首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
选取大连地区大陆与海岛共有植物玉竹为研究对象,采用ISSR分子标记技术对来自5个海岛和4个大陆种群的262个玉竹个体进行遗传多样性的比较和分析。从10个筛选出的ISSR引物扩增得到120个位点信息,其中多态性条带百分率为91.67%,Nei's基因多样性指数(h)为0.346 0,Shannon信息指数(I)为0.510 8。其遗传分化系数(Gst)为0.117 4,基因流(Nm)为3.758 5。研究结果表明玉竹天然种群的遗传多样性较为丰富,种群间基因交流较为频繁,遗传距离与地理距离具有一定的相关性。通过海岛与大陆种群遗传多样性的比对发现,海岛种群的遗传多样性略高于大陆种群,表明在孤立的生境和更为复杂的选择压力下,海岛玉竹种群可能会积累更多的遗传变异从而形成较高的遗传多样性水平。本文研究结果将为进一步探讨隔离生境中天然植物种群遗传进化规律提供证据。  相似文献   

2.
在千岛湖片段化景观中选取20个陆桥岛屿和8个大陆样点,从2012年7月到2014年4月,按季度(春、夏、秋季)6次采用巴氏陷阱法收集地表甲虫,分析其物种多度、组成、多样性和季节动态,以及不同岛屿上的地表甲虫的物种多样性与岛屿面积和隔离度等岛屿空间特征的关系.结果表明: 共收集记录到地表甲虫26科101种3370头.大陆和大岛地表甲虫的物种丰富度有显著差异,且小岛地表甲虫密度显著高于大陆;大陆地表甲虫的物种组成变化较大,而岛屿上分布的地表甲虫的物种组成则变化较小.地表甲虫的物种丰富度与岛屿面积呈显著正相关,密度与隔离度呈显著正相关.夏季岛屿上地表甲虫物种丰富度高于春秋两季,岛屿与大陆样地的Shannon指数、Simpson指数和Pielou均匀度指数均在夏季最高、秋季最低.  相似文献   

3.
The principles of island biogeography are rarely applied to the animal assemblages of Amazonian river islands. Here, we compare bird assemblages of Amazonian river islands with a variety of mainland habitats. We also examine how bird species diversity and composition are related to island physical attributes. Birds were sampled with mist nets and qualitative censuses on 11 river islands and 24 mainland sites on the lower reaches of the Rio Negro in the Brazilian Amazon. Island bird assemblages were characterized by lower species richness and a higher abundance of a few dominant species. Additionally, the species composition of the islands was distinct from that of the mainland, including the nearby floodplain habitats. The number of bird species increased with island size and habitat diversity, and decreased with degree of isolation. In addition, small islands tended to harbor an impoverished subset of the species present on larger ones. Bird species diversity and composition on Amazonian river islands are likely influenced by the ecological succession and historical events affecting island formation. Considering their small total area across the Amazon basin, these insular fluvial communities could be disproportionately threatened by river channel disturbances related to climate change or hydroelectric dam development. Abstract in Portughese is available with online material.  相似文献   

4.
Island populations are often thought to be more susceptible to the loss of genetic diversity as a consequence of limited population size and genetic drift, greater susceptibility to detrimental stochastic events and low levels of immigration. However the geographic isolation of islands may create refuges for native crop species whose genetic diversity is threatened from the genetic erosion occurring in mainland areas as a result of crop-wild gene flow and genetic swamping. Many UK islands remain uncharacterised in terms of plant genetic diversity. In this study we compared the genetic diversity of mainland populations and landraces of Trifolium repens with wild populations collected from the islands surrounding the UK, including the island of Hirta in the St Kildan archipelago. Individuals from St Kilda represent a unique conservation resource, with populations both highly differentiated from UK mainland populations and genetically distinct from cultivated varieties, whilst able to retain diversity through limited human influence on the islands. In contrast, there is relative genetic similarity of wild UK populations to cultivated forms highlighted in mainland populations, but with geographic barriers preventing complete homogenisation of the mainland UK genepool. We underline the need for conservation priorities to include common species that are threatened by gene flow from cultivation, and draw attention to the potential of islands to preserve natural levels of genetic diversity.  相似文献   

5.
The island biogeography theory is one of the major theories in ecology, and its applicability to natural systems is well documented. The core model of the theory, the equilibrium model of island biogeography, predicts that species diversity on an island is positively related to the size of the island, but negatively related by the island's distance to the mainland. In recent years, ecologists have begun to apply this model when investigating genetic diversity, arguing that genetic and species diversity might be influenced by similar ecological processes. However, most studies have focused on oceanic islands, but knowledge on how the theory applies to islands located on the mainland (e.g., mountain islands, forest islands) is scarce. In this study, we examined how the size and degree of isolation of mountain islands would affect the genetic diversity of an alpine bird, the rock ptarmigan (Lagopus muta). Within our study area, we defined the largest contiguous mountain area as the mainland, while smaller mountains surrounding the mainland were defined as islands. We found that the observed heterozygosity (Ho) was significantly higher, and the inbreeding coefficient (Fis) significantly lower, on the mainland compared to islands. There was a positive significant relationship between the unbiased expected heterozygosity (Hn.b.) and island size (log km2), but a negative significant relationship between Ho and the cost distance to the mainland. Our results are consistent with the equilibrium model of island biogeography and show that the model is well suited for investigating genetic diversity among islands, but also on islands located on the mainland.  相似文献   

6.
Allozyme variation was investigated in 17 Japanese populations of Campanula punctata, ten from the Izu Islands and seven in the mainland (Honshu). The data indicate that there are two groups, a mainland group and an island one, and that the systematically problematic Oshima Island (northernmost Izu island) populations are closely related to those of the other islands. Nei's genetic identity values among islands and among mainland populations were 0.95 and 0.97, respectively, while the value between island and mainland populations was 0.84, suggesting that the island populations are an independent species. Total genetic variation was nearly the same among island and mainland populations. However, the apportionment of variation within and among populations was considerably different; 14% of gene diversity exists among mainland populations, while 31% of the diversity exists among island populations. Mean outcrossing rates of self-incompatible mainland and Oshima populations are 0.62–0.79, supporting xenogamy; those in self-compatible island populations are 0.37–0.57 in the northern islands, indicating a mixed mating system, and 0.16–0.25 in southern ones, indicating dominant inbreeding. Total genetic diversity in each island population decreased with distance from the mainland. Genetic and geological data suggest that the ancestors of insular populations were founded on northern islands in a relatively ancient period and that they dispersed progressively to the southern ones. Chromosome number (2n = 34) and isozyme numbers indicate gene duplications in this species, which suggests it is an ancient polyploid.  相似文献   

7.
Summary Few studies of island biogeography have been made on islands in which the time of insularization is precisely known. We tested the effects of island formation on ant species diversity in a man-made lake in South Africa, to determine whether island effects are detectable after only 16 years of insularization. The number of ant species observed at trap-line censuses on islands was significantly correlated with island size (r=0.608; P<0.05) and ant species diversity was generally low compared with similar mainland habitats. Mean species number for all islands, including landbridge islands, was 5.5±3.3 species, and on mainland sites was 7.9±2.85 species. Island effects were more marked on islands <20 ha, which had a mean of 3.3±2.5 species per island. Species number on islands was inversely related to densities of the aggressive Anoplolepis custodiens and A. steingroeveri. These two species were only patchily distributed on mainlands, but these ants were nearly ubiquitous on small islands. Several lines of evidence suggest that this single species domination may be responsible for island effects. Island sites also differed in the number of ant species in different trophic groupings, tending to have fewer granivorous species than the mainland sites, but species in other diet groups were similar in both island and mainland habitats. We conclude that there have been marked changes in the ant faunas on islands smaller than 20 ha apparently due to changes in abundance of the dominant ant species. However, the causes of these changes are unknown.  相似文献   

8.
The Mediterranean Basin as one the world's most biologically diverse regions provides an interesting area for the study of plant evolution and spatial structure in plant populations. The dioecious moss Pleurochaete squarrosa is a widespread and common bryophyte in the Mediterranean Basin. Thirty populations were sampled for a study on molecular diversity and genetic structure, covering most major islands and mainland populations from Europe and Africa. A significant decline in nuclear and chloroplast sequence and allozyme variation within populations from west to east was observed. While DNA sequence data showed patterns of isolation by distance, allozyme markers did not. Instead, their considerable interpopulation genetic differentiation appeared to be unrelated to geographic distance. Similar high values for coefficients of gene diversity (G(ST)) in all data sets provided evidence of geographic isolation and limited gene flow among populations (i) within islands, (ii) within mainland areas, and (iii) between islands and mainland. Notably, populations in continental Spain are strongly genetically isolated from all other investigated areas. Surprisingly, there was no difference in gene diversity and G(ST) between islands and mainland areas. Thus, we conclude that large Mediterranean islands may function as 'mainland' for bryophytes. This hypothesis and its implication for conservation biology of cryptogamic plants warrant further investigation. While sexually reproducing populations were found all over the Mediterranean Basin, high levels of multilocus linkage disequilibrium provide evidence of mainly vegetative propagation even in populations where sexual reproduction was observed.  相似文献   

9.
White TA  Searle JB 《Molecular ecology》2007,16(10):2005-2016
Populations of many species are currently being fragmented and reduced by human interactions. These processes will tend to reduce genetic diversity within populations and reduce individual heterozygosities because of genetic drift, inbreeding and reduced migration. Conservation biologists need to know the effect of population size on genetic diversity, as this is likely to influence a population's ability to persist. Island populations represent an ideal natural experiment with which to study this problem. In a study of common shrews (Sorex araneus) on offshore Scottish islands, 497 individuals from 13 islands of different sizes and 6 regions on the mainland were trapped and genotyped at eight microsatellite loci. Previous genetic work had revealed that most of the islands in this study were highly genetically divergent from one another and the mainland. We found that most of the islands exhibited lower genetic diversity than the mainland populations. In the island populations, mean expected heterozygosity, mean observed heterozygosity and mean allelic richness were significantly positively correlated with log island size and log population size, which were estimated using habitat population density data and application of a Geographic Information System.  相似文献   

10.
Island communities are exposed to several evolutionary and ecological processes that lead to changes in their diversity and structure compared to mainland biotas. These phenomena have been observed for various taxa but not for parasitoids, a key group in terms of community diversity and functioning. Here we use the parasitoid communities associated with the moth Acroclita subsequana (Lepidoptera: Tortricidae) in the Macaronesian region, to test whether species richness differs between islands and mainland, and whether island parasitoid faunas are biased towards generalist species. Host larvae were collected on several islands and adjacent mainland, carefully searched for ectoparasitoid larvae and dissected to recover any endoparasitoids. Parasitoids were classified as idiobionts, which usually have a wide host range (i.e. generalists), or koinobionts that are considered specialists. Mainland species richness was lower than expected by chance, with most of the species being koinobionts. On the other hand, island communities showed a greater proportion of idiobiont species. Overall parasitism rates were similar between islands and mainland, but islands had higher rates of parasitism by idiobionts than expected by chance, and mainland areas showed the highest koinobiont parasitism rates. These results suggest that island parasitoid communities are dominated by generalists, in comparison to mainland communities. Several hypotheses may explain this pattern: (1) generalist parasitoids might have better dispersal abilities; (2) they may be less constrained by ‘sequential dependencies’; and (3) island parasitoids probably have fewer competitors and/or predators, thus favouring the establishment of generalists. New studies including multiple hosts, other habitats, and/or more islands are necessary to identify which of these processes shape island parasitoid communities.  相似文献   

11.
beta多样性描述群落物种组成如何随环境梯度而变化。海岛具有边界清晰、面积和离岸距离不同以及环境变化剧烈等自然禀赋。目前, 我们对离岸距离、岛间距离和气候因素在海岛植物beta多样性变化格局中的相对贡献仍认识不足。本研究基于中国东部36个海岛的维管植物物种名录, 以Jaccard相异性指数度量beta多样性, 利用Mantel偏相关分析和beta多样性的变异分解, 探究了海岛不同生活型维管植物的beta多样性格局及其非生物影响因素。结果显示: 36个海岛共记录维管植物1,404种, 其中木本植物481种, 草本植物859种, 藤本植物64种。植物beta多样性随岛间距离和离岸距离差的增大而显著增加(P < 0.001); 海岛面积和气候要素对植物beta多样性无显著影响(P > 0.05)。岛间距离单独对beta多样性总变异的解释度为29.3%, 离岸距离独立解释了2.8%, 面积和气候共同解释了0.5%。木本植物与草本植物的beta多样性格局与总体一致, 距离因子对木本植物beta多样性的解释度高于草本植物(37.5% > 25.3%)。综上, 海岛植物beta多样性主要受岛间距离和离岸距离的影响, 反映了扩散限制是塑造中国东部海岛植物beta多样性格局的主要生态过程。  相似文献   

12.
Samples of resident freshwater char, Salvelinus alpinus were obtained from three lakes on Bjørnøya and their parasite faunas examined. Comparison of the species composition, number, diversity and equitability of the parasite faunas of Bjørnøya with those of other Arctic islands, an inshore island and lakes on the Norwegian mainland indicated that the communities on Bjørnøya formed a distinct unit with a high degree of similarity between the three lakes. Small differences could be related to differences in the ecology of the lakes. The parasite community of char on Spitsbergen showed the greatest similarity to that on Bjørnøya, and the communities of char in mainland lakes the least. Species number and diversity of parasites were often higher on the Arctic islands than on the mainland, and did not correlate with island size or distance from the mainland. The island parasite communities were often dominated by a single species, but a similar situation was also observed in the mainland lakes. It is concluded that the parasite fauna of char on offshore Arctic islands does not agree well with the predictions of island biogeographical theory.  相似文献   

13.
Genetic diversity and population structure were studied in eight populations of the kestrel Falco tinnunculus to identify the genetic consequences of spatial distribution and to infer the colonization patterns of the Cape Verde archipelago. We studied genetic differentiation and gene flow among seven island populations and one mainland population using nine microsatellite loci. Within the archipelago, differentiation was strong and genetic diversity and heterozygosity were low but variable among populations. Two subspecies F. tinnunculus neglectus on the northwestern islands and F. tinnunculus alexandri on all the other islands were identified as genetically distinct units. F. t. alexandri could be further separated into two groups on eastern and southern islands. Populations are probably founded by birds originating from the mainland. Immigration is more likely to the eastern and southern populations, whereas the northwestern islands with the lowest genetic diversity and highest differentiation are likely to exhibit fewer founding events by immigrants. The number of founding events on each island may depend not only on geographical distance to neighbouring populations, but also on directional immigration due to the northeastern trade winds. This may explain differences in genetic differentiation and diversity between populations and subspecies and may enable allopatric speciation.  相似文献   

14.
For conservation purposes islands are considered safe refuges for many species, particularly in regions where introduced predators form a major threat to the native fauna, but island populations are also known to possess low levels of genetic diversity. The New Zealand archipelago provides an ideal system to compare genetic diversity of large mainland populations where introduced predators are common, to that of smaller offshore islands, which serve as predator-free refuges. We assessed microsatellite variation in South Island robins (Petroica australis australis), and compared large mainland, small mainland, natural island and translocated island populations. Large mainland populations exhibited more polymorphic loci and higher number of alleles than small mainland and natural island populations. Genetic variation did not differ between natural and translocated island populations, even though one of the translocated populations was established with five individuals. Hatching failure was recorded in a subset of the populations and found to be significantly higher in translocated populations than in a large mainland population. Significant population differentiation was largely based on heterogeneity in allele frequencies (including fixation of alleles), as few unique alleles were observed. This study shows that large mainland populations retain higher levels of genetic diversity than natural and translocated island populations. It highlights the importance of protecting these mainland populations and using them as a source for new translocations. In the future, these populations may become extremely valuable for species conservation if existing island populations become adversely affected by low levels of genetic variation and do not persist.  相似文献   

15.
The levels of genetic diversity and gene flow may influence the long-term persistence of populations. Using microsatellite markers, we investigated genetic diversity and genetic differentiation in island (Krakatau archipelago, Indonesia) and mainland (Java and Sumatra, Indonesia) populations of Liporrhopalum tentacularis and Ceratosolen bisulcatus, the fig wasp pollinators of two dioecious Ficus (fig tree) species. Genetic diversity in Krakatau archipelago populations was similar to that found on the mainland. Population differentiation between mainland coastal sites and the Krakatau islands was weak in both wasp species, indicating that the intervening 40 km across open sea may not be a barrier for wasp gene flow (dispersal) and colonization of the islands. Surprisingly, mainland populations of the fig waSPS may be more genetically isolated than the islands, as gene flow between populations on the Javan mainland differed between the two wasp species. Contrasting growth forms and relative 'immunity' to the effects of deforestation in their host fig trees may account for these differences.  相似文献   

16.
Aim Islands are widely considered to be species depauperate relative to mainlands but, somewhat paradoxically, are also host to many striking adaptive radiations. Here, focusing on Anolis lizards, we investigate if cladogenetic processes can reconcile these observations by determining if in situ speciation can reduce, or even reverse, the classical island–mainland richness discrepancy. Location Caribbean islands and the Neotropical mainland. Methods We constructed range maps for 203 mainland anoles from museum records and evaluated whether geographical area could account for differences in species richness between island and mainland anole faunas. We compared the island species–area relationship with total mainland anole diversity and with the richness of island‐sized mainland areas. We evaluated the role of climate in the observed differences by using Bayesian model averaging to predict island richness based on the mainland climate–richness relationship. Lastly, we used a published phylogeny and stochastic mapping of ancestral states to determine if speciation rate was greater on islands, after accounting for differences in geographical area. Results Islands dominated by in situ speciation had, on average, significantly more species than similarly sized mainland regions, but islands where in situ speciation has not occurred were species depauperate relative to mainland areas. Results were similar at the scale of the entire mainland, although marginally non‐significant. These findings held even after accounting for climate. Speciation has not been faster on islands; instead, when extinction was assumed to be low, speciation rate varied consistently with geographical area. When extinction was high, there was some evidence that mainland speciation was faster than expected based on area. Main conclusions Our results indicate that evolutionary assembly of island faunas can reverse the general pattern of reduced species richness on islands relative to mainlands.  相似文献   

17.
Insular assemblages of species are often considered unique because they are exposed to unpredictable patterns of colonization/extinction that depend on distance from other sources of colonists and on size of islands. An alternative explanation is that islands provide fundamentally different habitats of those of the mainland, regardless of any possible effect of size and isolation. These alternatives were examined by comparing assemblages of rocky shores on islands of the Tuscany Archipelago with those of the mainland in the same geographical region. Sandy beaches created a pattern of discrete areas of rock along the mainland with spatial discontinuities and extents comparable to those of the insular environment. Possible effects of isolation and size were therefore controlled in this study, so that one would expect no difference between islands and the mainland if only size and isolation matter. In contrast, differences are expected if historical events or other processes have distinct influences on assemblages in these environments. These hypotheses were tested by comparing assemblages of midshore and lowshore habitats of two islands with those of two similarly distributed locations on the mainland over a period of 2 years, using a hierarchical sampling design. Multivariate and univariate analyses revealed various patterns in the data. There were differences between islands and the mainland in structure of assemblages, in mean abundance of common taxa and in the magnitude of spatial and temporal variance in abundance in both habitats. Collectively, these findings support the model that islands in the Tuscany Archipelago have distinct assemblages from the mainland, thereby contributing to the regional diversity and complexity of assemblages of rocky shores over and above any possible effect of size or isolation.  相似文献   

18.
We investigate the composition of anuran communities of land-bridge islands off the southeastern coast of Brazil. These islands provide natural long-term experiments on the effects of fragmentation in the Brazilian Atlantic Forest (BAF). We hypothesize that Pleistocene sea-level changes, in combination with other abiotic variables such as area and habitat diversity, has affected anuran species richness and community composition on these islands. Data from the literature and collections databases were used to produce species lists for eight land-bridge islands and for the mainland adjacent to the islands. We assess the effects of area, number of breeding habitats and distance to the mainland upon anuran species richness on land-bridge islands. Additionally we use nestedness analysis to quantify the extent to which the species on smaller and less habitat-diverse islands correspond to subsets of those on larger and more diverse ones. We found that area has both direct and indirect effects on anuran species richness on land-bridge islands, irrespective of distance to the mainland. However, on islands with comparable sizes, differences in species richness can be attributed to the number and quality of breeding habitats. Anuran communities on these islands display a nested pattern, possibly caused by selective extinction related to habitat loss. Common lowland pond-breeders were conspicuous by their absence. In the BAF, the conservation of fragments with a high diversity of breeding habitats could compensate for the generally negative effect of small area upon species richness. We suggest that sea-level changes have an important role in shaping composition of anuran species on coastal communities.  相似文献   

19.
Aim To investigate the importance of various island characteristics in determining spatial patterns of variations in beta diversity for various animal groups. Location Analyses are presented for 10 animal groups living on the Aeolian Islands, a volcanic archipelago in the central Mediterranean, near Sicily. Methods Three hypotheses were formulated to explain patterns of beta diversity: the target‐area–distance effect, stepping stone dispersal and island age. Matrices of inter‐island dissimilarities were constructed under each hypothesis and correlated with matrices of faunal dissimilarities using Mantel tests. For the ‘target‐area–distance effect’ hypothesis, inter‐island dissimilarities were calculated using island sizes and distances to nearest mainland areas. For the ‘stepping stone dispersal’ hypothesis, inter‐island distances were measured. Finally, for the ‘island age’ hypothesis, inter‐island dissimilarities were calculated on the basis of the geological age of the islands. Cluster analysis was used to investigate inter‐island faunal relationships. Results Support for a target‐area–distance effect was found only for birds. For these highly mobile animals, inter‐island distances had no significant effects on beta diversity. Birds are known to colonize islands by crossing large sea barriers and thus they can easily reach the Aeolian Islands, which are close to source areas (notably Sicily). Inter‐island distances had a significant role in determining patterns of beta diversity in most invertebrates. For Mollusca, Opiliones, Chilopoda, Heteroptera, coprophagous Scarabaeoidea, and Tenebrionidae, even relatively short distances preclude invertebrates from colonizing an island regularly from the mainland, and most colonization probably results from inter‐island faunal exchanges. Island age was proved to be important only for orthopterans. Main conclusions The origin of most of the Aeolian invertebrate fauna is quite recent, and species appear to have established on the islands predominantly by stepping stone dispersal. Birds, which are highly mobile organisms, follow more direct mainland–island dynamics. As further studies on other islands become available, comparative analyses will confirm whether the factors influencing variations in beta diversity in this study and their relationships with species dispersal ability are consistent across scales and geographical context.  相似文献   

20.
Variations in visible genetic polymorphisms are assumed to decrease in populations on small islands because of intense founder effects, genetic drift and inbreeding. However, we have found evidence of a marked enhancement of colour polymorphisms within populations on small oceanic islands that were colonized from the mainland. The source populations on the mainland of the land snail Euhadra peliomphala in four oceanic islands were estimated by phylogenetic analysis of mitochondrial DNA sequences. Diversity of shell colour was higher in the island populations than in the source populations on the mainland. In addition, the shell colour morphs differed not only among populations from different islands but also between the island populations and the source populations on the mainland. By contrast, no mtDNA variations were found in any of the island populations, even though the source populations possessed high mtDNA diversity. Thus, components of colour morphs changed in the island populations after their colonization, and colour polymorphisms are enhanced in these islands despite the loss of genetic variation. The above findings suggest that ecological mechanisms such as morphological release owing to a release from competition may overcome the tendency toward reduced genetic variation in islands to enhance the colour polymorphism.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 417–425.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号