共查询到20条相似文献,搜索用时 15 毫秒
1.
单细胞生物进化研究的进步 总被引:7,自引:2,他引:5
20世纪60年代,生物大致分为5界的谱系图, 经历了几次翻新,开始提出了线粒体和叶绿体的内共生学说。 由于分子生物学的发展,首先将各种生物的蛋白质的分子进行比较,构建成蛋白质的分子系统树。再转向核糖核酸,将核糖体的小亚单位,作为区别生命类型之间亲缘关系的指标。发现有些嗜极端条件的细菌,它们不同于原核生物也不同于真核生物,是第三种类型的生命形式。因此,在 80年代为生命建立了细菌、古细菌和真核生物三界的系统树。对许许多多单个基因的系统树的分析,又使人们认识到,古细菌与细菌和真核微生物之间以及各个物种之间,显然皆发生过大量的基因交换。对单细胞进化来说,基因除垂直传递外,横向的或叫侧向的基因转移也十分繁多。在一张完全的系统图中,要同时表现几千个不同的基因家族的超联结的种系型式才符合实际。因而,最新版本的系统树是分枝交缠、无主干的。Abstract:In 1960s,kimgdoms of organisms were charted generally in a five branching form.Later,the endosymbiont hypothesis for the mitochondria and the chloroplast was proposed.The life-form is divided into two forms,the prokaryotes (bacteria) and the eukaryotes.The study of the molecular biology made the progress faster.In 1980s,Woese,CR.asserted that two-domain view of life was no longer true,a three-domain construct,the Bacteria,the Archaea,and the Eukaryotes had to take its place.At first,phylogeny trees based on differences in the amino acid sequences,then among ribosomal RNAs and also nuclear gene from hundreds of microbial species were depicted and many mini phylogenetic trees grouped the species according to their differences in the sequences.It was found that they shared genes between their contemporaries and across the species barriers.At the root of the phylogeny tree,there was not a single common cell,it was replaced by a common ancestral community of primitive cells.Genes transfered rather freely as the transposons swapping between those cells.There was no last universal common ancestor of single cell that could be found in the revised Tree of Life,It was not easy to represent the genealogical patterns of thousands of different families of genes,in one systematic map,therefor there was no trunk at all. 相似文献
2.
Jonathan B. Losos Kevin De Queiroz 《Biological journal of the Linnean Society. Linnean Society of London》1997,61(4):459-483
On the large islands of the Greater Antilles, multi-species communities of Anolis lizards are composed of species specialized to use particular habitats; similar sets of specialized species have evolved independently on each island. We studied species of anoles found on small Caribbean islands. Because these islands contain at most only one other species of anole, we predicted that species on these islands should not be as specialized as Greater Antillean species; rather, they might be expected to exhibit a generalized morphology and a greater breadth of habitat use. Our findings, however, do not confirm these predictions. Lesser Antillean species do not exhibit greater breadth of habitat use than Greater Antillean species, nor do they exhibit a generalized morphology. Most species are ecologically and morphologically similar to specialized trunk-crown anoles of the Greater Antilles, although some species exhibit morphologies unlike those seen in Greater Antillean species. Among descendants of specialized Greater Antillean species occurring on one-or two-species islands, most descendants of trunk-crown species have diverged relatively little, whereas several descendants of trunk-ground anoles have diverged considerably. Consequently, we propose that ancestral species in the Greater Antilles may have been trunk-crown anoles. 相似文献
3.
H. THORSTEN LUMBSCH IMKE SCHMITT DANIEL BARKER MARK PAGEL 《Biological journal of the Linnean Society. Linnean Society of London》2006,89(4):615-626
Micromorphological characters of the fruiting bodies, such as ascus-type and hymenial amyloidity, and secondary chemistry have been widely employed as key characters in Ascomycota classification. However, the evolution of these characters has yet not been studied using molecular phylogenies. We have used a combined Bayesian and maximum likelihood based approach to trace character evolution on a tree inferred from a combined analysis of nuclear and mitochondrial ribosomal DNA sequences. The maximum likelihood aspect overcomes simplifications inherent in maximum parsimony methods, whereas the Markov chain Monte Carlo aspect renders results independent of any particular phylogenetic tree. The results indicate that the evolution of the two chemical characters is quite different, being stable once developed for the medullary lecanoric acid, whereas the cortical chlorinated xanthones appear to have been lost several times. The current ascus-types and the amyloidity of the hymenial gel in Pertusariaceae appear to have been developed within the family. The basal ascus-type of pertusarialean fungi remains unknown. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 615–626. 相似文献
4.
Towards a phylogeny of chitons (Mollusca, Polyplacophora) based on combined analysis of five molecular loci 总被引:3,自引:0,他引:3
Akiko Okusu Enrico Schwabe Douglas J. Eernisse Gonzalo Giribet 《Organisms Diversity & Evolution》2003,3(4):281-302
This study represents the first phylogenetic analysis of the molluscan class Polyplacophora using DNA sequence data. We employed DNA from a nuclear protein-coding gene (histone H3), two nuclear ribosomal genes (18S rRNA and the D3 expansion fragment of 28S rRNA), one mitochondrial protein-coding gene (cytochrome c oxidase subunit I), and one mitochondrial ribosomal gene (16S rRNA). A series of analyses were performed on independent and combined data sets. All these analyses were executed using direct optimization with parsimony as the optimality criterion, and analyses were repeated for nine combinations of parameters affecting indel and transversion/transition cost ratios. Maximum likelihood was also explored for the combined molecular data set, also using the direct optimization method, with a model equivalent to GTR + I + Γ that accommodates gaps. The results of all nine parameter sets for the combined parsimony analysis of all molecular data (as well as ribosomal data) and the maximum-likelihood analysis of all molecular data support monophyly of Polyplacophora. The resulting topologies mostly agree with a division of Polyplacophora into two major lineages: Lepidopleuridae and Chitonida (sensu Sirenko 1993). In our analyses the genus Callochiton is positioned as the sister group to Lepidopleuridae, and not as sister group to the remaining Chitonida (sensu Buckland-Nicks & Hodgson 2000), nor as the sister group to the remaining Chitonina (sensu Buckland-Nicks 1995). Chitonida (excluding Callochiton) is monophyletic, but conventional subgroupings of Chitonida are not supported. Acanthochitonina (sensu Sirenko 1993) is paraphyletic, or alternatively monophyletic, and is split into two clades, both with abanal gills only and cupules in the egg hull, but one has simple cupules whereas the other has more strongly hexagonal cupules. Sister to the Acanthochitonina clades is Chitonina, including taxa with adanal gills and a spiny egg hull. Schizochiton, the only genus with adanal gills that has an egg hull with cupules, is the sister-taxon to one of the Acanthochitonina clades plus Chitonina, or alternatively basal to Chitonina. Support values for either position are low, leaving this relationship unsettled. Our results refute several aspects of conventional classifications of chitons that are based primarily on shell characters, reinforcing the idea that chiton classification should be revised using additional characters. 相似文献
5.
Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data 总被引:5,自引:0,他引:5
Extensive studies aiming to establish the structure and root of the Eukaryota tree by phylogenetic analyses of molecular sequences have thus far not resulted in a generally accepted tree. To re-examine the eukaryotic phylogeny using alternative genes, and to obtain a more robust inference for the root of the tree as well as the relationship among major eukaryotic groups, we sequenced the genes encoding isoleucyl-tRNA and valyl-tRNA synthetases, cytosolic-type heat shock protein 90, and the largest subunit of RNA polymerase II from several protists. Combined maximum likelihood analyses of 22 protein-coding genes including the above four genes clearly demonstrated that Diplomonadida and Parabasala shared a common ancestor in the rooted tree of Eukaryota, but only when the fast-evolving sites were excluded from the original data sets. The combined analyses, together with recent findings on the distribution of a fused dihydrofolate reductase-thymidylate synthetase gene, narrowed the possible position of the root of the Eukaryota tree on the branch leading to Opisthokonta or to the common ancestor of Diplomonadida/Parabasala. However, the analyses did not agree with the position of the root located on the common ancestor of Opisthokonta and Amoebozoa, which was argued by Stechmann and Cavalier-Smith [Curr. Biol. 13:R665-666, 2003] based on the presence or absence of a three-gene fusion of the pyrimidine biosynthetic pathway: carbamoyl-phosphate synthetase II, dihydroorotase, and aspartate carbamoyltransferase. The presence of the three-gene fusion recently found in the Cyanidioschyzon merolae (Rhodophyta) genome sequence data supported our analyses against the Stechmann and Cavalier-Smith-rooting in 2003. 相似文献
6.
C. W. Cunningham H. Zhu D. M. Hillis 《Evolution; international journal of organic evolution》1998,52(4):978-987
Despite the proliferation of increasingly sophisticated models of DNA sequence evolution, choosing among models remains a major problem in phylogenetic reconstruction. The choice of appropriate models is thought to be especially important when there is large variation among branch lengths. We evaluated the ability of nested models to reconstruct experimentally generated, known phylogenies of bacteriophage T7 as we varied the terminal branch lengths. Then, for each phylogeny we determined the best-fit model by progressively adding parameters to simpler models. We found that in several cases the choice of best-fit model was affected by the parameter addition sequence. In terms of phylogenetic performance, there was little difference between models when the ratio of short: long terminal branches was 1:3 or less. However, under conditions of extreme terminal branch-length variation, there were not only dramatic differences among models, but best-fit models were always among the best at overcoming long-branch attraction. The performance of minimum-evolution-distance methods was generally lower than that of discrete maximum-likelihood methods, even if maximum-likelihood methods were used to generate distance matrices. Correcting for among-site rate variation was especially important for overcoming long-branch attraction. The generality of our conclusions is supported by earlier simulation studies and by a preliminary analysis of mitochondrial and nuclear sequences from a well-supported four-taxon amniote phylogeny. 相似文献
7.
We reanalysed Yang & Pattern's allozyme data, published in Auk in 1981, of Darwin's finches with a variety of distance and cladistic methods to estimate the phylogeny of the group. Different methods yielded different results, nevertheless there was widespread agreement among the distance methods on several groupings. First, the two species of Camarhynchus grouped near one another, but not always as a monophyletic group. Second, Cactospiza pallida and Platyspiza crassirostris formed a monophyletic group. Finally, all the methods (including parsimony) supported the monophyly of the ground finches. The three distance methods also found close relationships generally between each of two populations of Geospiza scandens, G. difficilis and G. conirostris. There is evidence for inconstancy of evolutionary rates among species. Results from distance methods allowing for rate variation among lineages suggest three conclusions which differ from Yang and Patton's findings. First, the monophyletic ground finches arose from the paraphyletic tree finches. Yang and Patton found that the ground finches and tree finches were sister monophyletic taxa. Second, Geospiza scandens appears to be a recently derived species, and not the most basal ground finch. Third, G. fuliginosa is not a recently derived species of ground finch, but was derived from an older split from the remaining ground finches. Most of these conclusions should be considered tentative both because the parsimony trees disagreed sharply with the distance trees and because no clades were strongly supported by the results of bootstrapping and statistical tests of alternative hypotheses. Absence of strong support for clades was probably due to insufficient data. Future phylogenetic studies, preferably using DNA sequence data from several unlinked loci, should sample several populations of each species, and should attempt to assess the importance of hybridization in species phylogeny. 相似文献
8.
Craig Guyer Joseph B. Slowinski 《Evolution; international journal of organic evolution》1995,49(6):1294-1295
9.
Liam J. Revell 《Ecology and evolution》2018,8(11):5303-5312
Over the past decade or so it has become increasingly popular to use reconstructed evolutionary trees to investigate questions about the rates of speciation and extinction. Although the methodology of this field has grown substantially in its sophistication in recent years, here I will take a step back to present a very simple model that is designed to investigate the relatively straightforward question of whether the tempo of diversification (speciation and extinction) differs between two or more phylogenetic trees, without attempting to attribute a causal basis to this difference. It is a likelihood method, and I demonstrate that it generally shows type I error that is close to the nominal level. I also demonstrate that parameter estimates obtained with this approach are largely unbiased. As this method can be used to compare trees of unknown relationship, it will be particularly well‐suited to problems in which a difference in diversification rate between clades is suspected, but in which these clades are not particularly closely related. As diversification methods can easily take into account an incomplete sampling fraction, but missing lineages are assumed to be missing at random, this method is also appropriate for cases in which we have hypothesized a difference in the process of diversification between two or more focal clades, but in which many unsampled groups separate the few of interest. The method of this study is by no means an attempt to replace more sophisticated models in which, for instance, diversification depends on the state of an observed or unobserved discrete or continuous trait. Rather, my intention is to provide a complementary approach for circumstances in which a simpler hypothesis is warranted and of biological interest. 相似文献
10.
Andrew Berdahl Colin J. Torney Emmanuel Schertzer Simon A. Levin 《Evolution; international journal of organic evolution》2015,69(6):1390-1405
Dispersal, whether in the form of a dandelion seed drifting on the breeze, or a salmon migrating upstream to breed in a nonnatal stream, transports genes between locations. At these locations, local adaptation modifies the gene frequencies so their carriers are better suited to particular conditions, be those of newly disturbed soil or a quiet river pool. Both dispersal and local adaptation are major drivers of population structure; however, in general, their respective roles are not independent and the two may often be at odds with one another evolutionarily, each one exhibiting negative feedback on the evolution of the other. Here, we investigate their joint evolution within a simple, discrete‐time, metapopulation model. Depending on environmental conditions, their evolutionary interplay leads to either a monomorphic population of highly dispersing generalists or a collection of rarely dispersing, locally adapted, polymorphic sub‐populations, each adapted to a particular habitat type. A critical value of environmental heterogeneity divides these two selection regimes and the nature of the transition between them is determined by the level of kin competition. When kin competition is low, at the transition we observe discontinuities, bistability, and hysteresis in the evolved strategies; however, when high, kin competition moderates the evolutionary feedback and the transition is smooth. 相似文献
11.
Evolutionary biologists have often assumed that ecological generalism comes at the expense of less intense exploitation of specific resources and that this trade-off will promote the evolution of ecologically specialized daughter species. Using a phylogenetic comparative approach with butterflies as a model system, we test hypotheses that incorporate changes in niche breadth and location into explanations of the taxonomic diversification of insect herbivores. Specifically, we compare the oscillation hypothesis, where speciation is driven by host-plant generalists giving rise to specialist daughter species, to the musical chairs hypothesis, where speciation is driven by host-plant switching, without changes in niche breadth. Contrary to the predictions of the oscillation hypothesis, we recover a negative relationship between host-plant breadth and diversification rate and find that changes in host breadth are seldom coupled to speciation events. By contrast, we present evidence for a positive relationship between rates of host switching and butterfly diversification, consonant with the musical chairs hypothesis. These results suggest that the costs of trophic generalism in plant-feeding insects may have been overvalued and that transitions from generalists to ecological specialists may not be an important driver of speciation in general. 相似文献
12.
Paradis E 《Evolution; international journal of organic evolution》2008,62(1):241-247
The analysis of diversification and character evolution using phylogenetic data attracts increasing interest from biologists. Recent statistical developments have resulted in a variety of tools for the inference of macroevolutionary processes in a phylogenetic context. In a recent paper Maddison (2006 Evolution, 60: 1743-1746) pointed out that uncareful use of some of these tools could lead to misleading conclusions on diversification or character evolution, and thus to difficulties in distinguishing both phenomena. I here present guidelines for the analyses of macroevolutionary data that may help to avoid these problems. The proper use of recently developed statistical methods may help to untangle diversification and character change, and so will allow us to address important evolutionary questions. 相似文献
13.
The inference of population divergence times and branching patterns is of fundamental importance in many population genetic analyses. Many methods have been developed for estimating population divergence times, and recently, there has been particular attention towards genome-wide single-nucleotide polymorphisms (SNP) data. However, most SNP data have been affected by an ascertainment bias caused by the SNP selection and discovery protocols. Here, we present a modification of an existing maximum likelihood method that will allow approximately unbiased inferences when ascertainment is based on a set of outgroup populations. We also present a method for estimating trees from the asymmetric dissimilarity measures arising from pairwise divergence time estimation in population genetics. We evaluate the methods by simulations and by applying them to a large SNP data set of seven East Asian populations. 相似文献
14.
Lei‐Lei Yang Hong‐Lei Li Lei Wei Tuo Yang Dai‐Yong Kuang Ming‐Hong Li Yi‐Ying Liao Zhi‐Duan Chen Hong Wu Shou‐Zhou Zhang 《植物分类学报:英文版》2016,54(4):400-415
Gentianales consist of Apocynaceae, Gelsemiaceae, Gentianaceae, Loganiaceae, and Rubiaceae, of which the majority are woody plants in tropical and subtropical areas. Despite extensive efforts in reconstructing the phylogeny of Gentianales based on molecular data, some interfamily and intrafamily relationships remain uncertain. We reconstructed the genus-level phylogeny of Gentianales based on the supermatrix of eight plastid markers (rbcL, matK, atpB, ndhF, rpl16, rps16, thetrnL-trnF region, and atpB-rbcL spacer) and one mitochondrial gene (matR) using maximum likelihood. The major clades and their relationships retrieved in the present study concur with those of previous studies. All of the five families of Gentianales are monophyletic with strong support. We resolved Rubiaceae as sister to the remaining families in Gentianales and showed support for the sister relationship between Loganiaceae and Apocynaceae. Our results provide new insights into relationships among intrafamilial clades. For example, within Rubiaceae we found that Craterispermeae were sister to Morindeae + (Palicoureeae + Psychotrieae) and that Theligoneae were sister to Putorieae. Within Gentianaceae, our phylogeny revealed that Gentianeae were sister to Helieae and Potalieae, and subtribe Lisianthiinae were sister to Potaliinae and Faroinae. Within Loganiaceae, we found Neuburgia as sister to Spigelieae. Within Apocynaceae, our results supported Amsonieae as sister to Melodineae, and Hunterieae as sister to a clade comprising Plumerieae + (Carisseae + APSA). We also confirmed the monophyly of Perplocoideae and the relationships among Baisseeae + (Secamonoideae + Asclepiadoideae). 相似文献
15.
Amparo?Querol "author-information "> "author-information__contact u-icon-before "> "mailto:aquerol@iata.csic.es " title= "aquerol@iata.csic.es " itemprop= "email " data-track= "click " data-track-action= "Email author " data-track-label= " ">Email author Carmela?Belloch María?Teresa?Fernández-Espinar Eladio?Barrio 《International microbiology》2003,6(3):201-205
The importance of yeast in the food and beverage industries was only realized about 1860, when the role of these organisms in food manufacture became evident. Since they grow on a wide range of substrates and can tolerate extreme physicochemical conditions, yeasts, especially the genera Saccharomyces and Kluyveromyces, have been applied to many industrial processes, Industrial strains of these genera are highly specialized organisms that have evolved to utilize a range of environments and ecological niches to their full potential. This adaptation is called \"domestication\". This review describes the phylogenetic relationships among Saccharomyces and Kluyveromyces species and the different mechanisms involved in the adaptive evolution of industrial yeast strains. 相似文献
16.
Commonly used methods for inferring phylogenies were designed before the emergence of high-throughput sequencing and can generally not accommodate the challenges associated with noisy, diploid sequencing data. In many applications, diploid genomes are still treated as haploid through the use of ambiguity characters; while the uncertainty in genotype calling—arising as a consequence of the sequencing technology—is ignored. In order to address this problem, we describe two new probabilistic approaches for estimating genetic distances: distAngsd-geno and distAngsd-nuc, both implemented in a software suite named distAngsd. These methods are specifically designed for next-generation sequencing data, utilize the full information from the data, and take uncertainty in genotype calling into account. Through extensive simulations, we show that these new methods are markedly more accurate and have more stable statistical behaviors than other currently available methods for estimating genetic distances—even for very low depth data with high error rates. 相似文献
17.
Pie MR 《Molecular biology and evolution》2006,23(12):2274-2278
The power of maximum likelihood tests of positive selection on protein-coding genes depends heavily on detecting and accounting for potential biases in the studied data set. Although the influence of transition:transversion and codon biases have been investigated in detail, little is known about how inaccuracy in the phylogeny used during the calculations affects the performance of these tests. In this study, 3 empirical data sets are analyzed using sets of simulated topologies corresponding to low, intermediate, and high levels of phylogenetic uncertainty. The detection of positive selection was largely unaffected by errors in the underlying phylogeny. However, the number of sites identified as being under positive selection tended to be overestimated. 相似文献
18.
Rabosky DL 《Evolution; international journal of organic evolution》2006,60(6):1152-1164
Maximum likelihood is a potentially powerful approach for investigating the tempo of diversification using molecular phylogenetic data. Likelihood methods distinguish between rate-constant and rate-variable models of diversification by fitting birth-death models to phylogenetic data. Because model selection in this context is a test of the null hypothesis that diversification rates have been constant over time, strategies for selecting best-fit models must minimize Type I error rates while retaining power to detect rate variation when it is present. Here I examine model selection, parameter estimation, and power to reject the null hypothesis using likelihood models based on the birth-death process. The Akaike information criterion (AIC) has often been used to select among diversification models; however, I find that selecting models based on the lowest AIC score leads to a dramatic inflation of the Type I error rate. When appropriately corrected to reduce Type I error rates, the birth-death likelihood approach performs as well or better than the widely used gamma statistic, at least when diversification rates have shifted abruptly over time. Analyses of datasets simulated under a range of rate-variable diversification scenarios indicate that the birth-death likelihood method has much greater power to detect variation in diversification rates when extinction is present. Furthermore, this method appears to be the only approach available that can distinguish between a temporal increase in diversification rates and a rate-constant model with nonzero extinction. I illustrate use of the method by analyzing a published phylogeny for Australian agamid lizards. 相似文献
19.
In this study, the phylogenetic trees of jacks and pompanos (Carangidae), an ecologically and morphologically diverse, globally distributed fish family, are inferred from a complete, concatenated data set of two mitochondrial (cytochrome c oxidase I, cytochrome b) loci and one nuclear (myosin heavy chain 6) locus. Maximum likelihood and Bayesian inferences are largely congruent and show a clear separation of Carangidae into the four subfamilies: Scomberoidinae, Trachinotinae, Naucratinae and Caranginae. The inclusion of the carangid sister lineages Coryphaenidae (dolphinfishes) and Rachycentridae (cobia), however, render Carangidae paraphyletic. The phylogenetic trees also show with high statistical support that the monotypic vadigo Campogramma glaycos is the sister to all other species within the Naucratinae. 相似文献
20.
Maria Fernanda Bonetti John J. Wiens 《Proceedings. Biological sciences / The Royal Society》2014,281(1795)
The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. 相似文献