首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chen F  Bradford KJ 《Plant physiology》2000,124(3):1265-1274
Expansins are extracellular proteins that facilitate cell wall extension, possibly by disrupting hydrogen bonding between hemicellulosic wall components and cellulose microfibrils. In addition, some expansins are expressed in non-growing tissues such as ripening fruits, where they may contribute to cell wall disassembly associated with tissue softening. We have identified at least three expansin genes that are expressed in tomato (Lycopersicon esculentum Mill.) seeds during germination. Among these, LeEXP4 mRNA is specifically localized to the micropylar endosperm cap region, suggesting that the protein might contribute to tissue weakening that is required for radicle emergence. In gibberellin (GA)-deficient (gib-1) mutant seeds, which germinate only in the presence of exogenous GA, GA induces the expression of LeEXP4 within 12 hours of imbibition. When gib-1 seeds were imbibed in GA solution combined with 100 microM abscisic acid, the expression of LeEXP4 was not reduced, although radicle emergence was inhibited. In wild-type seeds, LeEXP4 mRNA accumulation was blocked by far-red light and decreased by low water potential but was not affected by abscisic acid. The presence of LeEXP4 mRNA during seed germination parallels endosperm cap weakening determined by puncture force analysis. We hypothesize that LeEXP4 is involved in the regulation of seed germination by contributing to cell wall disassembly associated with endosperm cap weakening.  相似文献   

2.
Completion of germination (radicle emergence) by gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill.) seeds is dependent upon exogenous GA, because weakening of the endosperm tissue enclosing the radicle tip requires GA. To investigate genes that may be involved in endosperm weakening or embryo growth, differential cDNA display was used to identify mRNAs differentially expressed in gib-1 seeds imbibed in the presence or absence of GA(4+7). Among these was a GA-responsive mRNA encoding the 16-kD hydrophobic subunit c of the V(0) membrane sector of vacuolar H(+)-translocating ATPases (V-ATPase), which we termed LVA-P1. LVA-P1 mRNA expression in gib-1 seeds was dependent on GA and was particularly abundant in the micropylar region prior to radicle emergence. Both GA dependence and tissue localization of LVA-P1 mRNA expression were confirmed directly in individual gib-1 seeds using tissue printing. LVA-P1 mRNA was also expressed in wild-type seeds during development and germination, independent of exogenous GA. Specific antisera detected protein subunits A and B of the cytoplasmic V(1) sector of the V-ATPase holoenzyme complex in gib-1 seeds only in the presence of GA, and expression was localized to the micropylar region. The results suggest that V-ATPase plays a role in GA-regulated germination of tomato seeds.  相似文献   

3.
4.
Completion of germination (radicle emergence) by gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill.) seeds is dependent upon exogenous GA, because weakening of the endosperm tissue enclosing the radicle tip requires GA. To investigate genes that may be involved in endosperm weakening or embryo growth, differential cDNA display was used to identify mRNAs differentially expressed in gib-1 seeds imbibed in the presence or absence of GA4+7. Among these was a GA-responsive mRNA encoding the 16-kD hydrophobic subunit c of the V0 membrane sector of vacuolar H+-translocating ATPases (V-ATPase), which we termed LVA-P1. LVA-P1 mRNA expression in gib-1 seeds was dependent on GA and was particularly abundant in the micropylar region prior to radicle emergence. Both GA dependence and tissue localization of LVA-P1 mRNA expression were confirmed directly in individual gib-1 seeds using tissue printing. LVA-P1 mRNA was also expressed in wild-type seeds during development and germination, independent of exogenous GA. Specific antisera detected protein subunits A and B of the cytoplasmic V1 sector of the V-ATPase holoenzyme complex in gib-1 seeds only in the presence of GA, and expression was localized to the micropylar region. The results suggest that V-ATPase plays a role in GA-regulated germination of tomato seeds.  相似文献   

5.
Wu CT  Bradford KJ 《Plant physiology》2003,133(1):263-273
Class I chitinase (Chi9) and beta-1,3-glucanase (GluB) genes are expressed in the micropylar endosperm cap of tomato (Lycopersicon esculentum) seeds just before radicle emergence through this tissue to complete germination. In gibberellin (GA)-deficient mutant (gib-1) seeds, expression of Chi9 and GluB mRNA and protein is dependent upon GA. However, as expression occurs relatively late in the germination process, we investigated whether the genes are induced indirectly in response to tissue wounding associated with endosperm cap weakening and radicle protrusion. Wounding and methyl jasmonate (MeJA) induced Chi9 expression, whereas ethylene, abscisic acid, sodium salicylate, fusicoccin, or beta-aminobutyric acid were without effect. Chi9 expression occurred only in the micropylar tissues when seeds were exposed to MeJA or were wounded at the chalazal end of the seed. Expression of Chi9, but not GluB, mRNA was reduced in germinating seeds of the jasmonate-deficient defenseless1 tomato mutant and could be restored by MeJA treatment. Chi9 expression during germination may be associated with "wounding" from cell wall hydrolysis and weakening in the endosperm cap leading to radicle protrusion, and jasmonate is involved in the signaling pathway for this response. Among these treatments and chemicals (other than GA), only MeJA and wounding induced a low level of GluB expression in gib-1 seeds. However, MeJA, wounding, and particularly ethylene induced both genes in leaves, whereas GA induced only Chi9 in leaves. Although normally expressed simultaneously during tomato seed germination, Chi9 and GluB genes are regulated distinctly and tissue specifically by hormones and wounding.  相似文献   

6.
beta-1,3-Glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) mRNAs, proteins, and enzyme activities were expressed specifically in the micropylar tissues of imbibed tomato (Lycopersicon esculentum Mill.) seeds prior to radicle emergence. RNA hybridization and immunoblotting demonstrated that both enzymes were class I basic isoforms. beta-1,3-Glucanase was expressed exclusively in the endosperm cap tissue, whereas chitinase localized to both endosperm cap and radicle tip tissues. beta-1,3-Glucanase and chitinase appeared in the micropylar tissues of gibberellin-deficient gib-1 tomato seeds only when supplied with gibberellin. Accumulation of beta-1,3-glucanase mRNA, protein and enzyme activity was reduced by 100 microM abscisic acid, which delayed or prevented radicle emergence but not endosperm cap weakening. In contrast, expression of chitinase mRNA, protein, and enzyme activity was not affected by abscisic acid. Neither of these enzymes significantly hydrolyzed isolated tomato endosperm cap cell walls. Although both beta-1,3-glucanase and chitinase were expressed in tomato endosperm cap tissue prior to radicle emergence, we found no evidence that they were directly involved in cell wall modification or tissue weakening. Possible functions of these hydrolases during tomato seed germination are discussed.  相似文献   

7.
8.
Raffinose family oligosaccharides (RFOs) have been implicated in mitigating the effects of environmental stresses on plants. In seeds, proposed roles for RFOs include protecting cellular integrity during desiccation and/or imbibition, extending longevity in the dehydrated state, and providing substrates for energy generation during germination. A gene encoding galactinol synthase (GOLS), the first committed enzyme in the biosynthesis of RFOs, was cloned from tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds, and its expression was characterized in tomato seeds and seedlings. GOLS (LeGOLS-1) mRNA accumulated in developing tomato seeds concomitant with maximum dry weight deposition and the acquisition of desiccation tolerance. LeGOLS-1 mRNA was present in mature, desiccated seeds but declined within 8 h of imbibition in wild-type seeds. However, LeGOLS-1 mRNA accumulated again in imbibed seeds prevented from completing germination by dormancy or water deficit. Gibberellin-deficient (gib-1) seeds maintained LeGOLS-1 mRNA amounts after imbibition unless supplied with gibberellin, whereas abscisic acid (ABA) did not prevent the loss of LeGOLS-1 mRNA from wild-type seeds. The presence of LeGOLS-1 mRNA in ABA-deficient (sitiens) tomato seeds indicated that wild-type amounts of ABA are not necessary for its accumulation during seed development. In all cases, LeGOLS-1 mRNA was most prevalent in the radicle tip. LeGOLS-1 mRNA accumulation was induced by dehydration but not by cold in germinating seeds, whereas both stresses induced LeGOLS-1 mRNA accumulation in seedling leaves. The physiological implications of LeGOLS-1 expression patterns in seeds and leaves are discussed in light of the hypothesized role of RFOs in plant stress tolerance.  相似文献   

9.
beta-Mannosidase and endo-beta-mannanase are involved in the mobilization of the mannan-containing cell walls of the tomato seed endosperm. The activities of both enzymes increase in a similar temporal manner in the micropylar and lateral endosperm during and following germination. This increase in enzyme activities in the micropylar endosperm is not markedly reduced in seeds imbibed in abscisic acid although, in the lateral endosperm, endo-beta-mannanase activity is more suppressed by this inhibitor than is the activity of beta-mannosidase. Gibberellin-deficient (gib-1) mutants of tomato do not germinate unless imbibed in gibberellin; low beta-mannosidase activity, and no endo-beta-mannanase activity is present in seeds imbibed in water, but both enzymes increase strongly in activity in the seeds imbibed in the growth regulator. For production of full activity of both beta-mannosidase and endo-beta-mannanase in the endosperm, this tissue must be in contact with the embryo for at least the first 6 h of imbibition, which is indicative of a stimulus diffusing from the embryo to the endosperm during this time. These results suggest some correlation between the activities of beta-mannosidase and endo-beta-mannanase, particularly in the micropylar endosperm, in populations of tomato seeds imbibed in water, abscisic acid and gibberellin. However, when individual micropylar endosperm parts are used to examine the effect of the growth regulators and of imbibition in water on the production of the two enzymes, it is apparent that within these individual seed parts there may be large differences in the amount of enzyme activity present. Micropylar endosperms with high endo-beta-mannanase activity do not necessarily have high beta-mannosidase activity, and vice versa, which is indicative of a lack of co-ordination of the activities of these two enzymes within individuals of a population.  相似文献   

10.
Endo-beta-mannanase (EC 3.2.1.78) is involved in hydrolysis of the mannan-rich cell walls of the tomato (Lycopersicon esculentum Mill.) endosperm during germination and post-germinative seedling growth. Different electrophoretic isoforms of endo-beta-mannanase are expressed sequentially in different parts of the endosperm, initially in the micropylar endosperm cap covering the radicle tip and subsequently in the remaining lateral endosperm surrounding the rest of the embryo. We have isolated a cDNA from imbibed tomato seeds (LeMAN2) that shares 77% deduced amino acid sequence similarity with a post-germinative tomato mannanase (LeMAN1). When expressed in Escherichia coli, the protein encoded by LeMAN2 cDNA was recognized by anti-mannanase antibody and exhibited endo-beta-mannanase activity, confirming the identity of the gene. LeMAN2 was expressed exclusively in the endosperm cap tissue of tomato seeds prior to radicle emergence, whereas LeMAN1 was expressed only in the lateral endosperm after radicle emergence. LeMAN2 mRNA accumulation and mannanase activity were induced by gibberellin in gibberellin-deficient gib-1 mutant seeds but were not inhibited by abscisic acid in wild-type seeds. Distinct mannanases are involved in germination and post-germinative growth, with LeMAN2 being associated with endosperm cap weakening prior to radicle emergence, whereas LeMAN1 mobilizes galactomannan reserves in the lateral endosperm.  相似文献   

11.
Seed germination is a result of the competition of embryonic growth potential and mechanical constraint by surrounding tissues such as the endosperm. To understand the processes occurring in the endosperm during germination, we analyzed tiling array expression data on dissected endosperm and embryo from 6 and 24 h-imbibed Arabidopsis seeds. The genes preferentially expressed in the endosperm of both 6 and 24 h-imbibed seeds were enriched for those related to cell wall biosynthesis/modifications, flavonol biosynthesis, defense responses and cellular transport. Loss of function of AtXTH31/XTR8, an endosperm-specific gene for a putative xyloglucan endotransglycosylase/hydrolase, led to faster germination. This suggests that AtXTH31/XTR8 is involved in the reinforcement of the cell wall of the endosperm during germination. In vivo flavonol staining by diphenyl boric acid aminoethyl ester (DPBA) showed flavonols accumulated in the endosperm of both dormant and non-dormant seeds, suggesting that this event is independent of germination. Notably, DPBA fluorescence was also intense in the embryo, but the fluorescent region was diminished around the radicle and lower half of the hypocotyl during germination. DPBA fluorescence was localized in the vacuoles during germination. Vacuolation was not seen in imbibed dormant seeds, suggesting that vacuolation is associated with germination. A gene for δVPE (vacuolar processing enzyme), a caspase-1-like cysteine proteinase involved in cell death, is expressed specifically in endosperms of 24 h-imbibed seeds. The δvpe mutant showed retardation of vacuolation, but this mutation did not affect the kinetics of germination. This suggests that vacuolation is a consequence, and not a trigger, of germination.  相似文献   

12.
Xyloglucan endotransglycosylases (XETs) modify xyloglucans, major components of primary cell walls in dicots. A cDNA encoding an XET (LeXET4) was isolated from a germinating tomato (Lycopersicon esculentum Mill.) seed cDNA library. DNA gel blot analysis showed that LeXET4 is a single-copy gene in the tomato genome. LeXET4 mRNA was strongly expressed in germinating seeds, was much less abundant in stems, and was not detected in roots, leaves or flower tissues. During germination, LeXET4 mRNA was detected in seeds within 12 h of imbibition with maximum mRNA abundance at 24 h. Tissue prints showed that LeXET4 mRNA was localized exclusively to the endosperm cap region. Expression of LeXET4 was dependent on exogenous gibberellin (GA) in GA-deficient (gib-1 mutant) tomato seeds, while abscisic acid, a seed germination inhibitor, had no effect on LeXET4 mRNA expression in wild-type seeds. LeXET4 mRNA disappeared after radicle emergence, even though degradation of the lateral endosperm cell walls continued. The temporal, spatial and hormonal regulation pattern of LeXET4 gene expression suggests that XET has a role in endosperm cap weakening, a key process regulating tomato seed germination.  相似文献   

13.
Proteomics of Arabidopsis seeds revealed the differential accumulation during germination of two housekeeping enzymes. The first corresponded to methionine synthase that catalyses the last step in the plant methionine biosynthetic pathway. This protein was present at low level in dry mature seeds, and its level was increased strongly at 1-day imbibition, prior to radicle emergence. Its level was not increased further at 2-day imbibition, coincident with radicle emergence. However, its level in 1-day imbibed seeds strongly decreased upon subsequent drying of the imbibed seeds back to the original water content of the dry mature seeds. The second enzyme corresponded to S -adenosylmethionine synthetase that catalyses the synthesis of S -adenosylmethionine from methionine and ATP. In this case, this enzyme was detected in the form of two isozymes with different p I and M r. Both proteins were absent in dry mature seeds and in 1-day imbibed seeds, but specifically accumulated at the moment of radicle protrusion. Arabidopsis seed germination was strongly delayed in the presence of dl -propargylglycine, a specific inhibitor of methionine synthesis. Furthermore, this compound totally inhibited seedling growth. These phenotypic effects were largely alleviated upon methionine supplementation in the germination medium. The results indicated that methionine synthase and S -adenosylmethionine synthetase are fundamental components controlling metabolism in the transition from a quiescent to a highly active state during seed germination. Moreover, the observed temporal patterns of accumulation of these proteins are consistent with an essential role of endogenous ethylene in Arabidopsis only after radicle protrusion.  相似文献   

14.
Ni BR  Bradford KJ 《Plant physiology》1993,101(2):607-617
Germination responses of wild-type (MM), abscisic acid (ABA)-deficient (sitw), and gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds to ABA, GA4+7, reduced water potential ([psi]), and their combinations were analyzed using a population-based threshold model (B.R. Ni and K.J. Bradford [1992] Plant Physiol 98: 1057-1068). Among the three genotypes, sitw seeds germinated rapidly and completely in water, MM seeds germinated more slowly and were partially dormant, and gib-1 seeds did not germinate without exogenous GA4+7. Times to germination were inversely proportional to the differences between the external osmoticum, ABA, or GA4+7 concentrations and the corresponding threshold levels that would either prevent ([psi]b, log[ABAb]) or promote (log[GAb]) germination. The sensitivity of germination to ABA, GA4+7, and [psi] varied widely among individual seeds in the population, resulting in a distribution of germination times. The rapid germination rate of sitw seeds was attributable to their low mean [psi]b (-1.17 MPa). Postharvest dormancy in MM seeds was due to a high mean [psi]b (-0.35 MPa) and a distribution of [psi]b among seeds such that some seeds were unable to germinate even on water. GA4+7 (100 [mu]M) stimulated germination of MM and gib-1 seeds by lowering the mean [psi]b to -0.75 MPa, whereas ABA inhibited germination of MM and sitw seeds by increasing the mean [psi]b. The changes in [psi]b were not due to changes in embryo osmotic potential. Rather, hormonal effects on endosperm weakening opposite the radicle tip apparently determine the threshold [psi] for germination. The analysis demonstrates that ABA- and GA-dependent changes in seed dormancy and germination rates, whether due to endogenous or exogenous growth regulators, are based primarily upon corresponding shifts in the [psi] thresholds for radicle emergence. The [psi] thresholds, in turn, determine both the rate and final extent of germination within the seed population.  相似文献   

15.
16.
The variety of interpretations of the origin and role of the tissues surrounding the emerging radicle of conifer seeds prompted us to study changes during germination. The structures contributing to the opening of the seed coat and protrusion of the radicle in pine and spruce seeds were examined using light microscopy and field emission scanning electron microscopy. The opening of the seed coat was mainly mechanical and primarily affected by the enlargement of the imbibed endotesta cells lining the micropylar canal. The hypertrophied nucellar apex, swelling remnants and mucous substances in the micropyle further enhanced the testa splitting which was reinforced by the straightening of the folded nucellar cap. The expansion of the imbibed megagametophyte and the embryo were conducive to the seed coat opening only at a later stage. This was followed almost immediately by the appearance of the root cap showing an early geotropic response typical for taproots and assuring an immediate anchoring of the emerged embryo to the ground. The translucent tissue composed of elongating cell rows preceded and surrounded the protruding radicle and derived mainly from two origins: the micropylar end of the megagametophyte and the root cap. Observations about the origin of the sheath clarify the reasons for previous interpretations about the putative role of the massive embryo root cap in testa splitting and germination. The protective and adhesive function of the sheath is concluded to be essential to the conifer embryos, which present the epigeal type of germination. Received: 7 July 1999 / Accepted: 11 August 1999  相似文献   

17.
The initiation of radicle growth during seed germination may be driven by solute accumulation and increased turgor pressure, by cell wall relaxation, or by weakening of tissues surrounding the embryo. To investigate these possibilities, imbibition kinetics, water contents, and water (Ψ) and solute (ψs) potentials of intact muskmelon (Cucumis melo L.) seeds, decoated seeds (testa removed, but a thin perisperm/endosperm envelope remains around the embryo), and isolated cotyledons and embryonic axes were measured. Cotyledons and embryonic axes excised and imbibed as isolated tissues attained water contents 25 and 50% greater, respectively, than the same tissues hydrated within intact seeds. The effect of the testa and perisperm on embryo water content was due to mechanical restriction of embryo swelling and not to impermeability to water. The Ψ and ψs of embryo tissues were measured by psychrometry after excision from imbibed intact seeds. For intact or decoated seeds and excised cotyledons, Ψ values were >−0.2 MPa just prior to radicle emergence. The Ψ of excised embryonic axes, however, averaged only −0.6 MPa over the same period. The embryonic axis apparently is mechanically constrained within the testa/perisperm, increasing its total pressure potential until axis Ψ is in equilibrium with cotyledon Ψ, but reducing its water content and resulting in a low Ψ when the constraint is removed. There was no evidence of decreasing ψs or increasing turgor pressure (Ψ-ψs) prior to radicle growth for either intact seeds or excised tissues. Given the low relative water content of the axes within intact seeds, cell wall relaxation would be ineffective in creating a Ψ gradient for water uptake. Rather, axis growth may be initiated by weakening of the perisperm, thus releasing the external pressure and creating a Ψ gradient for water uptake into the axis. The perisperm envelope contains a cap of small, thin-walled endosperm cells adjacent to the radicle tip. We hypothesize that weakening or separation of cells in this region could initiate radicle expansion.  相似文献   

18.
Following 16, 40 and 64 h exposure to 0.33 M NaCl given after 8 h water imbibition, lentil seeds showed a gradual decrease of germination upon their transfer to water. These salt related changes were accompanied by modifications in the protein patterns of embryo axes as revealed by two-dimensional electrophoresis separation and by the computer image analysis of protein spots. In comparison with 8 h water imbibed seeds, prominent proteins comprised between the 5.1 – 7.6 pH isoelectric point in the first dimension and 75 – 50 kDa molecular mass in the second dimension showed a significant increase in their abundance as salt exposure increased. On transfer to water to complete germination, the content of many of these proteins decreased at 24h in 2 – 3 cm length embryo axes in comparison with the corresponding embryo axes of seeds continuously imbibed in water for 24 h. Some groups of proteins ranging between 15.5 – 17.3 kDa, already present after 8 h water imbibition, were not detectable after 24 h but were expressed in seeds exposed to NaCl and transferred to water for 24 h. Up- and down-regulated proteins in lentil embryo axes, imbibed under non-lethal salt stress conditions, have been tentatively identified by comparison with the protein map of germinating seeds of the model plant Arabidopsis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Much work has been done on the agricultural potential of Jojoba, but little on the anatomy of the mature plant or seed. Our investigations concern the structure of the embryo of mature seeds and their external morphology during early germination. The embryo is straight and investing. A hypocotyl sheath surrounds the radicle like a hollow cone. The apical meristem is a low mound of cells in a shallow depression between the broad short petioles of the cotyledons. During germination these petioles lengthen and force the embryo away from the coytledons and seed coat. The hypocotyl elongates and the primary root rapidly extends and is well developed before the apical meristem becomes active. A mature imbibed seed contains approximately fifty percent liquid wax. After germination there is a linear decrease in the amount of wax to approximately ten percent at thirty days.  相似文献   

20.
A water relations analysis of seed germination rates   总被引:11,自引:7,他引:4       下载免费PDF全文
Seed germination culminates in the initiation of embryo growth and the resumption of water uptake after imbibition. Previous applications of cell growth models to describe seed germination have focused on the inhibition of radicle growth rates at reduced water potential (Ψ). An alternative approach is presented, based upon the timing of radicle emergence, to characterize the relationship of seed germination rates to Ψ. Using only three parameters, a `hydrotime constant' and the mean and standard deviation in minimum or base Ψ among seeds in the population, germination time courses can be predicted at any Ψ, or normalized to a common time scale equal to that of seeds germinating in water. The rate of germination of lettuce (Lactuca sativa L. cv Empire) seeds, either intact or with the endosperm envelope cut, increased linearly with embryo turgor. The endosperm presented little physical resistance to radicle growth at the time of radicle emergence, but its presence markedly delayed germination. The length of the lag period after imbibition before radicle emergence is related to the time required for weakening of the endosperm, and not to the generation of additional turgor in the embryo. The rate of endosperm weakening is sensitive to Ψ or turgor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号