首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), to insecticides has become a major problem in many apple and pear production areas. Our aim was to determine the level of insecticide resistance in Spanish field populations. Seven field populations collected from apple, Malus domestica Borkhausen (Rosaceae), orchards, and three laboratory susceptible strains of codling moth were studied. Damage at harvest in all the conventional orchards from which codling moth populations were collected was higher than the economic threshold. The efficacy of eight insecticides, with five modes of action, was evaluated by topical application of the diagnostic concentrations on post‐diapausing larvae. The enzymatic activity of mixed‐function oxidases (MFOs), glutathione transferases (GSTs), and esterases (ESTs) was evaluated for each population. The susceptibility to insecticides and the biochemical activity of the three laboratory strains and one organic orchard population were not significantly different. Field populations were less susceptible to the tested insecticides than the susceptible strains, especially for azinphos‐methyl, diflubenzuron, fenoxycarb, and phosalone. The efficacy of all insecticides was significantly dependent on the activity of MFOs. Only the toxicity of the three insecticides most used in Spain when the populations were collected (azinphos‐methyl, fenoxycarb, and phosalone) was also dependent on the activity of ESTs and GSTs activity. We conclude that the control failures were because of the existence of populations resistant to the main insecticides used.  相似文献   

2.
French populations of the codling moth Cydia pomonella (L.) (Lepidoptera, Tortricidae), a major pest in apple and pear orchards, have developed resistance to different classes of insecticides including the benzoylurea diflubenzuron, a chitin synthesis inhibitor. Ovicidal tests performed on two susceptible strains and one strain selected for its resistance to diflubenzuron revealed the same order of magnitude in resistance ratios to this compound (30-fold) and two other benzoylureas teflubenzuron and flufenoxuron (22- and 11-fold, respectively). Field rates of these three compounds induced a 45–55% decrease in hatching in the resistant strain, compared to over 90% in the susceptible insects. Despite a 52-fold ovicidal resistance ratio to the juvenile hormone analog fenoxycarb, this compound induced a 85% decrease in hatching in the resistant strain. Conversely the newly hatched larvae of the resistant strain exhibited a 45 000-, 33- and 2.1-fold resistance ratio to diflubenzuron, teflubenzuron and flufenoxuron, respectively. The latter value was not significant, and the field rate of flufenoxuron killed over 97% of the resistant larvae while diflubenzuron had no effect. This lack of relationship between ovicidal and larvicidal resistance may be due to different transport properties together with differential enzymatic metabolization. Our results may limit the validity of substitution instars, which approach is frequently used for resistance monitoring. More importantly for resistance management, the resistance of different target instars to each compound has to be considered when establishing control strategies.  相似文献   

3.
A diet-incorporation larval bioassay was developed to measure the response of codling moth, Cydia pomonella (L.), to the benzoylhydrazine insecticides tebufenozide and methoxyfenozide. The bioassay tested neonates and third, fourth, and fifth instars from a laboratory colony and neonates and fourth instars from a pooled population collected from five certified-organic apple orchards. Bioassays were scored after 6 and 14 d. No differences between the laboratory and field population were found for either insecticide. Significant differences were found in the response of third and fifth instars between the 6 and 14 d bioassays, primarily due to a high proportion of moribund larvae in the shorter assay. Larval age had a significant effect in bioassays and was more pronounced in 6- versus 14-d tests. Fifth instars were significantly less susceptible to both insecticides than other stages, while responses of third and fourth instars were similar. The response of neonates was significantly different from third and fourth instars to tebufenozide but not with methoxyfenozide in the 14-d test. Field bioassays excluded the use of fifth instars and were scored after 14 d. LC50s estimated for 18 field-collected populations varied five- and ninefold for tebufenozide and methoxyfenozide, respectively. The responses of all but six field-collected populations were significantly different from the laboratory strain. Five of these six populations were collected from orchards with no history of organophosphate insecticide use. The LC50 for methoxyfenozide of one field-collected population reared in the laboratory for three generations declined fourfold, but was still significantly different from the laboratory population. These data suggest that transforming current codling moth management programs in Washington from a reliance on organophosphate insecticides to benzoylhydrazines may be difficult.  相似文献   

4.
Abstract:  Resistance of the codling moth Cydia pomonella (L.) (Lep., Tortricidae) to the organophosphorus compound (OP) azinphosmethyl was observed in apple orchards in Israel. The level of resistance varied with the pest control strategy. Compared with a sensitive laboratory population, the resistance level was highest in insects from the preventative pest control strategy, intermediate in integrated pest management (IPM) orchards, and relatively low in the organic orchards. The level of azinphosmethyl resistance in larvae (but not in adults) exposed for 17 generations in the laboratory to a pesticide-free diet was reduced by 50%. Codling moth larvae resistant to azinphosmethyl were also resistant to various insect growth regulators (IGRs). The IGRs include three chitin synthesis inhibitors (diflubenzuron, novaluron and teflubenzuron), two juvenile hormone mimics (pyriproxyfen and fenoxycarb) and one ecdysone agonist (methoxyfenozide). Codling moth resistant to azinphosmethyl was tolerant to methoxyfenozide and novaluron without previous history of application in apple orchards, indicating the possibility of cross-resistance. According to this study, managing resistance programs in apple orchards should be based on IPM principles with minimum use of conventional neuroactive pesticides.  相似文献   

5.
The codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), are two key pests of apple (Malus domestica Borkh.) in North Carolina. Growers extensively relied on organophosphate insecticides, primarily azinphosmethyl, for > 40 yr to manage these pests. Because of organophosphate resistance development and regulatory actions, growers are transitioning to management programs that use new, reduced-risk, and OP-replacement insecticides. This study evaluated the toxicity of a diversity of replacement insecticides to eggs, larvae, and adults, as well as an assessment of their residual activity, to codling moth and oriental fruit moth. Laboratory-susceptible strains of both species were used for all bioassays. Fresh field-harvested apples were used as a media for assessing the ovicidal activity of insecticides. For larval studies, insecticides were topically applied to the surface of lima bean-based diet, onto which neonates were placed. Toxicity was based on two measures of mortality; 5-d mortality and development to adult stage. Ovicidal bioassays showed that oriental fruit moth eggs were generally more tolerant than codling moth eggs to insecticides, with novaluron, acetamiprid, and azinphoshmethyl having the highest levels of toxicity to eggs of both species. In contrast, codling moth larvae generally were more tolerant than oriental fruit moth to most insecticides. Methoxyfenozide and pyriproxyfen were the only insecticides with lower LC50 values against codling moth than oriental fruit moth neonates. Moreover, a number of insecticides, particularly the IGRs methoxyfenozide and novaluron, the anthranilic diamide chlorantriliprole, and the spinosyn spinetoram, provided equal or longer residual activity against codling moth compared with azinphosmethyl in field studies. Results are discussed in relation to their use in devising field use patterns of insecticides and for insecticide resistance monitoring programs.  相似文献   

6.
Insecticide resistance in the codling moth, Cydia pomonella, partly results from increased metabolic detoxification. The aim of this study was to follow the age variations in larval susceptibility to deltamethrin and teflubenzuron in one susceptible (S) strain, and two resistant (Rv and Rt) ones selected for resistance to deltamethrin and diflubenzuron, respectively. The age variation of the activities of cytochrome P450-dependent monooxygenase (MFO), glutathione S-transferases (GST), and esterases in S and both resistant strains were simultaneously investigated. The highest levels of insecticide resistance were recorded in late instars in both resistant strains, although Rv neonates exhibited enhanced resistance to deltamethrin. The involvement of an additional deltamethrin-specific mechanism of resistance, which could be mainly expressed in early instars, was supported by previous demonstration of a kdr point mutation in the Rv strain. The cross-resistance between deltamethrin and teflubenzuron indicated the involvement of non-specific metabolic pathways in resistance to teflubenzuron, rather than target site modification. A positive correlation between enhanced GST activities and deltamethrin resistance suggested that this mechanism might take place into the adaptive response of C. pomonella to pyrethroids treatments. Enhanced MFO activity was recorded in each instar of the two resistant strains compared to the susceptible one. But these activities were not correlated to the responses to deltamethrin nor to teflubenzuron. In the light of these findings, studying age-dependence of responses to selection is central to the implementation of monitoring tests of resistances, especially if the target instars are difficult to collect in the field.  相似文献   

7.
Resistance to several classes of insecticides was correlated with azinphosmethyl resistance in codling moth, Cydia pomonella (L.), in California. In tests of laboratory and field populations, cross-resistance was positively correlated with azinphosmethyl and two organophosphates (diazinon, phosmet), a carbamate (carbaryl), a chlorinated hydrocarbon (DDT), and two pyrethroids (esfenvalerate and fenpropathrin). Additionally, negatively correlated cross-resistance was identified between azinphosmethyl and two other organophosphates, chlorpyrifos and methyl parathion. Patterns of resistance observed in laboratory colonies were confirmed with field bioassays. In bioassays of field populations, azinphosmethyl resistance was observed to increase from 1991 to 1993, although levels of resistance remained < 13-fold. Because orchards with azinphosmethyl resistance have had difficulties with suppression of codling moth, and cross-resistance was found for all tested classes of insecticides, strategies for managing resistance will need to be developed so as to protect current and future control tactics. The two insecticides with negatively correlated cross-resistance are discussed as potential tools for resistance management.  相似文献   

8.
The impacts of three codling moth management strategies (i, mating disruption alone; ii, mating disruption plus azinphos-methyl; iii, mating disruption plus fenoxycarb) on some secondary pests and their natural enemies in an apple orchard were compared over two growing seasons: 1993/1994 and 1994/1995. In the absence of azinphos-methyl (strategies i and iii), two-spotted mite ( Tetranychus urticae ) was controlled by Typhlodromus occidentalis and populations of generalist predators (e.g. ladybirds, lacewings and earwigs) increased. The populations of a parasitoid of woolly aphid ( Eriosoma lanigerum ), Aphelinus mali, also increased but not enough to provide adequate control of the aphid. Combined damage caused by lightbrown apple moth ( Epiphyas postvittana ), budworms ( Helicoverpa spp.) and San José scale ( Quadraspidiotus perniciosus ) was significantly higher in the absence of azinphos-methyl in 1994/1995. Beneficial insect populations were not suppressed by fenoxycarb. In 1994/1995, mating disruption plus fenoxycarb produced better control of E. postvittana than mating disruption alone. During transition to an apple integrated pest management program based on codling moth mating disruption, fenoxycarb was shown to be less disruptive to any natural control of secondary pests than azinphos-methyl.  相似文献   

9.
The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), has developed resistance to various insecticides. Relative fitness of one susceptible strain (Sv) and two strains selected for resistance to diflubenzuron (Rt) and deltamethrin (Rv), respectively, was measured in the absence of insecticide selection pressure. Mating rate, fecundity, fertility, developmental time, fifth instar weight, and adult longevity were compared. Both resistant strains were less fecund and fertile, developed more slowly, weighed less, and had shorter life-spans than the susceptible strain. These results indicate that biological constraints are associated with insecticide resistance in the codling moth. We also found that fitness estimates of the Rv strain did not differ statistically from those of the Rt strain. Enhanced mixed-function oxidase and glutathione-S-transferase activities have been shown to be involved in insecticide resistance in both Rt and Rv strains. This suggests that the fitness cost described in both resistant strains was mainly associated to metabolic resistance. The impact of such deleterious pleiotropy of insecticide resistance in C. pomonella in terms of resistance management in the field is discussed.  相似文献   

10.
A series of studies were conducted to examine the residual activity and toxicity of the ecdysone agonists tebufenozide and methoxyfenozide to codling moth, Cydia pomonella (L.), and oriental fruit moth, Grapholita molesta (Busck), in North Carolina apple systems. Methoxyfenozide exhibited greater activity than tebufenozide against codling moth eggs in dose-response bioassays, with a 4.5- and 5.3-fold lower LC50 value to eggs laid on fruit treated before or after oviposition, respectively. Oriental fruit moth eggs were 57- and 12-fold less sensitive to methoxyfenozide than were codling moth eggs on fruit treated before and after oviposition, respectively. Methoxyfenozide was effective in reducing larval entries of both codling moth and oriental fruit moth in field residual activity bioassays, exhibiting activity for at least 28 d after application. Residue breakdown on fruit was approximately 80% at 28 d after treatment for both methoxyfenozide and tebufenozide, with the most rapid residue decline (60%) occurring during the first 14 d after application. Two applications of methoxyfenozide applied at 14-d intervals provided better canopy coverage and higher residue levels than one application. Spray volume (683 versus 2,057 liters/ha) did not affect the efficacy of methoxyfenozide. Leaf and fruit expansion during the season was measured to determine potential plant-growth dilution effects on residual activity. There was very little increase in leaf area after mid May, but increase in fruit surface area over the season was described by a second order polynomial regression. Implications for codling moth and oriental fruit moth management programs are discussed.  相似文献   

11.
Resistance to insecticides is one interesting example of a rapid current evolutionary change. DNA variability in the voltage-gated sodium channel gene (trans-membrane segments 5 and 6 in domain II) was investigated in order to estimate resistance evolution to pyrethroid in codling moth populations at the World level. DNA variation among 38 sequences revealed a unique kdr mutation (L1014F) involved in pyrethroid resistance in this gene region, which likely resulted from several convergent substitutions. The analysis of codling moth samples from 52 apple orchards in 19 countries using a simple PCR-RFLP confirmed that this kdr mutation is almost worldwide distributed. The proportions of kdr mutation were negatively correlated with the annual temperatures in the sampled regions. Homozygous kdr genotypes in the French apple orchards showed lower P450 cytochrome oxidase activities than other genotypes. The most plausible interpretation of the geographic distribution of kdr in codling moth populations is that it has both multiple independent origins and a spreading limited by low temperature and negative interaction with the presence of alternative resistance mechanisms to pyrethroid in the populations.  相似文献   

12.
Codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) is the key pest of pome fruit in South Africa, and it’s control in apple and pear orchards relies on the application of insecticides and pheromone‐mediated mating disruption. Development of resistance to insecticides and placement of restrictions on the use of certain insecticides has made control of codling moth in South Africa increasingly problematic. The use of the sterile insect technique (SIT) as a control tactic for codling moth is under investigation as a potential addition to the current control strategy. We investigated the radiosensitivity of a laboratory strain of codling moth that was established from moths collected from commercial and organic orchards in the Western Cape, South Africa. Fecundity and fertility of this strain following radiation were consistent with values for the codling moth strain in the Canadian rearing facility in British Columbia. For both strains, the female codling moth was considerably more radiosensitive than the male. At a radiation dose of 100 Gy or higher, treated females were 100% sterile. The fertility of the South African strain was higher (86.3%) than for the Canadian strain (71.9%). This difference in fertility between the two strains was maintained when the dose of radiation was 100 Gy. However, the level of fertility was very similar between the two strains for doses ≥150 Gy. Therefore, based upon previously published work and the data from this study, an operational dose of 150 Gy is recommended for future codling moth SIT programmes in South Africa.  相似文献   

13.
The possibility of controlling the codling moth Cydia pomonella (Linnaeus) using an attract and kill approach as an alternative to chemical sprays with contact insecticides was investigated in widely separated orchards. The results of a 4‐year study have shown that, using an attract and kill approach, three applications/season kept infestation rates in treated orchards below the economic injury level except in one with a too high codling moth population density. The mean number of male codling moths/trap/week in attract and kill‐treated orchards was much lower in comparison with control orchards which were treated with the usual cover sprays of insecticides. The results also showed that the efficacy of attract and kill under orchard conditions decreased with time and the relationship between time effect and codling moth death rate was very strong. These data indicate that the attract and kill technique applied at a rate of three application per season resulted in good control of codling moth in well managed orchards in Syria.  相似文献   

14.
小地老虎Agrotis ypsilon rottem.幼虫对灭幼脲具有一定的自然耐药力。本文以粘虫Mythimna separata(Walker)作为敏感性虫种与之进行比较,实验结果表明,灭幼脲对两种试虫的室内毒力相差4倍左右,引起差异的原因,在体壁结构方面主要在于:(1)小地老虎幼虫的表皮层较粘虫的厚4.2倍左右;(2)上表皮不是匀质结构,依靠少数蜡道与体表沟通;(3)几丁质片层内的孔道数较少,仅及粘虫的1/4。由此构成了表皮对疏水性的灭幼脲表现抗穿透的性能。小地老虎幼虫体壁还含有较强的生化防卫体系,灭幼脲对多功能氧化酶、芳基酰胺酶有明显激活效应,这两种酶都是灭幼脲的降解酶。由此认为,小地老虎幼虫对灭幼脲所表现的自然耐药力,是由体壁的抗穿透性能以及由灭幼脲所激活的适应酶所造成。  相似文献   

15.
Whole body homogenates from azinphosmethyl-resistant fifth instars of the tufted apple bud moth demonstrated 11.8-fold elevated phosphoric triester hydrolase (methyl paraoxonase) activity as compared to susceptible insects of the same species. Elevated phosphoric triester hydrolase (PTEH) activity associated with resistance was also found in the Colorado potato beetle but not in the German cockroach or tobacco budworm. Phosphoric triester hydrolase activity in the tufted apple bud moth was minimal in resistant and susceptible third instars and in adult males and females and was highest in whole body homogenates and in the alimentary canal of resistant fifth instars. A microtiterplate assay was developed, which successfully diagnosed resistance in individual fifth instars based on increased phosphoric triester hydrolase (methyl paraoxonase) activity. Phosphoric triester hydrolase was purified 289-fold from fifth instars of resistant bud moths, but any additional resolution resulted in the loss of enzyme activity. Phosphoric triester hydrolase demonstrated an apparent molecular weight of 41,000 with an isoelectric point of 5.28. Methyl paraoxonase activity was increased by calcium, cobalt, manganese, and octylthio-1,1,1-trifluoro-2-propanone and decreased by mercury, phosphate ions, tin, and ethylenediaminetetraacetic acid. Iron, potassium chloride, lithium, magnesium, sodium chloride, and lead had no effect.  相似文献   

16.
Recently, codling moth (CM, Cydia pomonella L.) populations with a significantly reduced susceptibility to C. pomonella granulovirus (CpGV) products have been observed in Germany. A novel CpGV isolate, designated CpGV-I12, is able to overcome the CpGV resistance. CpGV-I12 originated from Iran and showed superior efficacy in laboratory bioassays against a resistant CM strain (CpR), which has a 100-fold reduced susceptibility to commercially used isolate CpGV-M. Determination of the median lethal concentration (LC50) indicated that CpGV-I12 is nearly as efficient in resistant CpR as CpGV-M in a susceptible CM strain (CpS). Beyond, CpGV-I12 caused superior mortality in CpS. Infection experiments showed that the resistance breaking effect can be observed in all instars of CpR. CpGV-I12 is a promising alternative control agent of CM in orchards where conventional CpGV products fail. In addition, we demonstrate in bioassays with recombinant expressed Cry1Ab that cross-resistance to CpGV and Bacillus thuringiensis products is not likely.  相似文献   

17.
Woolly aphid (Eriosoma lanigerum Hausmann) (Hemiptera: Aphididae), was monitored over three growing seasons (1995--1998) to assess its abundance and management under apple IPM programs at Bathurst on the Central Tablelands of NSW, Australia. Woolly aphid infestations were found to be extremely low in IPM programs utilising mating disruption and fenoxycarb for codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) control. This was the direct result of increased numbers of natural enemies. No insecticides were applied for woolly aphid control. Under the IPM strategies tested the principal control agent was identified as European earwig (Forficula auricularia L.) (Dermaptera: Forficulidae). Earwigs in combination with Aphelinus mali (Haldeman) (Hymenoptera: Aphelinidae) reduced woolly aphid infestations below the action threshold set by commercial growers. However, A. mali together with other flying natural enemies, e.g., ladybirds, lacewings and hoverflies, did not provide commercially acceptable control of woolly aphid in the absence of earwigs. Under the conventional spray program, using the broad-spectrum insecticide azinphos-methyl for codling moth control, the level of woolly aphid infestation increased with each successive season and biological control was not established. When azinphos-methyl was withdrawn, natural enemies migrated in and provided control of woolly aphid within one season. This is the first study to show that the biological control of woolly aphid can be achieved in a commercially viable IPM program.  相似文献   

18.
Fruit damage by obliquebanded leafroller, Choristoneura rosaceana (Harris), was examined on four different apple cultivars during 1997-1999 in heavily infested orchards in New York State. Inital fruit damage occurred 354+/-26 degree-days base 6 degrees C (DD6) after the first moth catch from the overwintering generation and continued to increase until after the typical spray season (approximately 1,300 DD6). In addition to apple damage by late instars, fruit damage occurred by early instars of the summer and overwintering generations. The insect growth regulator tebufenozide was used as a model insecticide to determine how a slow-acting insecticide and its relative toxicity to early (neonate) and late (fourth and fifth) instars may influence the efficacy of sprays for the control of the obliquebanded leafroller. Because tebufenozide is a slow-acting compound, bioassays were conducted to determine what percentage of the total mortality to neonates occurs at each 24 h interval until 10 d. Based on a polynomial regression, half of the total mortality to larvae at the LC25, LC50, LL90 and LC99 occurred at 7.2, 5.0, 4.1, and 3.0 d, respectively. Late instars were three times more tolerant to tebufenozide than neonates.  相似文献   

19.
The occurrence of codling moth populations in European apple orchards that were not controlled by Cydia pomonella granulovirus (CpGV) is the first reported case of field resistance against a baculovirus control agent. A monogenic dominant sex-linked mode of inheritance was previously demonstrated in single-pair crosses between a homogeneous resistant (CpRR1) and a susceptible (CpS) laboratory strain of codling moth. However, resistant field populations (CpR) are more heterogeneous in their levels of resistance, and the possibility that they could harbor different resistance genes to CpRR1 had not been directly addressed. Here we report single pair crossing experiments using a resistant codling moth strain collected from an apple orchard in the southwest of Germany. Single-pair crosses within the field strain revealed a genetic basis to the heterogeneity of CpR concerning CpGV resistance. Hybrid crosses to a susceptible laboratory strain and backcrosses of the F1 generation to the resistant CpR strain confirmed that the homogeneous CpRR1 and the heterogeneous field strain CpR share the same mode of inheritance. Thus the variable levels of CpGV resistance in field populations is likely due to frequency differences of the same resistance-conferring gene, rather than different genes, which will facilitate future efforts to monitor and manage resistance.  相似文献   

20.
苹果蠹蛾是世界各国高度关注的严重危害苹果生产的外来有害生物。该虫于20世纪50年代在我国首次报道,目前是我国一类进境检疫性有害生物,正严重威胁我国苹果主产区的水果生产安全。苹果蠹蛾以幼虫钻蛀到果实内部为害,防治难度高,对其主要采用化学农药、交配干扰和苹果蠹蛾颗粒体病毒进行防治。由于农药的长期大量使用,苹果蠹蛾已对有机磷、氨基甲酸酯、拟除虫菊酯、昆虫生长调节剂、阿维菌素和苹果蠹蛾颗粒体病毒等不同类型的杀虫剂产生了抗药性。本文总结了国内外有关苹果蠹蛾抗药性现状和抗药性机理方面的研究,并分析了其对几种农药产生抗性的主要原因,同时结合国外苹果蠹蛾防治和抗药性相关研究,以及其在我国发生与防治的现状,提出该虫抗药性治理策略,即及时对我国疫区苹果蠹蛾的抗药性现状进行监测,在此基础上,注意科学地使用化学农药,并结合农业防治和生物防治等措施对该虫进行综合治理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号