首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two‐state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non‐cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier‐less “downhill” folding, as well as for continuous “uphill” unfolding transitions, indicate that gradual non‐cooperative processes may be ubiquitous features on the free energy landscape of protein folding.  相似文献   

2.
The fast folding of small proteins is likely to be the product of evolutionary pressures that balance the search for native-like contacts in the transition state with the minimum number of stable non-native interactions that could lead to partially folded states prone to aggregation and amyloid formation. We have investigated the effects of non-native interactions on the folding landscape of yeast ubiquitin by introducing aromatic substitutions into the beta-turn region of the N-terminal beta-hairpin, using both the native G-bulged type I turn sequence (TXTGK) as well as an engineered 2:2 XNGK type I' turn sequence. The N-terminal beta-hairpin is a recognized folding nucleation site in ubiquitin. The folding kinetics for wt-Ub (TLTGK) and the type I' turn mutant (TNGK) reveal only a weakly populated intermediate, however, substitution with X = Phe or Trp in either context results in a high propensity to form a stable compact intermediate where the initial U-->I collapse is visible as a distinct kinetic phase. The introduction of Trp into either of the two host turn sequences results in either complex multiphase kinetics with the possibility of parallel folding pathways, or formation of a highly compact I-state stabilized by non-native interactions that must unfold before refolding. Sequence substitutions with aromatic residues within a localized beta-turn capable of forming non-native hydrophobic contacts in both the native state and partially folded states has the undesirable consequence that folding is frustrated by the formation of stable compact intermediates that evolutionary pressures at the sequence level may have largely eliminated.  相似文献   

3.
Small globular proteins and peptides commonly exhibit two-state folding kinetics in which the rate limiting step of folding is the surmounting of a single free energy barrier at the transition state (TS) separating the folded and the unfolded states. An intriguing question is whether the polypeptide chain reaches, and leaves, the TS by completely random fluctuations, or whether there is a directed, stepwise process. Here, the folding TS of a 15-residue β-hairpin peptide, Peptide 1, is characterized using independent 2.5 μs-long unbiased atomistic molecular dynamics (MD) simulations (a total of 15 μs). The trajectories were started from fully unfolded structures. Multiple (spontaneous) folding events to the NMR-derived conformation are observed, allowing both structural and dynamical characterization of the folding TS. A common loop-like topology is observed in all the TS structures with native end-to-end and turn contacts, while the central segments of the strands are not in contact. Non-native sidechain contacts are present in the TS between the only tryptophan (W11) and the turn region (P7-G9). Prior to the TS the turn is found to be already locked by the W11 sidechain, while the ends are apart. Once the ends have also come into contact, the TS is reached. Finally, along the reactive folding paths the cooperative loss of the W11 non-native contacts and the formation of the central inter-strand native contacts lead to the peptide rapidly proceeding from the TS to the native state. The present results indicate a directed stepwise process to folding the peptide.  相似文献   

4.
C Beck  X Siemens    D L Weaver 《Biophysical journal》2001,81(6):3105-3115
Proteins with complex folding kinetics will be susceptible to misfolding at some stage in the folding process. We simulate this problem by using the diffusion-collision model to study non-native kinetic intermediate misfolding in a four-helix bundle protein. We find a limit on the size of the pairwise hydrophobic area loss in non-native intermediates, such that burying above this limit creates long-lasting non-native kinetic intermediates that would disrupt folding and prevent formation of the native state. Our study of misfolding suggests a method for limiting the production of misfolded kinetic intermediates for helical proteins and could, perhaps, lead to more efficient production of proteins in bulk.  相似文献   

5.
A variety of coarse-grained (CG) models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains. CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase resemble those of other reduced representations; non-native structures are observed with energies similar to those of the native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and transitions between well-defined structural states.  相似文献   

6.
Although intermediates have long been recognised as fascinating species that form during the folding of large proteins, the role that intermediates play in the folding of small, single-domain proteins has been widely debated. Recent discoveries using new, sensitive methods of detection and studies combining simulation and experiment have now converged on a common vision for folding, involving intermediates as ubiquitous stepping stones en route to the native state. The results suggest that the folding energy landscapes of even the smallest proteins possess significant ruggedness in which intermediates stabilized by both native and non-native interactions are common features.  相似文献   

7.
The folding of larger proteins generally differs from the folding of similarly large nucleic acids in the number and stability of the intermediates involved. To date, however, no similar comparison has been made between the folding of smaller proteins, which typically fold without well-populated intermediates, and the folding of small, simple nucleic acids. In response, in this study, we compare the folding of a 38-base DNA aptamer with the folding of a set of equivalently simple proteins. We find that, as is true for the large majority of simple, single domain proteins, the aptamer folds through a concerted, millisecond-scale process lacking well-populated intermediates. Perhaps surprisingly, the observed folding rate falls within error of a previously described relationship between the folding kinetics of single-domain proteins and their native state topology. Likewise, similarly to single-domain proteins, the aptamer exhibits a relatively low urea-derived Tanford β, suggesting that its folding transition state is modestly ordered. In contrast to this, however, and in contrast to the behavior of proteins, ϕ-value analysis suggests that the aptamer''s folding transition state is highly ordered, a discrepancy that presumably reflects the markedly more important role that secondary structure formation plays in the folding of nucleic acids. This difference notwithstanding, the similarities that we observe between the two-state folding of single-domain proteins and the two-state folding of this similarly simple DNA presumably reflect properties that are universal in the folding of all sufficiently cooperative heteropolymers irrespective of their chemical details.  相似文献   

8.
Ramos CH  Weisbuch S  Jamin M 《Biochemistry》2007,46(14):4379-4389
The sperm whale apomyoglobin pH 4 folding intermediate exists in two forms, Ia and Ib, that mimic transient kinetic intermediates in the folding of the native protein at pH 6. To characterize the nature of the kinetic barrier that controls the formation of the earliest intermediate Ia, we have investigated the effects of small viscogenic cosolvents on its folding and unfolding kinetics. The kinetics are measurable by stopped-flow fluorescence and follow a cooperative two-state model in the absence and presence of cosolvents. Small cosolvents stabilize Ia, but, by applying the isostability test to separate the viscogenic effect of the cosolvent from its stabilizing effect, we found that, in both folding and unfolding conditions, the apparent rate constant decreases when solvent viscosity increases. The unitary inverse dependence of the apparent rate constant on solvent viscosity indicates a diffusion-controlled reaction. This result is consistent with the hypothesis that folding of the apomyoglobin pH 4 intermediate obeys a diffusion-collision model. Additionally, the temperature dependence of the reaction rate at constant viscosity indicates that the formation of Ia is also controlled by an energy barrier. Linear free energy relationships show that the transition state of the U <==> Ia reaction is compact and buries 45% of the surface area that is buried in native apomyoglobin. We conclude that the transition state of the U <==> Ia reaction resembles that for the formation of native proteins; namely, it is dry and its compactness is closer to that of the folded (Ia) form than of the unfolded form.  相似文献   

9.
Chen C  Xiao Y 《Physical biology》2006,3(3):161-171
Computer simulations of beta-hairpin folding are relatively difficult, especially those based on the explicit water model. This greatly limits the complete analysis and understanding of their folding mechanisms. In this paper, we use the generalized Born/solvent accessible implicit solvent model to simulate the folding processes of a nine-residue beta-hairpin. We find that the beta-hairpin can fold into its native structure very easily, even using the traditional molecular dynamics method. This allows us to extract 21 complete folding events and investigate the folding process sufficiently. Our results show that there exist four most stable states on the free energy landscape of the short peptide, one native state and three intermediates. We find that two of the non-native stable states have almost the same potential energy as the native state but with lower entropy. This suggests that the native state can be stabilized entropically. Furthermore, we find that the folding processes of this peptide have common features: to fold into its native state, the peptide undergoes a continuous collapsing-extending-recollapsing process to adjust the positions of the side chains in order to form the native middle inter-strand hydrogen bonds. The formations of these bonds are the key step of the folding process. Once these bonds are formed, the peptide can fold into the native state quickly.  相似文献   

10.
Sakurai K  Fujioka S  Konuma T  Yagi M  Goto Y 《Biochemistry》2011,50(29):6498-6507
Folding experiments have suggested that some proteins have kinetic intermediates with a non-native structure. A simple G ?o model does not explain such non-native intermediates. Therefore, the folding energy landscape of proteins with non-native intermediates should have characteristic properties. To identify such properties, we investigated the folding of bovine β-lactoglobulin (βLG). This protein has an intermediate with a non-native α-helical structure, although its native form is predominantly composed of β-structure. In this study, we prepared mutants whose α-helical and β-sheet propensities are modified and observed their folding using a stopped-flow circular dichroism apparatus. One interesting finding was that E44L, whose β-sheet propensity was increased, showed a folding intermediate with an amount of β-structure similar to that of the wild type, though its folding took longer. Thus, the intermediate seems to be a trapped intermediate. The high α-helical propensity of the wild-type sequence likely causes the folding pathway to circumvent such time-consuming intermediates. We propose that the role of the non-native intermediate is to control the pathway at the beginning of the folding reaction.  相似文献   

11.
Behrouzi R  Roh JH  Kilburn D  Briber RM  Woodson SA 《Cell》2012,149(2):348-357
Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have?a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming?a unique, stable fold.  相似文献   

12.
The βα-repeat class of proteins, represented by the (βα)8 barrel and the α/β/α sandwich, are among the most common structural platforms in biology. Previous studies on the folding mechanisms of these motifs have revealed or suggested that the initial event involves the submillisecond formation of a kinetically trapped species that must at least partially unfold before productive folding to the respective native conformation can occur. To test the generality of these observations, CheY, a bacterial response regulator, was subjected to an extensive analysis of its folding reactions. Although earlier studies had proposed the formation of an off-pathway intermediate, the data available were not sufficient to rule out an alternative on-pathway mechanism. A global analysis of single- and double-jump kinetic data, combined with equilibrium unfolding data, was used to show that CheY folds and unfolds through two parallel channels defined by the state of isomerization of a prolyl peptide bond in the active site. Each channel involves a stable, highly structured folding intermediate whose kinetic properties are better described as the properties of an off-pathway species. Both intermediates subsequently flow through the unfolded state ensemble and adopt the native cis-prolyl isomer prior to forming the native state. Initial collapse to off-pathway folding intermediates is a common feature of the folding mechanisms of βα-repeat proteins, perhaps reflecting the favored partitioning to locally determined substructures that cannot directly access the native conformation. Productive folding requires the dissipation of these prematurely folded substructures as a prelude to forming the larger-scale transition state that leads to the native conformation. Results from Gō-modeling studies in the accompanying paper elaborate on the topological frustration in the folding free-energy landscape of CheY.  相似文献   

13.
Protein disulfide isomerase (PDI) supports proinsulin folding as chaperone and isomerase. Here, we focus on how the two PDI functions influence individual steps in the complex folding process of proinsulin. We generated a PDI mutant (PDI-aba'c) where the b' domain was partially deleted, thus abolishing peptide binding but maintaining a PDI-like redox potential. PDI-aba'c catalyzes the folding of human proinsulin by increasing the rate of formation and the final yield of native proinsulin. Importantly, PDI-aba'c isomerizes non-native disulfide bonds in completely oxidized folding intermediates, thereby accelerating the formation of native disulfide bonds. We conclude that peptide binding to PDI is not essential for disulfide isomerization in fully oxidized proinsulin folding intermediates.  相似文献   

14.
The native folding of certain zymogen-derived enzymes is completely dependent upon a prosegment domain to stabilize the folding transition state, thereby catalyzing the folding reaction. Generally little is known about how the prosegment accomplishes this task. It was previously shown that the prosegment catalyzes a late-stage folding transition between a stable misfolded state and the native state of pepsin. In this study, the contributions of specific prosegment residues to catalyzing pepsin folding were investigated by introducing individual Ala substitutions and measuring the effects on the bimolecular folding reaction between the prosegment peptide and pepsin. The effects of mutations on the free energies of the individual misfolded and native ground states and the transition state were compared using measurements of prosegment-pepsin binding and folding kinetics. Five out of the seven prosegment residues examined yielded relatively large kinetic effects and minimal ground state perturbations upon mutation, findings which indicate that these residues form strengthened and/or non-native contacts in the transition state. These five residues are semi- to strictly conserved, while only a non-conserved residue had no kinetic effect. One conserved residue was shown to form native structure in the transition state. These results indicated that the prosegment, which is only 44 residues long, has evolved a high density of contacts that preferentially stabilize the folding transition state over the ground states. It is postulated that the prosegment forms extensive non-native contacts during the process of catalyzing correct inter- and intra-domain contacts during the final stages of folding. These results have implications for understanding the folding of multi-domain proteins and for the evolution of prosegment-catalyzed folding.  相似文献   

15.
Small globular proteins have many contacts between residues that are distant in primary sequence. These contacts create a complex network between sequence-distant segments of secondary structure, which may be expected to promote the cooperative folding of globular proteins. Although repeat proteins, which are composed of tandem modular units, lack sequence-distant contacts, several of considerable length have been shown to undergo cooperative two-state folding. To explore the limits of cooperativity in repeat proteins, we have studied the unfolding of YopM, a leucine-rich repeat (LRR) protein of over 400 residues. Despite its large size and modular architecture (15 repeats), YopM equilibrium unfolding is highly cooperative, and shows a very strong dependence on the concentration of urea. In contrast, kinetic studies of YopM folding indicate a mechanism that includes one or more transient intermediates. The urea dependence of the folding and unfolding rates suggests a relatively small transition state ensemble. As with the urea dependence, we have found an extreme dependence of the free energy of unfolding on the concentration of salt. This salt dependence likely results from general screening of a large number of unfavorable columbic interactions in the folded state, rather than from specific cation binding.  相似文献   

16.
Disulfide bonds and protein folding   总被引:22,自引:0,他引:22  
The applications of disulfide-bond chemistry to studies of protein folding, structure, and stability are reviewed and illustrated with bovine pancreatic ribonuclease A (RNase A). After surveying the general properties and advantages of disulfide-bond studies, we illustrate the mechanism of reductive unfolding with RNase A, and discuss its application to probing structural fluctuations in folded proteins. The oxidative folding of RNase A is then described, focusing on the role of structure formation in the regeneration of the native disulfide bonds. The development of structure and conformational order in the disulfide intermediates during oxidative folding is characterized. Partially folded disulfide species are not observed, indicating that disulfide-coupled folding is highly cooperative. Contrary to the predictions of "rugged funnel" models of protein folding, misfolded disulfide species are also not observed despite the potentially stabilizing effect of many nonnative disulfide bonds. The mechanism of regenerating the native disulfide bonds suggests an analogous scenario for conformational folding. Finally, engineered covalent cross-links may be used to assay for the association of protein segments in the folding transition state, as illustrated with RNase A.  相似文献   

17.
Partitioning of polypeptides between protein folding and amyloid formation is of outstanding pathophysiological importance. Using yeast phosphoglycerate kinase as model, here we identify the features of the energy landscape that decide the fate of the protein: folding or amyloidogenesis. Structure formation was initiated from the acid-unfolded state, and monitored by fluorescence from 10 ms to 20 days. Solvent conditions were gradually shifted between folding and amyloidogenesis, and the properties of the energy landscape governing structure formation were reconstructed. A gradual transition of the energy landscape between folding and amyloid formation was observed. In the early steps of both folding and misfolding, the protein searches through a hierarchically structured energy landscape to form a molten globule in a few seconds. Depending on the conditions, this intermediate either folds to the native state in a few minutes, or forms amyloid fibers in several days. As conditions are changed from folding to misfolding, the barrier separating the molten globule and native states increases, although the barrier to the amyloid does not change. In the meantime, the native state also becomes more unstable and the amyloid more stable. We conclude that the lower region of the energy landscape determines the final protein structure.  相似文献   

18.
Recent experimental results suggest that the native fold, or topology, plays a primary role in determining the structure of the transition state ensemble, at least for small, fast-folding proteins. To investigate the extent of the topological control of the folding process, we studied the folding of simplified models of five small globular proteins constructed using a Go-like potential to retain the information about the native structures but drastically reduce the energetic frustration and energetic heterogeneity among residue-residue native interactions. By comparing the structure of the transition state ensemble (experimentally determined by Phi-values) and of the intermediates with those obtained using our models, we show that these energetically unfrustrated models can reproduce the global experimentally known features of the transition state ensembles and "en-route" intermediates, at least for the analyzed proteins. This result clearly indicates that, as long as the protein sequence is sufficiently minimally frustrated, topology plays a central role in determining the folding mechanism.  相似文献   

19.
We report a numerical study of the (un)folding routes of the truncated FBP28 WW domain at ambient conditions using a combination of four advanced rare event molecular simulation techniques. We explore the free energy landscape of the native state, the unfolded state, and possible intermediates, with replica exchange molecular dynamics. Subsequent application of bias-exchange metadynamics yields three tentative unfolding pathways at room temperature. Using these paths to initiate a transition path sampling simulation reveals the existence of two major folding routes, differing in the formation order of the two main hairpins, and in hydrophobic side-chain interactions. Having established that the hairpin strand separation distances can act as reasonable reaction coordinates, we employ metadynamics to compute the unfolding barriers and find that the barrier with the lowest free energy corresponds with the most likely pathway found by transition path sampling. The unfolding barrier at 300 K is ∼17 kBT ≈ 42 kJ/mol, in agreement with the experimental unfolding rate constant. This work shows that combining several powerful simulation techniques provides a more complete understanding of the kinetic mechanism of protein folding.  相似文献   

20.
The chaperonin GroEL binds folding intermediates of four-disulfidehen lysozyme transiently within its central cavity. Using stopped flow fluorescence we show that GroEL binds early intermediates in folding and accelerates the slow kinetic phase that reflects the reversal of non-native interactions involving tryptophan residues and the formation of the native state. Pulsed hydrogen exchange monitored by electrospray ionization mass spectrometry demonstrates that GroEL does not alter the folding mechanism, nor are protected species unfolded by the chaperonin. The data suggest a mechanism for GroEL-assisted folding in which the reorganization of non-native tertiary interactions is facilitated but domain folding is unperturbed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号