首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We compared inbreeding depression in hermaphroditic Schiedea lydgatei and its gynodioecious sister species, S. salicaria, to infer the level of inbreeding depression in their common ancestor. With measurements of selfing rates, this information can be used to assess the importance of inbreeding depression in the evolution of breeding systems in S. lydgatei and S. salicaria. Morphological and physiological characters related to fitness were compared for inbred and outcrossed S. lydgatei in high- and low-fertilizer environments in the greenhouse. Seed mass, number of seeds per capsule, germination, survival, biomass, number of flowers, and age at first flowering were compared for inbred versus outcrossed progeny. We also measured inbreeding depression in maximal rates of photosynthetic carbon assimilation and stomatal conductance to water vapor, traits that affect fitness through their influence on plant carbon balance and water-use efficiency (ratio of carbon gain to water loss). All traits except number of seeds per capsule in parents and survival showed inbreeding depression, with the magnitude depending on family and environment. High inbreeding depression is likely in the ancestor of S. lydgatei and S. salicaria, indicating that, with sufficiently high selfing rates, females could spread in populations. Hermaphroditism in S. lydgatei is probably favored by low selfing rates. In contrast, the evolution of gynodioecy in S. salicaria apparently has been favored by relatively high selfing rates in combination with high inbreeding depression.  相似文献   

2.
Gynodioecious plant populations contain both hermaphrodite and female individuals. For females to be maintained they must compensate for their loss of reproductive fitness through pollen. Females may achieve compensation by producing more and/or higher quality seeds than hermaphrodites. In this study, I investigated the independent and interactive effects of maternal sexual identity and inbreeding level on fitness of the progeny of hermaphrodites and females of Sidalcea oregana ssp.spicata. Seeds produced by selling hermaphrodites and by outcrossing or sib-crossing hermaphrodites and females, were planted in the field and greenhouse. Maternal-sex effects were substantial at the juvenile stages of the life cycle; seeds of females germinated in higher proportions and produced seedlings that grew significantly faster. Inbreeding effects were manifested primarily at the adult stage of the life cycle. Outcrossed plants were significantly larger and produced more flowers per plant than sib-crossed and selfed plants growing in the greenhouse. Progeny of hermaphrodites and females appeared to respond similarly to sib-matings. The maternal-sex effects observed in Sidalcea may have been related to cytoplasmically inherited factors and could be a driving force in the maintenance of females. Inbreeding depression could play a role in determining the fitness of both sex morphs, if females experience biparental inbreeding in the field. Frequent inbreeding of hermaphrodites may not be necessary to explain the maintenance of gynodioecy in this species.  相似文献   

3.
If inbreeding depression is caused by deleterious recessive alleles, as suggested by the partial dominance hypothesis, a negative correlation between inbreeding and inbreeding depression is predicted. This hypothesis has been tested several times by comparisons of closely related species or comparisons of populations of the same species with different histories of inbreeding. However, if one is interested in whether this relationship contributes to mating-system evolution, which occurs within populations, comparisons among families within a population are needed; that is, inbreeding depression among individuals with genetically based differences in their rate of selfing should be compared. In gynodioecious species with self-compatible hermaphrodites, hermaphrodites will have a greater history of potential inbreeding via both selfing and biparental inbreeding as compared to females and may therefore express a lower level of inbreeding depression. We estimated the inbreeding depression of female and hermaphrodite lineages in gynodioecious Lobelia siphilitica in a greenhouse experiment by comparing the performance of selfed and outcrossed progeny, as well as sibling crosses and crosses among subpopulations. We did not find support for lower inbreeding depression in hermaphrodite lineages. Multiplicative inbreeding depression (based on seed germination, juvenile survival, survival to flowering, and flower production in the first growing season) was not significantly different between hermaphrodite lineages (δ = 0.30 ± 0.08) and female lineages (δ = 0.15 ± 0.18), although the trend was for higher inbreeding depression in the hermaphrodite lineages. The population-level estimate of inbreeding depression was relatively low for a gynodioecious species (δ = 0.25) and there was no significant inbreeding depression following biparental inbreeding (δ = 0.01). All measured traits showed significant variation among families, and there was a significant interaction between family and pollination treatment for four traits (germination date, date of first flowering, number of flowers, and aboveground biomass). Our results suggest that the families responded differently to selfing and outcrossing: Some families exhibited lower fitness following selfing whereas others seemed to benefit from selfing as compared to outcrossing. Our results support recent simulation results in that prior inbreeding of the lineages did not determine the level of inbreeding depression. These results also emphasize the importance of determining family-level estimates of inbreeding depression, relative to population-level estimates, for studies of mating-system evolution.  相似文献   

4.
The evolution of separate sexes as a means of avoiding self-fertilization requires the controversial coexistence of large inbreeding depression and high selfing rate in the ancestral hermaphrodite population. Fitness components of adult females and hermaphrodites in nature, of their open-pollinated progeny, and of experimental selfs and outcrosses onto hermaphrodites were compared in endemic Hawaiian Bidens sandvicensis, all of whose known populations are gynodioecious, consisting of a mixture of females and hermaphrodites. Multilocus selfing rates of hermaphrodites were also estimated, and sex morph ratio monitored over four seasons in three populations of B. sandvicensis and one population of gynodioecious B. cervicata. Total mean inbreeding depression in seed set (in the glasshouse), germination rate (in an open-air nursery on Kauai), and first year survivorship and fecundity in the field were estimated as 0.94 (SE 0.04), and occurred primarily in drought months. Lower survivorship and fecundity of selfs were partially explained by their consistently smaller size. Open-pollinated seed of females had significantly lower germination rate, proportion flowering, and fecundity than outcrossed progeny of hermaphrodites, suggesting moderate biparental inbreeding in females and a lack of any non-outcrossing advantage to progeny of females. In all fitness components, open-pollinated progeny of hermaphrodites were inferior to those of females and to outcrosses, and in most components were superior to selfs. Total performance of open-pollinated progeny of females relative to those of hermaphrodites was calculated as 2.3 (SE = 0.4), but since inflorescences of females also set 20% to 50% more seed than those of hermaphrodites, their total relative ovule success was estimated as 3.2 (SE = 0.5). If inheritance of male sterility is nuclear, this superiority is sufficient to maintain females in frequencies over 20% in populations, whose actual frequencies ranged from 14% to 33%. In four populations, selfing rates of hermaphrodites, assayed in seedlings, were 0.50, 0.45, 0.25, and 0.30, but since substantial inbreeding depression occurred prior to germination, the mean selfing rate of hermaphrodite ovules exceeded 0.57. Female frequencies were significantly higher in the two populations with higher hermaphrodite selfing rate. These results suggest that inbreeding depression can exert a profound influence on the mating system of self-compatible plants on Hawaii and perhaps other oceanic islands, and can be sufficiently strong to electively favor the elimination of the male function.  相似文献   

5.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

6.
In gynodioecious species, females sacrifice fitness by not producing pollen, and hence must have a fitness advantage over hermaphrodites. Because females are obligately outcrossed, they may derive a fitness advantage by avoiding selfing and inbreeding depression. However, both sexes are capable of biparental inbreeding, and there are currently few estimates of the independent effects of maternal sex and multiple levels of inbreeding on female advantage. To test these hypotheses, females and hermaphrodites from six Alaskan populations of Silene acaulis were crossed with pollen from self (hermaphrodites only), a sibling, a random plant within the same population, and a plant from a different population. Germination, survivorship and early growth revealed inbreeding depression for selfs and higher germination but reduced growth in sib-crosses, relative to outcrosses. Independent of mate relatedness, females germinated more seeds that grew faster than offspring from hermaphrodites. This indicates that inbreeding depression as well as maternal sex can influence breeding system evolution. The effect of maternal sex may be explained by higher performance of female genotypes and a greater abundance of female genotypes among the offspring of female mothers.  相似文献   

7.
Abstract Levels of selfing and resource allocation patterns were investigated in Schiedea salicaria (Caryophyllaceae), a gynodioecious species with high levels of inbreeding depression and nuclear control of male sterility. Selfing levels were higher in hermaphrodites than females, especially when adjusted for early acting inbreeding depression. The sexes of S. salicaria were similar in most allocation patterns including number of flowers and capsules per inflorescence, seeds per flower, and seed mass. Seeds produced by females had higher levels of germination than seeds of hermaphrodites, a likely result of high selfing levels and the expression of inbreeding depression in the progeny of hermaphrodites. Invasion of females in populations of S. salicaria is probably related to the expression of inbreeding depression at germination and in later life history stages. Comparisons with related species of Schiedea that also have nuclear control of male sterility suggest that reallocation of resources in hermaphrodites to male function occurs as females increase in frequency, but that resource reallocation is not important for the success of females when they first invade populations.  相似文献   

8.
Although in gynodioecious populations male steriles require a fecundity advantage to compensate for their gametic disadvantage, southern Spanish populations of the long-lived shrub Daphne laureola do not show any fecundity advantage over hermaphrodites in terms of seed production and early seedling establishment. By using allozyme markers, we assess the mating system of this species in five populations differing in sex ratio, and infer levels of inbreeding depression over the whole life cycle by comparing the inbreeding coefficients at the seed and adult plant stages. Extremely low outcrossing rates (0.001相似文献   

9.
To determine whether inbreeding depression accounts for the maintenance of outcrossing in populations of the self-compatible orchidEncyclia cochleata, the estimated selective advantage of selfing was compared to a measure of inbreeding depression. Individuals from three populations ofE. cochleata and some of their progeny were phenotyped using isozyme analysis. The electrophoretic data were used to estimate the outcrossing rate and the theoretical cost of outcrossing. Inbreeding depression was estimated by comparing the fitness of the progeny resulting from both types of pollinations. The seeds from outcrossed and selfed hand-pollinations and naturally pollinated seeds from a population of the triandrous form ofE. cochleata were grown aseptically on culture media, and their development over the next three years recorded. Inbreeding was common, particularly in one population (outcrossing rate 40%). However, the level of inbreeding depression was only 1–2%, considerably less inbreeding depression than expected.  相似文献   

10.
Inbreeding depression and selfing rates were investigated in Schiedea membranacea (Caryophyllaceae), a hermaphroditic species endemic to the Hawaiian Islands. Most theoretical models predict high inbreeding depression in outcrossing hermaphroditic species and low inbreeding depression in inbreeding species. Although high outcrossing rates and high levels of inbreeding depression are characteristic of many species of Schiedea, self- fertilization is common among relatives of hermaphroditic S. membranacea, and high selfing rates and low levels of inbreeding depression were predicted in this species. Sixteen individuals grown in the greenhouse were used to produce selfed and outcrossed progeny. Inbreeding depression, which was evident throughout the stages measured (percentage viable seeds per capsule, mean seed mass, percentage seed germination, percentage seedling survival, and biomass after 8 mo), averaged 0.70. Inbreeding depression among maternal families varied significantly for all measured traits and ranged from −0.12 to 0.97. Using isozyme analysis, the multilocus selfing rate varied from 0.13 to 0.38 over 4 yr. Contrary to the initial prediction of high selfing and low inbreeding depression based on phylogenetic relationships within Schiedea, low selfing rates and high levels of inbreeding depression were found in S. membranacea. These results indicate that outcrossing is stable in this species and maintained by high levels of inbreeding depression.  相似文献   

11.
Recent theoretical models have addressed the influence of metapopulation dynamics on the fitness of females and hermaphrodites in gynodioecious plants. In particular, selection is thought to favor hermaphrodites during population establishment because that sex should be less prone to pollen limitation, especially if self-fertilization is possible. However, inbreeding depression could limit this advantage. In this experimental study of Silene vulgaris, a weedy gynodioecious plant, the fitness of females and hermaphrodites was estimated from seed production in both mixed-sex populations and for individuals isolated from these populations by 20, 40, 80, or 160 m. In mixed populations females display statistically significant greater per capita seed production owing to higher capsule production and higher rates of seed germination. The fitness of both sexes declines with increasing isolation, but at different rates, such that in the 160-m treatment hermaphrodites are by far the more fit sex. Allozyme studies suggest that this differential decline is because the selfing rate in hermaphrodites increases as a function of isolation, at least partially compensating for a decline in the availability of outcross pollen. Overall, the negative effects of pollen limitation on females far outweighs the negative effects of inbreeding depression following selfing in hermaphrodites. Thus, extinction/recolonization dynamics would appear to favor hermaphrodites as long as seed dispersal events exceed some critical distance.  相似文献   

12.
If, because of genetic erosion, the level of homozygosity in small populations is high, additional selfing will result in small reductions of fitness. In addition, in small populations with a long inbreeding history selection may have purged the population of its genetic load. Therefore, a positive relationship between population size (or level of genetic variation) and level of additional inbreeding depression, here referred to as inbreeding load, may be expected. In a previous study on the rare and threatened perennial Salvia pratensis, a positive correlation between population size and level of allozyme variation has been demonstrated. In the present study, the inbreeding load in six populations of varying size and allozyme variation was investigated. In the greenhouse, significant inbreeding load in mean seed weight, proportion of germination, plant size, regenerative capacity, and survival was demonstrated. In a field experiment with the two largest and the two smallest populations, survival of selfed progeny was 16% to 63% lower than survival of outcrossed progeny. In addition, survival of outcrossed progeny was, with the exception of the largest population, lower (16% to 37%) than of hybrid progeny, resulting from crosses between populations. Effects on plant size were qualitatively similar to the effects on survival, but these effects were variable in time because of differential survival of larger individuals. In all populations the total inbreeding load, that is, the effects on size and survival multiplicated, increased in time. It was demonstrated that inbreeding load in different characters may be independent. At no time and for no character was inbreeding load or the heterosis effect correlated to the mean number of alleles per locus, indicating that allozyme variation is not representative for variation at fitness loci in these populations. Combined with results of previous investigations, these results suggest that the small populations are in an early phase of the genetic erosion process. In this phase, allozyme variation, which is supposed to be (nearly) neutral, has been affected by genetic erosion but the selectively nonneutral variation is only slightly affected. These results stress the need for detailed information about the inbreeding history of small populations. The relative performance of selfed progeny was lowest in all populations, in the greenhouse as well as in the field, and inbreeding depression could still influence the extinction probabilities of the small populations.  相似文献   

13.
How females establish in populations of cosexuals is central to understanding the evolution of gender dimorphism in angiosperms. Inbreeding avoidance hypotheses propose that females can establish and be maintained if cosexual fitness is reduced because they self-fertilize, and their progeny express inbreeding depression. Here we assess the role of inbreeding avoidance in maintaining sexual system variation in Wurmbea biglandulosa. We estimated costs of self-pollination, mating patterns, and inbreeding depression in gender monomorphic (cosexuals only) and dimorphic (males and females) populations. Costs of selfing, estimated from seed set of experimentally self- and cross-pollinated flowers, were severe in both males and cosexuals (inbreeding depression, sigma = 0.86). In a field experiment, intact males that could self produced fewer seeds than both emasculated males and females, whereas seed set of intact and emasculated cosexuals did not differ. Thus, pollinator-mediated selfing reduces fitness of males but not cosexuals under natural conditions. Outcrossing rates of males revealed substantial selfing (t = 0.68), whereas females and cosexuals were outcrossed (0.92 and 0.97). For males, progeny inbreeding coefficients exceeded parental coefficients (0.220 vs. 0.009), whereas for females and cosexuals these coefficients did not differ and approached zero. Differences in coefficients between males and their progeny indicate that selfed progeny express severe inbreeding depression (sigma = 0.93). Combined with inbreeding depression for seed set, cumulative sigma = 0.99, indicating that most or all selfed zygotes fail to reach reproductive maturity. We propose that present sexual system variation in W. biglandulosa is maintained by high inbreeding depression coupled with differences in selfing rates among monomorphic and dimorphic populations.  相似文献   

14.
Progeny produced by inbreeding were compared to progeny derived from outcrosses for gynodioecious Schiedea salicaria and subdioecious S. globosa to assess fitness consequences of breeding system on parental fecundity (seeds per capsule) and progeny measures of fitness (germination, survival, biomass, and number of flowers). Results from both species indicated that inbreeding depression occurred at all measured stages of the life history. In both species, different females showed different levels of inbreeding depression. Multiplicative fitness functions of the ratio of values for selfed and outcrossed progeny in S. salicaria resulted in inbreeding depression values of 0.62–0.94. Within- vs. between-family crosses of S. globosa also resulted in inbreeding depression values as high as 0.49. These values suggest that inbreeding depression may promote the evolution of dioecy within S. globosa and S. salicaria, depending on the levels of natural outcrossing.  相似文献   

15.
The evolution of selfing taxa from outcrossing ancestors has occurred repeatedly and is the subject of many theoretical models, yet few empirical studies have examined the immediate consequences of inbreeding in a population with variable expression of self-incompatibility. Because self-incompatibility breaks down with floral age in Campanula rapunculoides, we were able to mate outbred and selfed maternal plants in a crossing design which produced progeny with inbreeding coefficients of 0, 0.25, 0.50 and 0.75. Cumulative inbreeding depression in plants that were selfed for one generation was very high in families derived from strongly self-incompatible plants (average δ = 0.98), and somewhat lower in families derived from plants with weaker expression of self-incompatibility (average δ = 0.90). Relative to outbred progeny, inbred progeny produced fewer seeds, had lower rates of germination, less vegetative growth and fewer flowers per plant. Inbred progeny also took longer to germinate, and longer to produce a first leaf and to flower. Interestingly, inbred plants also produced 40% fewer seeds than outcrossed plants (t-test P < 0.001) even when mated to the same, unrelated pollen donor, suggesting that inbreeding can produce profound maternal effects. Most importantly, our results demonstrate that progeny derived from plants with stronger expression of self-incompatibility exhibited greater levels of inbreeding depression than progeny from plants with weaker expression of self-incompatibility. Moreover, the decline in fitness (cumulative, ln-transformed) over the four inbreeding levels was steeper for the progeny of the strongly self-incompatible lineages. These empirical results suggest that inbreeding depression and mating system phenotype have the potential to coevolve.  相似文献   

16.
Inbreeding depression (δ) is a major selective force favoring outcrossing in flowering plants. Many phenotypic and genetic models of the evolution of selfing conclude that complete outcrossing should evolve whenever inbreeding depression is greater than one-half, otherwise selfing should evolve. Recent theoretical work, however, has challenged this view and emphasized (1) the importance of variation in inbreeding depression among individuals within a population; and (2) the nature of gene action between deleterious mutations at different loci (epistasis) as important determinants for the evolution of plant mating systems. The focus of this study was to examine the maintenance of inbreeding depression and the relationship between inbreeding level and inbreeding depression at both the population and the individual level in one population of the partially self-fertilizing plant Plantago coronopus (L.). Maternal plants, randomly selected from an area of about 50 m2 in a natural population, were used to establish lines with expected inbreeding coefficients (f) of 0, 0.25, 0.50, 0.75, and 0.875. Inbreeding depression was estimated both in the greenhouse and at the site of origin of the maternal plants by comparing growth, survival, flowering, and seed production of the progeny with different inbreeding coefficients. No significant inbreeding depression for these fitness traits was detected in the greenhouse after 16 weeks. This was in strong contrast to the field, where the traits all displayed significant inbreeding depression and declined with increased inbreeding. The results were consistent with the view that mutation to mildly deleterious alleles is the primary cause of inbreeding depression. At the family level, significantly different maternal line responses (maternal parent × inbreeding level interaction) provide a mechanism for the invasion of a selfing variant into the population through any maternal line exhibiting purging of its genetic load. At the population level, evidence for synergistic epistasis was detected for the probability of flowering, but not for total seed production. At the family level, however, a significant interaction between inbreeding level and maternal families for both traits was observed, indicating that epistasis could play a role in the expression of inbreeding depression among maternal lines.  相似文献   

17.
Abstract.— Genetically based variation in outcrossing rate generates lineages within populations that differ in their history of inbreeding. According to some models, mating-system modifiers in such populations will demonstrate both linkage and identity disequilibrium with fitness loci, resulting in lineage-specific inbreeding depression. Other models assert that differences among families in levels of inbreeding depression are mainly attributable to random accumulation of genetic load, unrelated to variation at mating-system loci. We measured female reproductive success of selfed and outcrossed progeny from naturally occurring lineages of Datura stramonium , a predominantly self-fertilizing annual weed that has heritable variation in stigma-anther separation, a trait that influences selfing rates. Progeny from inbred lineages (as identified by high degree of anther-stigma overlap) showed equal levels of seed production, regardless of cross type. Progeny from mixed lineages (as identified by relatively high separation between anthers and stigma) showed moderate levels of inbreeding depression. We found a significant correlation between anther-stigma separation and relative fitness of selfed and outcrossed progeny, suggesting that family-level inbreeding depression may be related to differences among lineages in inbreeding history in this population. Negative inbreeding depression in putatively inbred lineages may be due in part to additive effects or to epistatic interactions among loci.  相似文献   

18.
Inbreeding depression, or the decreased fitness of progeny derived from self-fertilization as compared to outcrossing, is thought to be the most general factor affecting the evolution of self-fertilization in plants. Nevertheless, data on inbreeding depression in fitness characters are almost nonexistent for perennials observed in their natural environments. In this study I measured inbreeding depression in both survival and fertility in two sympatric, short-lived, perennial herbs: hummingbird-pollinated Lobelia cardinalis (two populations) and bumblebee-pollinated L. siphilitica (one population). Crosses were performed by hand in the field, and seedlings germinated in the greenhouse. Levels of inbreeding depression were determined for one year in the greenhouse and for two to three years for seedlings transplanted back to the natural environment. Fertility was measured as flower number, which is highly correlated with seed production under natural conditions in these populations. Inbreeding depression was assessed in three ways: 1) survival and fertility within the different age intervals; 2) cumulative survival from the seed stage through each age interval; and 3) net fertility, or the expected fertility of a seed at different ages. Net fertility is a comprehensive measure of fitness combining survival and flower number. In all three populations, selfing had nonsignificant effects on the number and size of seeds. Lobelia siphilitica and one population of L. cardinalis exhibited significant levels of inbreeding depression between seed maturation and germination, excluding the consideration of possible differences in dormancy or longterm viability in the soil. There was no inbreeding depression in subsequent survival in the greenhouse in any population. In the field, significant survival differences between selfed and outcrossed progeny occurred only in two years and in only one population of L. cardinalis. For both survival and fertility there was little evidence for the expected differences among families in inbreeding depression. Compared to survival, inbreeding depression in fertility (flower number) tended to be much higher. By first-year flower production, the combined effects on survival and flower number caused inbreeding depression in net fertility to reach 54%, 34% and 71% for L. siphilitica and the two populations of L. cardinalis. By the end of the second year of flowering in the field, inbreeding depression in net fertility was 53% for L. siphilitica and 54% for one population of L. cardinalis. For the other population of L. cardinalis, these values were 76% through the second year of flowering and 83% through the third year. Such high levels of inbreeding depression should strongly influence selection on those characters affecting self-fertilization rates in these two species.  相似文献   

19.
Theory predicts that inbreeding depression (ID) should decline via purging in self‐fertilizing populations. Yet, intraspecific comparisons between selfing and outcrossing populations are few and provide only mixed support for this key evolutionary process. We estimated ID for large‐flowered (LF), predominantly outcrossing vs. small‐flowered (SF), predominantly selfing populations of the dune endemic Camissoniopsis cheiranthifolia by comparing selfed and crossed progeny in glasshouse environments differing in soil moisture, and by comparing allozyme‐based estimates of the proportion of seeds selfed and inbreeding coefficient of mature plants. Based on lifetime measures of dry mass and flower production, ID was stronger in nine LF populations [mean δ = 1?(fitness of selfed seed/fitness of outcrossed seed) = 0.39] than 16 SF populations (mean δ = 0.03). However, predispersal ID during seed maturation was not stronger for LF populations, and ID was not more pronounced under simulated drought, a pervasive stress in sand dune habitat. Genetic estimates of δ were also higher for four LF (δ = 1.23) than five SF (δ = 0.66) populations; however, broad confidence intervals around these estimates overlapped. These results are consistent with purging, but selective interference among loci may be required to maintain strong ID in partially selfing LF populations, and trade‐offs between selfed and outcrossed fitness are likely required to maintain outcrossing in SF populations.  相似文献   

20.
The consequences of selfing were examined for a population of self-compatible, protandrous, Sabatia angularis L. (Gentianaceae). Field-collected plants were hand-pollinated in the greenhouse to produce selfed progeny and outcrossed progeny from parents separated by a maximum of 5 m (near-outcross) and 85 m (far-outcross) in the field. Self, near-outcross, and far-outcross half sib progeny were grown in the greenhouse, a garden plot, and their native habitat. Progeny were compared by multiplicative fitness functions based on seed production per hand-pollination, seed germination, rosette formation, survival to reproduction, and reproduction in each environment. Variation in reproduction among progeny groups was influenced by the environment in which they were grown. Significant inbreeding depression was detected between the self and far-outcross progeny in each environment. Only the natural environment demonstrated a greater than 50% reduction in relative fitness of self compared to near-outcross progeny. This is of biological relevance since near-outcross hand-pollinations occurred within the range of pollen and seed dispersal suggesting that inbreeding depression in S. angularis is strong enough to maintain outcrossing in the study population. In the field, the far-outcross progeny outperformed the near-outcross progeny suggesting local population substructure. The magnitude of the inbreeding depression expressed among the self progeny was the greatest in the field, intermediate in the garden plot, and the least in the greenhouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号