首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of the endangered giant kangaroo rat, Dipodomys ingens (Heteromyidae), have suffered increasing fragmentation and isolation over the recent past, and the distribution of this unique rodent has become restricted to 3% of its historical range. Such changes in population structure can significantly affect effective population size and dispersal, and ultimately increase the risk of extinction for endangered species. To assess the fine-scale population structure, gene flow, and genetic diversity of remnant populations of Dipodomys ingens, we examined variation at six microsatellite DNA loci in 95 animals from six populations. Genetic subdivision was significant for both the northern and southern part of the kangaroo rat’s range although there was considerable gene flow among southern populations. While regional gene diversity was relatively high for this endangered species, hierarchical F-statistics of northern populations in Fresno and San Benito counties suggested non-random mating and genetic drift within subpopulations. We conclude that effective dispersal, and therefore genetic distances between populations, is better predicted by ecological conditions and topography of the environment than linear geographic distance between populations. Our results are consistent with and complimentary to previous findings based on mtDNA variation of giant kangaroo rats. We suggest that management plans for this endangered rodent focus on protection of suitable habitat, maintenance of connectivity, and enhancement of effective dispersal between populations either through suitable dispersal corridors or translocations.  相似文献   

2.
Abstract Junipers are main components of semiarid forests in Central Asia. Conservation of these plant genetic resources should be based on an understanding of factors that have shaped species‐level genetic variation. We used Juniperus seravschanica Kom. as a model species to investigate patterns and processes that may be associated with these factors. Novel plastid DNA markers (two minisatellites, one transversion, one indel) were identified and applied to investigate haplotype diversity and population structure in Kyrgyzstan. In total, 540 individuals from 15 populations were analyzed and 11 haplotypes detected. Strong divergence between populations from northern and southern Kyrgyzstan was evident from the haplotype distribution. Gene diversity within populations ranged from 0.083 to 0.765, and was on average higher in southern (0.687) than in northern populations (0.540). A similar pattern was detected in allelic richness. Analysis of molecular variance (AMOVA) revealed that 11.9% of the total genetic variation was due to differences among regions, 1.5% among populations, and 86.6% within populations. NST was not significantly different from GST (0.125), suggesting no evidence of a phylogeographic pattern. A Mantel test detected a weak but significant isolation‐by‐distance pattern for the whole dataset and southern populations separately. These results suggest that the north of Kyrgyzstan was relatively recently colonized by migrants from southern populations, probably associated with favorable conditions during the early Holocene. The humid Fergana Valley and Fergana Range are probable ecological barriers to gene flow between northern and southern populations.  相似文献   

3.
The genetic structure and morphometric differentiation of mangrove crab Perisesarma guttatum populations were examined among shelf connected locations along a latitudinal gradient on the East African coast. Over 2200 specimens were sampled from 23 mangrove sites for geometric morphometrics analysis. Population genetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) DNA sequences were used to evaluate connectivity among populations. A total of 73 haplotypes were detected, and almost no haplotypes were found in common between two highly supported phylogeographic clades: southern Mozambique (Inhaca Island and Maputo Bay) and a northern clade that included north Mozambique, Tanzania and Kenya. These two clades were identified based on the species' populations pairwise genetic differentiation and geographical location. ΦST values were considerably high between the two clades, indicating the presence of significant population genetic structure between Kenya and South Mozambique. However, each clade was composed of genetically similar populations along the latitudinal gradient, and no significant population structure was found within each clade because the Φst values were not significant. The morphometric analysis corroborated the division into two clades (i.e. Inhaca Island/Maputo Bay and northern populations) and also detected less shape variation among populations that were few kilometres apart. The significant spatial genetic structuring between the southern and the northern populations of P. guttatum along the geographic gradient under study, combined with morphological differences, suggests that these populations may be considered as cryptic species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 28–46.  相似文献   

4.
异色瓢虫是一种重要的天敌昆虫,广泛应用于农业生物防治中.本研究以线粒体COII基因作为分子标记,对陕西省分布的异色瓢虫不同地理种群的遗传结构及遗传多样性进行分析,并探讨不同种群间的遗传分化程度及基因交流水平.结果表明: 在21个种群529头异色瓢虫供试样本的COII序列中,共检测到15种单倍型(Hap1~Hap15),其中Hap1和Hap2所占比例最高,分别占总群体的34.4%和37.6%.总群体单倍型多样性指数为0.732,各种群内单倍型多样性范围在0.652~0.786.种群间总基因流为10.13,总群体遗传分化指数为0.024,说明种群间整体遗传分化程度较低.陕西异色瓢虫种群在进化上呈现中性模型,群体大小保持相对稳定,种群间的遗传分化主要来自种群内部.基于Nei遗传距离构建的种群系统发育树,陕南区域种群与陕北和关中区域种群分化明显.种群间遗传分化与地理距离之间存在一定的相关性,并且区域种群的遗传结构与遗传多样性也表现出一定的地理分布模式,推测秦岭的阻隔及南北气候的差异,使陕北、关中与陕南种群间的基因交流存在阻力,导致南北种群间遗传结构和遗传多样性存在差异.  相似文献   

5.
Using mtDNA variation in the kangaroo rat Dipodomys stephensi, we found no support for the hypothesis that a species with an historically restricted range will exhibit low levels of genetic polymorphism and little genetic structure. Dipodomys stephensi has long been restricted to a few interior coastal valleys in southern California encompassing an area of approximately 70 x 40 km; however, we found high levels of genetic variation over much of its range and significant genetic structure both within and between regions. We also found evidence for a recent range expansion. Dipodomys stephensi is a federally endangered species that is separated from D. panamintinus, its presumed sister taxon, by a mountain range to the north. We assessed genetic variation by sequencing 645 bases of the mitochondrial d-loop from 61 individuals sampled from 16 locations across the species range and rooted their relationship using two D. panamintinus individuals. Despite its limited geographic range, the level of mtDNA variation in D. stephensi is comparable to that of other rodents, including that of the more widely distributed D. panamintinus. This variation revealed significant regional differentiation. The northern, central, and southern regions of the range differ in both the level and the distribution of genetic variation. Phylogenetic analysis revealed that the center of the range contains the most diversity of lineages, including the most basal. In this region and in the north, most haplotypes were found at only a single location (25/29), or at a pair of nearby locations (3/29). In addition, related haplotypes clustered geographically. These results are consistent with long-term demographic stability characterized by limited dispersal and high local effective population size. Further support for this conclusion is the finding of unique diversity in two northern peripheral populations, Norco and Potrero Creek (PC). However, in sharp contrast, one haplotype (CC) was found at five of 11 central and northern locations and comprised 18% of individuals sampled. The atypical distribution of the CC haplotype reflected a pattern seen more strongly in the southern region. Here the CC haplotype comprised 69% of the sample and was found at all five sampling locations. Consequently, the southern region had very low genetic variability. We propose that this dominance of CC was probably due to a local population bottleneck that occurred during a recent range expansion into the southern region.  相似文献   

6.
We examined genetic variation in the Oriental fruit fly, Bactrocera dorsalis (Hendel), using six populations in two regions of Yunnan Province, China, to determine the distribution and likely mechanism for the dispersal of this fly. A 501‐bp portion of the mitochondrial cytochrome oxidase gene was sequenced from a minimum of eight individuals from each population, and 43 haplotypes were observed in the six Bactrocera dorsalis populations. When comparing the genetic diversity of populations in the northern and southern regions, which differ with respect to elevation, climate and plant phenology, we found a significantly greater haplotype diversity in the southern region (permutation test; P < 0.05), suggesting that the northern populations, those at Kunming and Qujing, probably originated from somewhere in the southern region. FST and number of pairwise differences revealed a high level of differentiation between the Panxi population and the other populations (permutation test; P < 0.05). Although the difference was marginally insignificant, the Shuitang population seemed to have differentiated from both northern populations. The Mantel test did not detect any isolation due to geographic distance. An amova analysis found that 2.56% of the variance was caused by the Panxi population. Haplotype network analysis showed that none of the six populations had a specific genetic lineage. Together, these analyses suggest that long‐distance dispersal has occurred for this species, and the species most probably took advantage of both a mountain pass and prevailing air currents. The Panxi population was significantly isolated from the others, probably because of its distinguishing habitat features, host plants or the recent reduction of the population size.  相似文献   

7.
The Pleistocene climatic oscillations had profound effects on the demographic history and genetic diversification of plants in arid north-west China where some glacial refugia have been recognized. The genus Ixiolirion comprises three species, of which two, I. tataricum and I. songaricum (endemic), occur in China. In some locations they are sympatric. We investigated their population structure and population history in response to past climatic change using a sample of 619 individuals in 34 populations with nITS and ptDNA sequences. A significant genetic divergence between the two species was supported by a high level of pairwise genetic differentiation, very low gene flow, and phylogenetic analysis showing that I. songaricum haplotypes were monophyletic, whereas those of I. tataricum were polyphyletic. We found significant differentiation and phylogeographic structure in both species. The split of the two species was dated to the late Miocene (~7?Ma), but deep divergence occurred in the mid-late Quaternary. A similar haplotype distribution pattern was found in both species: one to two dominant haplotypes across most populations, with unique haplotypes in a few populations or a geographic group. The genetic diversity, haplotype number, and haplotype diversity decreased from the Yili Valley to the central Tianshan and Barluk Mountains. Additionally, ptDNA analysis showed that I. tataricum diversified in the eastern Tianshan and Barluk Mountains, which might be due to physical barriers to long distance seed dispersal such as desert. In conclusion, our results indicated that the Yili Valley was likely a glacial refuge for Ixiolirion in China, with postglacial dispersal from the Yili Valley eastward to the eastern Tianshan Mountains, and northward to the Barluk Mountains. The climatic changes in the Miocene and Pleistocene and geographic barriers are important factors driving species divergence and differentiation of Ixiolirion and other taxa.  相似文献   

8.
Genetic diversity and spatial structure of populations are important for antagonistic coevolution. We investigated genetic variation and population structure of three closely related European ant species: the social parasite Harpagoxenus sublaevis and its two host species Leptothorax acervorum and Leptothorax muscorum. We sampled populations in 12 countries and analysed eight microsatellite loci and an mtDNA sequence. We found high levels of genetic variation in all three species, only slightly less variation in the host L. muscorum. Using a newly introduced measure of differentiation (Jost’s Dest ), we detected strong population structuring in all species and less male‐biased dispersal than previously thought. We found no phylogeographic patterns that could give information on post‐glacial colonization routes – northern populations are as variable as more southern populations. We conclude that conditions for Thompson’s geographic mosaic of coevolution are ideal in this system: all three species show ample genetic variation and strong population structure.  相似文献   

9.
While microsatellites have been used to examine genetic structure in local populations of Neotropical trees, genetic studies based on such high-resolution markers have not been carried out for Mesoamerica as a whole. Here we assess the genetic structure of the Mesoamerican mahogany Swietenia macrophylla King (big-leaf mahogany), a Neotropical tree species recently listed as endangered in CITES which is commercially extinct through much of its native range. We used seven variable microsatellite loci to assess genetic diversity and population structure in eight naturally established mahogany populations from six Mesoamerican countries. Measures of genetic differentiation (FST and RST) indicated significant differences between most populations. Unrooted dendrograms based on genetic distances between populations provide evidence of strong phylogeographic structure in Mesoamerican mahogany. The two populations on the Pacific coasts of Costa Rica and Panama were genetically distant from all the others, and from one another. The remaining populations formed two clusters, one comprised of the northern populations of Mexico, Belize and Guatemala and the other containing the southern Atlantic populations of Nicaragua and Costa Rica. Significant correlation was found between geographical distance and all pairwise measures of genetic divergence, suggesting the importance of regional biogeography and isolation by distance in Mesoamerican mahogany. The results of this study demonstrate greater phylogeographic structure than has been found across Amazon basin S. macrophylla. Our findings suggest a relatively complex Mesoamerican biogeographic history and lead to the prediction that other Central American trees will show similar patterns of regional differentiation.  相似文献   

10.
Intraspecific phylogeography has been used widely as a tool to infer population history. However, little attention has been paid to Southeast Asia despite its importance in terms of biodiversity. Here we used the cytochrome oxidase I gene of mitochondrial DNA (mtDNA) for a phylogeographic study of 147 individuals of the black fly Simulium tani from Thailand. The mtDNA revealed high genetic differentiation between the major geographical regions of north, east and central/south Thailand. Mismatch distributions indicate population expansions during the mid-Pleistocene and the late Pleistocene suggesting that current population structure and diversity may be due in part to the species' response to Pleistocene climatic fluctuations. The genealogical structure of the haplotypes, high northern diversity and maximum-likelihood inference of historical migration rates, suggest that the eastern and central/southern populations originated from northern populations in the mid-Pleistocene. Subsequently, the eastern region had had a largely independent history but the central/southern population may be largely the result of recent (c. 100,000 years ago) expansion, either from the north again, or from a relictual population in the central region. Cytological investigation revealed that populations from the south and east have two overlapping fixed chromosomal inversions. Since these populations also share ecological characteristics it suggests that inversions are involved in ecological adaptation. In conclusion both contemporary and historical ecological conditions are playing an important role in determining population genetic structure and diversity.  相似文献   

11.
Coastal plants with simple linear distribution ranges along coastlines provide a suitable system for improving our understanding of patterns of intra-specific distributional history and genetic variation. Due to the combination of high seed longevity and high dispersibility of seeds via seawater, we hypothesized that wild radish would poorly represent phylogeographic structure at the local scale. On the other hand, we also hypothesized that wild radish populations might be geographically differentiated, as has been exhibited by their considerable phenotypic variations along the islands of Japan. We conducted nuclear DNA microsatellite loci and chloroplast DNA haplotype analyses for 486 samples and 144 samples, respectively, from 18 populations to investigate the phylogeographic structure of wild radish in Japan. Cluster analysis supported the existence of differential genetic structures between the Ryukyu Islands and mainland Japan populations. A significant strong pattern of isolation by distance and significant evidence of a recent bottleneck were detected. The chloroplast marker analysis resulted in the generation of eight haplotypes, of which two haplotypes (A and B) were broadly distributed in most wild radish populations. High levels of variation in microsatellite loci were identified, whereas cpDNA displayed low levels of genetic diversity within populations. Our results indicate that the Kuroshio Current would have contributed to the sculpting of the phylogeographic structure by shaping genetic gaps between isolated populations. In addition, the Tokara Strait would have created a geographic barrier between the Ryukyu Islands and mainland Japan. Finally, extant habitat disturbances (coastal erosion), migration patterns (linear expansion), and geographic characteristics (small islands and sea currents) have influenced the expansion and historical population dynamics of wild radish. Our study is the first to record the robust phylogeographic structure in wild radish between the Ryukyu Islands and mainland Japan, and might provide new insight into the genetic differentiation of coastal plants across islands.  相似文献   

12.
Patiria miniata, a broadcast‐spawning sea star species with high dispersal potential, has a geographic range in the intertidal zone of the northeast Pacific Ocean from Alaska to California that is characterized by a large range gap in Washington and Oregon. We analyzed spatial genetic variation across the P. miniata range using multilocus sequence data (mtDNA, nuclear introns) and multilocus genotype data (microsatellites). We found a strong phylogeographic break at Queen Charlotte Sound in British Columbia that was not in the location predicted by the geographical distribution of the populations. However, this population genetic discontinuity does correspond to previously described phylogeographic breaks in other species. Northern populations from Alaska and Haida Gwaii were strongly differentiated from all southern populations from Vancouver Island and California. Populations from Vancouver Island and California were undifferentiated with evidence of high gene flow or very recent separation across the range disjunction between them. The surprising and discordant spatial distribution of populations and alleles suggests that historical vicariance (possibly caused by glaciations) and contemporary dispersal barriers (possibly caused by oceanographic conditions) both shape population genetic structure in this species.  相似文献   

13.
Zenger KR  Eldridge MD  Cooper DW 《Heredity》2003,91(2):153-162
Genetic information has played an important role in the development of management units by focusing attention on the evolutionary properties and genetics of populations. Wildlife authorities cannot hope to manage species effectively without knowledge of geographical boundaries and demic structure. The present investigation provides an analysis of mitochondrial DNA and microsatellite data, which is used to infer both historical and contemporary patterns of population structuring and dispersal in the eastern grey kangaroo (Macropus giganteus) in Australia. The average level of genetic variation across sample locations was one of the highest observed for marsupials (h=0.95, HE=0.82). Contrary to ecological studies, both genic and genotypic analyses reveal weak genetic structure of populations, where high levels of dispersal may be inferred up to 230 km. The movement of individuals was predominantly male-biased (average Nem=22.61, average Nfm=2.73). However, neither sex showed significant isolation by distance. On a continental scale, there was strong genetic differentiation and phylogeographic distinction between southern (TAS, VIC and NSW) and northern (QLD) populations, indicating a current and/or historical restriction of gene flow. In addition, it is evident that northern populations are historically more recent, and were derived from a small number of southern founders. Phylogenetic comparisons between M. g. giganteus and M. g. tasmaniensis indicated that the current taxonomic status of these subspecies should be revised as there was a lack of genetic differentiation between the populations sampled.  相似文献   

14.
Aim A phylogeographic study of the endemic Mexican tulip poppy Hunnemannia fumariifolia (Papaveraceae) was conducted to determine: (1) the historical processes that influenced its geographical pattern of genetic variation; (2) whether isolation by distance was one of the main factors that caused genetic divergence in populations of this species; and (3) whether genetic flow still exists between populations from northern arid zones (Chihuahuan Desert and Sierra Madre Oriental) and those from southern arid zones (Tehuacán‐Cuicatlán Valley) – populations that are separated by the Transvolcanic Belt. Location Xerophytic vegetation in Mexico. Methods Chloroplast DNA (cpDNA) sequences of three regions, trnH‐psbA, rpl32‐trnL(UAG) and ndhF‐rpl32, were obtained for 85 individuals from 17 populations sampled in the field, covering the entire range of H. fumariifolia. The evolutionary history of these populations was investigated using a nested clade phylogeographic analysis and also by conducting various population genetic analyses. Results In total, 17 haplotypes were detected, 14 of which were found in the Sierra Madre Oriental. Differentiation among populations based on cpDNA variation (GST = 0.787, SE 0.0614) indicated population structure in H. fumariifolia, corroborated by a fixation index (FST) of 0.907. Results from analysis of molecular variance found that most of the total variation (90.71%, P < 0.001) was explained by differences among populations. Three regions were determined based on geological correspondence – the Chihuahuan Desert, Sierra Madre Oriental and Tehuacán‐Cuicatlán Valley – and the variation between them was significant (43.39%, P < 0.001). Results of a Mantel test showed a significant correlation between genetic and geographic distances (r = 0.511; P = 0.0001), suggesting a pattern of isolation by distance, which was corroborated by nested clade phylogeographic analysis. Mismatch distribution analysis indicated a sudden demographic expansion. Main conclusions Our study found that isolation by distance influenced genetic divergence in populations of H. fumariifolia. The finding that allopatric fragmentation influenced genetic divergence in populations in the Sierra Madre Oriental may be a reflection of the complex geology of the area. Our results suggest that the areas located in the north of the Sierra Madre Oriental acted as post‐glacial refugia for some populations.  相似文献   

15.
Microsatellite analysis of population structure in Canadian polar bears   总被引:29,自引:0,他引:29  
Attempts to study the genetic population structure of large mammals are often hampered by the low levels of genetic variation observed in these species. Polar bears have particularly low levels of genetic variation with the result that their genetic population structure has been intractable. We describe the use of eight hypervariable microsatellite loci to study the genetic relationships between four Canadian polar bear populations: the northern Beaufort Sea, southern Beaufort Sea, western Hudson Bay, and Davis Strait - Labrador Sea. These markers detected considerable genetic variation, with average heterozygosity near 60% within each population. Interpopulation differences in allele frequency distribution were significant between all pairs of populations, including two adjacent populations in the Beaufort Sea. Measures of genetic distance reflect the geographic distribution of populations, but also suggest patterns of gene flow which are not obvious from geography and may reflect movement patterns of these animals. Distribution of variation is sufficiently different between the Beaufort Sea populations and the two more eastern ones that the region of origin for a given sample can be predicted based on its expected genotype frequency using an assignment test. These data indicate that gene flow between local populations is restricted despite the long-distance seasonal movements undertaken by polar bears.  相似文献   

16.
The crab-eating fox is a medium-sized Neotropical canid with generalist habits and a broad distribution in South America. We have investigated its genetic diversity, population structure and demographic history across most of its geographic range by analysing 512 base pairs (bp) of the mitochondrial DNA (mtDNA) control region, 615 bp of the mtDNA cytochrome b gene and 1573 total nucleotides from three different nuclear fragments. MtDNA data revealed a strong phylogeographic partition between northeastern Brazil and other portions of the species' distribution, with complete separation between southern and northern components of the Atlantic Forest. We estimated that the two groups diverged from each other c. 400,000-600,000 years ago, and have had contrasting population histories. A recent demographic expansion was inferred for the southern group, while northern populations seem to have had a longer history of large population size. Nuclear sequence data did not support this north-south pattern of subdivision, likely due at least in part to secondary male-mediated historical gene flow, inferred from multilocus coalescent-based analyses. We have compared the inferred phylogeographic patterns to those observed for other Neotropical vertebrates, and report evidence for a major north-south demographic discontinuity that seems to have marked the history of the Atlantic Forest biota.  相似文献   

17.
呼晓庆  杨兆富 《昆虫学报》2019,62(6):720-733
【目的】揭示中国草地螟Loxostege sticticalis不同地理种群的遗传分化程度。【方法】采用PCR技术扩增中国西北和华北地区草地螟11个地理种群的线粒体 COI, Cytb和COII基因序列,基于其序列变异及单倍型贝叶斯系统发育树和单倍型网络图分析,探讨不同地理种群间的遗传距离、分子系统发生关系及遗传分化程度。【结果】草地螟11个地理种群的线粒体 COI, Cytb和COII基因序列分别有24, 12和69个变异位点(分别占总序列的3.6%, 2.7%和8.8%),检测到的单倍型分别为22, 14和16个,单倍型多样度(Hd)分别为0.7600, 0.5842和0.7341,核苷酸平均差异度(K)分别为1.704, 0.752和3.997,不同单倍型间的遗传距离平均值分别为0.004, 0.005和0.013。总种群的Tajima’s D和Fu’s Fs值皆不显著,表明草地螟不同地理种群间的遗传分化不明显,群体大小稳定。根据各地理种群的单倍型建立的系统发育树和单倍型网络图表明,各单倍型散布在不同的地理种群中,无明显的地理分布格局。【结论】草地螟各地理种群的遗传距离与地理距离间不具有显著的相关性,其遗传分化不明显。  相似文献   

18.
Several phylogeographic studies in northern Mesoamerica have examined the influence of Pleistocene glaciations on the genetic structure of temperate tree species with their southern limit by the contact zone between species otherwise characteristic of North or South America, but few have featured plant species that presumably colonized northern Mesoamerica from South America. A phylogeographical study of Palicourea padifolia, a fleshy-fruited, bird dispersed distylous shrub, was conducted to investigate genetic variation at two chloroplast regions (trnS-trnG and rpl32-trnL) across cloud forest areas to determine if such patterns are consistent with the presence of Pleistocene refugia and/or with the historical fragmentation of the Mexican cloud forests. We conducted population and spatial genetic analyses as well as phylogenetic and isolation with migration analyses on 122 individuals from 22 populations comprising the distribution of P. padifolia in Mexico to gain insight of the evolutionary history of these populations. Twenty-six haplotypes were identified after sequencing 1389 bp of chloroplast DNA. These haplotypes showed phylogeographic structure (N(ST) = 0.508, G(ST) = 0.337, N(ST) > G(ST), P < 0.05), including a phylogeographic break at the Isthmus of Tehuantepec, with private haplotypes at either side of the isthmus, and a divergence time of the split in the absence of gene flow dating back c. 309,000-103,000 years ago. The patterns of geographic structure found in this study are consistent with past fragmentation and demographic range expansion, supporting the role of the Isthmus of Tehuantepec as a biogeographical barrier in the dispersal of P. padifolia. Our data suggest that P. padifolia populations were isolated throughout glacial cycles by the Isthmus of Tehuantepec, accumulating genetic differences due to the lack of migration across the isthmus in either direction, but the results of our study are not consistent with the existence of the previously proposed Pleistocene refugia for rain forest plant species in the region.  相似文献   

19.
The Eastern Afromontane Biodiversity Hotspot is known for microendemism and exceptional population genetic structure. The region's landscape heterogeneity is thought to limit gene flow between fragmented populations and create opportunities for regional adaptation, but the processes involved are poorly understood. Using a combination of phylogeographic analyses and circuit theory, I investigate how characteristics of landscape heterogeneity including regional distributions of slope, rivers and streams, habitat and hydrological basins (drainages) impact genetic distance among populations of the endemic spotted reed frog (Hyperolius substriatus), identifying corridors of connectivity as well as barriers to dispersal. Results show that genetic distance among populations is most strongly correlated to regional and local hydrologic structure and the distribution of suitable habitat corridors, not isolation by distance. Contrary to expectations, phylogeographic structure is not coincident with the two montane systems, but instead corresponds to the split between the region's two major hydrological basins (Zambezi and East Central Coastal). This results in a paraphyletic relationship for the Malawian Highlands populations with respect to the Eastern Arc Mountains and implies that the northern Malawian Highlands are the diversity centre for H. substriatus. Although the Malawian Highlands collectively hold the greatest genetic diversity, individual populations have lower diversity than their Eastern Arc counterparts, with an overall pattern of decreasing population diversity from north to south. Through the study of intraspecific differentiation across a mosaic of ecosystem and geographic heterogeneity, we gain insight into the processes of diversification and a broader understanding of the role of landscape in evolution.  相似文献   

20.
Mechanisms of population differentiation in seabirds   总被引:4,自引:1,他引:3  
Despite recent advances in population genetic theory and empirical research, the extent of genetic differentiation among natural populations of animals remains difficult to predict. We reviewed studies of geographic variation in mitochondrial DNA in seabirds to test the importance of various factors in generating population genetic and phylogeographic structure. The extent of population genetic and phylogeographic structure varies extensively among species. Species fragmented by land or ice invariably exhibit population genetic structure and most also have phylogeographic structure. However, many populations (26 of 37) display genetic structure in the absence of land, suggesting that other barriers to gene flow exist. In these populations, the extent of genetic structure is best explained by nonbreeding distribution: almost all species with two or more population-specific nonbreeding areas (or seasons) have phylogeographic structure, and all species that are resident at or near breeding colonies year-round have population genetic structure. Geographic distance between colonies and foraging range appeared to have a weak influence on the extent of population genetic structure, but little evidence was found for an effect of colony dispersion or population bottlenecks. In two species (Galapagos petrel, Pterodroma phaeopygia, and Xantus's murrelet, Synthliboramphus hypoleucus), population genetic structure, and even phylogeographic structure, exist in the absence of any recognizable physical or nonphysical barrier, suggesting that other selective or behavioural processes such as philopatry may limit gene flow. Retained ancestral variation may be masking barriers to dispersal in some species, especially at high latitudes. Allopatric speciation undoubtedly occurs in this group, but reproductive isolation also appears to have evolved through founder-induced speciation, and there is strong evidence that parapatric and sympatric speciation occur. While many questions remain unanswered, results of the present review should aid conservation efforts by enabling managers to predict the extent of population differentiation in species that have not yet been studied using molecular markers, and, thus, enable the identification of management units and evolutionary significant units for conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号