of Ca (2+) efflux and a slight decrease of its influx. Treatment with sub- micro M concentrations of eosin yellow (EY), which selectively inhibits the Ca (2+)-ATPase of plasma membrane (PM), completely prevents the OG-induced increase in Ca (2+) efflux. EY also suppresses the transient feature of OG-induced ROS accumulation, keeping the level of ROS in the medium high. The biochemical analysis of PM purified from OG-treated cells indicates that treatment with OG for 15 to 45 min induces a significant decrease in Ca (2+)-ATPase activation by exogenous calmodulin (CaM), and markedly increases the amount of CaM associated with the PM. During the same time span, OG do not influence the expression of At-ACA8, the main isoform of PM Ca (2+)-ATPase in suspension-cultured A. thaliana cells, and of CaM genes. Overall, the reported results demonstrate that the PM Ca (2+)-ATPase is involved in the response of plant cells to OG and is essential in regulation of the oxidative burst.  相似文献   

13.
Intracellular Ca2+ is an important regulator of many cellular processes. Besides ion channels and transporters in the plasmalemma, changes in [Ca]i can be mediated by uptake and release mechanisms of internal organelles. Theoretical and experimental procedures are developed aiming to reveal the distribution of internal Ca2+ pools and their role in generating complicated spatial patterns of [Ca]i gradients. Cultured pyramidal neurons from rat hippocampus were loaded with Ca2+-sensitive fluorescent dyes, fura-2 and fluo-3. Cell images were partitioned according to pixel amplitude and highlighted pictures were characterized by their intensity, relative area and connectivity. This approach facilitates the localization of the sites of Ca2+ release from internal stores induced by application of different agents. After each trial, neurons were stained with dyes, acridine orange or DiOC6, which bind preferentially to nucleus and endoplasmic reticulum. A correlation between images confirmed the spatial localization of Ca2+ release sites. Application of the partition procedure also gave a clear evidence for the importance of Ca2+ influx in the mechanism of [Ca]i oscillations.  相似文献   

14.
Cultured cerebellar granule neurons (CGNs) require membrane depolarization or neurotrophic factors for their survival in vitro and undergo apoptosis when deprived of these survival-promoting stimuli. Here, we show that secretory phospholipases A(2)s (sPLA(2)s) rescue CGNs from apoptosis after potassium deprivation. The neurotrophic effect required the enzymatic activity of sPLA(2)s, since catalytically inactive mutants of sPLA(2)s failed to protect CGNs from apoptosis. Consistently, the ability of sPLA(2)s to protect CGNs from apoptosis correlated with the extent of sPLA(2)-induced arachidonic acid release from live CGNs. The survival-promoting effect of sPLA(2) was inhibited by depletion of extracellular Ca(2+) or by the presence of L-type Ca(2+) channel blocker nicardipine, suggesting that Ca(2+) influx occurs upon sPLA(2) treatment. Among the mammalian sPLA(2)s tested, only group X sPLA(2), but not group IB nor IIA sPLA(2)s, displayed neurotrophic activity. These results suggest a novel, unexpected neurotrophin-like role of sPLA(2) in the nervous system.  相似文献   

15.
The biphasic oxidative burst induced by Phaeomoniella chlamydospora extract (Pce) in Vitis vinifera (Vv) cell suspensions was investigated. Treatment of cell suspensions with diphenyleneiodonium chloride, an inhibitor of NADPH oxidase, prevented the Pce‐induced biphasic reactive oxygen species (ROS) accumulation, suggesting that NADPH oxidase is the primary ROS source in the oxidative burst induced by Pce elicitation of Vv cells. The role of Ca2+ in the oxidative burst was also investigated using a Ca2+ chelator and several Ca2+ channel blockers. The treatment of Vv cell suspensions with the Ca2+ chelator ethylene glycol‐bis(2‐aminoethylether)‐N, N, N’; N’‐tetraacetic acid (EGTA) completely inhibited Pce‐induced ROS accumulation, suggesting that Ca2+ availability is necessary for occurrence of the induced oxidative burst. However, only the Ca2+ channel blocker ruthenium red strongly inhibited the Pce‐induced ROS accumulation, suggesting that the specific Ca2+ channel types from which Ca2+ influx is originated also play an important role in the Pce‐induced oxidative burst. Furthermore, Ca2+ availability seems to be necessary for the Pce‐induced activity of NADPH oxidase.  相似文献   

16.
Mitochondrial complex I dysfunction has been implicated in a number of brain pathologies, putatively owing to an increased rate of reactive oxygen species (ROS) release. However, the mechanisms regulating the ROS burden are poorly understood. In this study we investigated the effect of Ca2+ loads on ROS release from rat brain mitochondria with complex I partially inhibited by rotenone. The addition of 20 nm rotenone to brain mitochondria increased ROS release. Ca2+ (100 microm) alone had no effect on ROS release, but greatly potentiated the effects of rotenone. The effect of Ca2+ was decreased by ruthenium red. Ca2+-challenged mitochondria lose about 88% of their glutathione and 46% of their cytochrome c under these conditions, although this depends only on Ca2+ loading and not complex I inhibition. ADP in combination with oligomycin decreased the loss of glutathione and cytochrome c and free radical generation. Cyclosporin A alone was ineffective in preventing these effects, but augmented the protection provided by ADP and oligomycin. Non-specific permeabilization of mitochondria with alamethicin also increased the ROS signal, but only when combined with partial inhibition of complex I. These results demonstrate that Ca2+ can greatly increase ROS release by brain mitochondria when complex I is impaired.  相似文献   

17.
Vanadate is a commonly used Ca2+ pump blocker, exerting a substantial effect on Ca2+ extrusion at millimolar concentrations in human red cells. At such levels, vanadate also seems to open an L type-like Ca2+ channel in these cells (J Biol Chem 257 (1982) 7414; Gen Physiol Biophys 16 (1997) 359). Since neither a dose-dependence effect nor a metabolic requirement for the latter action could be found in the literature, we have addressed this matter in the present work. Accordingly, vanadate action on Ca2+ entry was systematically investigated in both young and old human red cells after metabolic depletion. Although vanadate enhanced Ca2+ entry indifferently in either cell type, a distinct over-all effect was paradoxically found depending on whether or not metabolic substrates that give rise to ATP were present. In ATP-depleted cells, unlike with ATP-containing cells, vanadate-stimulated Ca2+ entry was neither blocked by raising external K+ nor by adding voltage-dependent Ca2+ channel blockers (nifedipine, calciseptine, FTX3.3) or compounds affecting polyphosphoinositide metabolism (Li+, neomycin). Likewise, full substitution of external Na+ by other cations did not inhibit vanadate-enhanced Ca2+ entry. Regardless of the cell age, stimulation by vanadate depended strongly on internal Na+ (0-30 mM). Vanadate stimulation was significantly reduced (about 55%) by heparin (10 mg/ml) only in young cells and by ryanodine (about 35%, 250 microM) in old cells. The results suggest presence of a new vanadate-induced Ca2+ entry pathway in ATP-depleted cells.  相似文献   

18.
Intraneuronal calcium ([Ca(2+)](i)) regulation is altered in aging brain, possibly because of the changes in critical Ca(2+) transporters. We previously reported that the levels of the plasma membrane Ca(2+)-ATPase (PMCA) and the V(max) for enzyme activity are significantly reduced in synaptic membranes in aging rat brain. The goal of these studies was to use RNA(i) techniques to suppress expression of a major neuronal isoform, PMCA2, in neurons in culture to determine the potential functional consequences of a decrease in PMCA activity. Embryonic rat brain neurons and SH-SY5Y neuroblastoma cells were transfected with in vitro--transcribed short interfering RNA or a short hairpin RNA expressing vector, respectively, leading to 80% suppression of PMCA2 expression within 48 h. Fluorescence ratio imaging of free [Ca(2+)](i) revealed that primary neurons with reduced PMCA2 expression had higher basal [Ca(2+)](i), slower recovery from KCl-induced Ca(2+) transients, and incomplete return to pre-stimulation Ca(2+) levels. Primary neurons and SH-SY5Y cells with PMCA2 suppression both exhibited significantly greater vulnerability to the toxicity of various stresses. Our results indicate that a loss of PMCA such as occurs in aging brain likely leads to subtle disruptions in normal Ca(2+) signaling and enhanced susceptibility to stresses that can alter the regulation of Ca(2+) homeostasis.  相似文献   

19.
Types IIA and V secretory phospholipase A2 (sPLA2) are structurally related to each other and their genes are tightly linked to the same chromosome locus. An emerging body of evidence suggests that sPLA2-IIA plays an augmentative role in long-term prostaglandin (PG) generation in cells activated by proinflammatory stimuli; however, the mechanism underlying the functional regulation of sPLA2-V remains largely unknown. Here we show that sPLA2-V is more widely expressed than sPLA2-IIA in the mouse, in which its expression is elevated by proinflammatory stimuli such as lipopolysaccharide. In contrast, proinflammatory stimuli induced sPLA2-IIA in marked preference to sPLA2-V in the rat. Cotransfection of sPLA2-V with cyclooxygenase (COX)-2, but not with COX-1, into human embryonic kidney 293 cells dramatically increased the interleukin-1-dependent PGE2 generation occurring over a 24 h of culture period. Rat mastocytoma RBL-2H3 cells overexpressing sPLA2-V exhibited increased IgE-dependent PGD2 generation and accelerated beta-hexosaminidase exocytosis. These results suggest that sPLA2-V acts as a regulator of inflammation-associated cellular responses. This possible compensation of sPLA2-V for sPLA2-IIA in many, if not all, tissues may also explain why some mouse strains with natural disruption of the sPLA2-IIA gene exhibit few abnormalities during their life-spans.  相似文献   

20.
In smooth muscle, the cytosolic Ca2+ concentration ([Ca2+](i)) is the primary determinant of contraction, and the intracellular pH (pH(i)) modulates contractility. Using fura-2 and 2',7'-biscarboxyethyl-5(6) carboxyfluorescein (BCECF) fluorometry and rat aortic smooth muscle cells in primary culture, we investigated the effect of the increase in pH(i) on [Ca2+](i). The application of the NH(4)Cl induced concentration-dependent increases in both pH(i) and [Ca2+](i). The extent of [Ca2+](i) elevation induced by 20mM NH(4)Cl was approximately 50% of that obtained with 100mM K(+)-depolarization. The NH(4)Cl-induced elevation of [Ca2+](i) was completely abolished by the removal of extracellular Ca2+ or the addition of extracellular Ni2+. The 100mM K(+)-induced [Ca2+](i) elevation was markedly inhibited by a voltage-operated Ca2+ channel blocker, diltiazem, and partly inhibited by a non-voltage-operated Ca2+ channel blocker, SKF96365. On the other hand, the NH(4)Cl-induced [Ca2+](i) elevation was resistant to diltiazem, but was markedly inhibited by SKF96365. It is thus concluded that intracellular alkalinization activates the Ca2+ influx via non-voltage-operated Ca2+ channels and thereby increases [Ca2+](i) in the vascular smooth muscle cells. The alkalinization-induced Ca2+ influx may therefore contribute to the enhancement of contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号