首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Health risks associated with the inhalation of biological materials have been a topic of great concern; however, there are no rapid and automatable methods available to evaluate the potential health impact of inhaled materials. Here we describe a novel approach to evaluate the potential toxic effects of materials evaluated through cell-based spectroscopic analysis. Anchorage-dependent cells are grown on the surface of optical fibers transparent to infrared light. The probe system is composed of a single chalcogenide fiber (composed of Te, As, and Se) acting as both the sensor and transmission line for infrared optical signals. The cells are exposed to potential toxins and alterations of cellular composition are monitored through their impact on cellular spectral features. The signal is collected via evanescent wave absorption along the tapered sensing zone of the fiber through spectral changes between 3,000 and 600 cm(-1) (3,333-16,666 nm). Cell physiology, composition, and function are non-invasively tracked through monitoring infrared light absorption by the cell layer. This approach is demonstrated with an immortalized lung cell culture (A549, human lung carcinoma epithelia) in response to a variety of inhalation hazards including gliotoxin (a fungal metabolite), etoposide (a genotoxin), and methyl methansesulfonate (MMS, an alkylating agent). Gliotoxin impacts cell metabolism, etoposide impacts nucleic acids and the cell cycle, and MMS impacts nucleic acids and induces an immune response. This spectroscopic method is sensitive, non-invasive, and provides information on a wide range of cellular damage and response mechanisms and could prove useful for cell response screening of pharmaceuticals or for toxicological evaluations.  相似文献   

2.

During the past decades, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Although most of the works concerned bacteria, AFM also permitted major breakthroughs in the understanding of physiology and pathogenic mechanisms of some fungal species associated with cystic fibrosis. Complementary to electron microscopies, AFM offers unprecedented insights to visualize the cell wall architecture and components through three-dimensional imaging with nanometer resolution and to follow their dynamic changes during cell growth and division or following the exposure to drugs and chemicals. Besides imaging, force spectroscopy with piconewton sensitivity provides a direct means to decipher the forces governing cell–cell and cell–substrate interactions, but also to quantify specific and non-specific interactions between cell surface components at the single-molecule level. This nanotool explores new ways for a better understanding of the structures and functions of the cell surface components and therefore may be useful to elucidate the role of these components in the host–pathogen interactions as well as in the complex interplay between bacteria and fungi in the lung microbiome.

  相似文献   

3.
Spectrofluorimetric measurements were conducted to quantify, in real-time, membrane permeability changes resulting from the treatment of Sf9 insect cells (Spodoptera frugiperda, Lepidoptera) with different Bacillus thuringiensis Cry insecticidal proteins. Coumarin-derived CD222 and Merocyanin-540 probes were respectively used to monitor extracellular K+ and membrane potential variations upon Sf9 cells incubation with Cry toxins. Our results establish that Cry1C induces, after a delay, the depolarization of the cell membrane and the full depletion of intracellular K+. These changes were not observed upon Sf9 cells treated with Cry1A family toxins. Both the rate of the K+ efflux and the delay before its onset were dependent on toxin concentration. Both parameters were sensitive to temperature but only the delay was affected by pH. Cry1C-induced K+ efflux was inhibited by lanthanum ions in a dose-dependent manner. This study provides the first kinetic and quantitative characterization of the ion fluxes through the channels formed by a Cry toxin in the plasma membrane of a susceptible insect cell line. Received: 4 October 1999/Revised: 21 December 1999  相似文献   

4.
How angiogenesis is regulated by local environmental cues is still not fully understood despite its importance to many regenerative events. Although mechanics is known to influence angiogenesis, the specific cellular mechanisms influenced by mechanical loading are poorly understood. This study adopts a lattice-based modelling approach to simulate endothelial cell (EC) migration and proliferation in order to explore how mechanical stretch regulates their behaviour. The approach enables the explicit modelling of ECs and, in particular, their migration/proliferation (specifically, rate and directionality) in response to such mechanical cues. The model was first used to simulate previously reported experiments of EC migration and proliferation in an unloaded environment. Next, three potential effects (increased cell migration, increased cell proliferation and biased cellular migration) of mechanical stretch on EC behaviour were simulated using the model and the observed changes in cell population characteristics were compared to experimental findings. Combinations of these three potential drivers were also investigated. The model demonstrates that only by incorporating all three changes in cellular physiology (increased EC migration, increased EC proliferation and biased EC migration in the direction perpendicular to the applied strain) in response to dynamic loading, it is possible to successfully predict experimental findings. This provides support for the underlying model hypotheses for how mechanics regulates EC behaviour.  相似文献   

5.
The occurrence of cyanobacterial blooms has increased significantly in many regions of the world in the last century due to water eutrophication. These blooms are hazardous to humans, animals, and plants due to the production of cyanotoxins, which can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). There is evidence that certain cyanobacterial toxins are genotoxic and carcinogenic; however, the mechanisms of their potential carcinogenicity are not well understood. The most frequently occurring and widespread cyanotoxins in brackish and freshwater blooms are the cyclic heptapeptides, i.e., microcystins (MCs), and the pentapeptides, i.e., nodularins (NODs). The main mechanism associated with potential carcinogenic activity of MCs and NOD is the inhibition of protein phosphatases, which leads to the hyperphosphorylation of cellular proteins, which is considered to be associated with their tumor-promoting activity. Apart from this, MCs and NOD induce increased formation of reactive oxygen species and, consequently, oxidative DNA damage. There is also evidence that MCs and NOD induce micronuclei, and NOD was shown to have aneugenic activity. Both cyanotoxins interfere with DNA damage repair pathways, which, along with DNA damage, is an important factor involved in the carcinogenicity of these agents. Furthermore, these toxins increase the expression of TNF-α and early-response genes, including proto-oncogenes, genes involved in the response to DNA damage, cell cycle arrest, and apoptosis. Rodent studies indicate that MCs and NOD are tumor promotors, whereas NOD is thought to have also tumor-initiating activity. Another cyanobacterial toxin, cylindrospermopsin (CYN), which has been neglected for a long time, is lately being increasingly found in the freshwater environment. The principal mechanism of its toxicity is the irreversible inhibition of protein synthesis. It is pro-genotoxic, and metabolic activation by cytochrome P-450 enzymes is needed for its genotoxic activity. In metabolically competent cells, it induces DNA strand breaks and exerts clastogenic and aneugenic activity. In addition, CYN increased the expression of p53 regulated genes involved in cell cycle arrest, DNA damage repair, and apoptosis. It also has cell transforming potential, and limited preliminary rodent studies indicate that CYN could have tumor-initiating activity. In 2010, the International Agency for Research on Cancer (IARC) classified MCLR as possible human carcinogen (Group 2B). Although there is not enough available information for the classification of other cyanobacterial toxins, the existing data from in vitro and in vivo studies indicate that NOD and especially CYN may be even more hazardous than MCLR to human and animal health. In addition in the environment, cyanobacterial toxins occur in complex mixtures as well as together with other anthropogenic contaminants, and numerous studies showed that the toxic/genotoxic potential of the extracts from cyanobacterial scums is higher than that of purified toxins. This means that the mixtures of toxins to which humans are exposed may pose higher health risks than estimated from the toxicological data of a single toxin. Future research efforts should focus on the elucidation of the carcinogenic potential of NOD, CYN, and the mixture of cyanobacterial extracts, as well as on the identification of possible novel toxins.  相似文献   

6.
Profiling lipid changes in plant response to low temperatures   总被引:1,自引:0,他引:1  
Changes in membrane lipid composition play multiple roles in plant adaptation and survival in the face of chilling and freezing damage. An electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based approach has been used to quantitatively profile membrane lipid molecular species in plant response to low temperatures. This method involves the direct infusion of unfractionated lipid extracts into a mass spectrometer in the precursor and neutral loss scanning modes to identify and quantify lipid species. The profiling analysis reveals significant and distinct lipid changes during cold acclimation and freezing. Comparative profiling of wildtype and mutants provides information about the metabolic and cellular functions of specific phospholipase D genes and enzymes.  相似文献   

7.
8.
The occurrence of cyanobacterial blooms has increased significantly in many regions of the world in the last century due to water eutrophication. These blooms are hazardous to humans, animals, and plants due to the production of cyanotoxins, which can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). There is evidence that certain cyanobacterial toxins are genotoxic and carcinogenic; however, the mechanisms of their potential carcinogenicity are not well understood. The most frequently occurring and widespread cyanotoxins in brackish and freshwater blooms are the cyclic heptapeptides, i.e., microcystins (MCs), and the pentapeptides, i.e., nodularins (NODs). The main mechanism associated with potential carcinogenic activity of MCs and NOD is the inhibition of protein phosphatases, which leads to the hyperphosphorylation of cellular proteins, which is considered to be associated with their tumor-promoting activity. Apart from this, MCs and NOD induce increased formation of reactive oxygen species and, consequently, oxidative DNA damage. There is also evidence that MCs and NOD induce micronuclei, and NOD was shown to have aneugenic activity. Both cyanotoxins interfere with DNA damage repair pathways, which, along with DNA damage, is an important factor involved in the carcinogenicity of these agents. Furthermore, these toxins increase the expression of TNF-α and early-response genes, including proto-oncogenes, genes involved in the response to DNA damage, cell cycle arrest, and apoptosis. Rodent studies indicate that MCs and NOD are tumor promotors, whereas NOD is thought to have also tumor-initiating activity. Another cyanobacterial toxin, cylindrospermopsin (CYN), which has been neglected for a long time, is lately being increasingly found in the freshwater environment. The principal mechanism of its toxicity is the irreversible inhibition of protein synthesis. It is pro-genotoxic, and metabolic activation by cytochrome P-450 enzymes is needed for its genotoxic activity. In metabolically competent cells, it induces DNA strand breaks and exerts clastogenic and aneugenic activity. In addition, CYN increased the expression of p53 regulated genes involved in cell cycle arrest, DNA damage repair, and apoptosis. It also has cell transforming potential, and limited preliminary rodent studies indicate that CYN could have tumor-initiating activity. In 2010, the International Agency for Research on Cancer (IARC) classified MCLR as possible human carcinogen (Group 2B). Although there is not enough available information for the classification of other cyanobacterial toxins, the existing data from in vitro and in vivo studies indicate that NOD and especially CYN may be even more hazardous than MCLR to human and animal health. In addition in the environment, cyanobacterial toxins occur in complex mixtures as well as together with other anthropogenic contaminants, and numerous studies showed that the toxic/genotoxic potential of the extracts from cyanobacterial scums is higher than that of purified toxins. This means that the mixtures of toxins to which humans are exposed may pose higher health risks than estimated from the toxicological data of a single toxin. Future research efforts should focus on the elucidation of the carcinogenic potential of NOD, CYN, and the mixture of cyanobacterial extracts, as well as on the identification of possible novel toxins.  相似文献   

9.
Cell damage has been observed in suspension cell cultures with air sparging, especially in the absence of any protective additives. This damage is associated with cells adhering to bubbles, and it has been shown that if this adhesion is prevented, cell damage is prevented. This article presents a thermodynamic approach for predicting cell adhesion at the air-medium interface. With this relationship it can be shown that cell-gas adhesion can be prevented by lowering the surface tension of the liquid growth medium through the addition of surface-active protective additives. The thermodynamic relationship describes the change in free energy as a function of the interfacial tensions between the (i) gas and liquid phases, (ii) gas and cell phases, and (iii) liquid and cell phases. Experimental data, along with theoretical and empirical equations, are used to quantify the changes in free energy that predict the process of cell-gas adhesion. The thermodynamic model is nonspecific in nature and, consequently, results are equally valid for all types of cells. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
11.
Dielectric spectroscopy (DS) of living biological cells is based on the analysis of the complex dielectric permittivity of cells suspended in a physiological medium. It provides knowledge on the polarization–relaxation response of cells to external electric field as function of the excitation frequency. This response is strongly affected by both structural and molecular properties of cells and therefore, can reveal rare insights on cell physiology and behaviour. This study demonstrates the mapping potential of DS after cytoplasmatic and membranal markers for cell-based screening analysis. The effect of membrane permittivity and cytoplasm conductivity was examined using tagged MBA and MDCK cell lines respectively. Comparing the permittivity spectra of tagged and native cell lines reveals clear differences between the analyzed suspensions. In addition, differences on the matching dielectric properties of cells were obtained. Those findings support the high distinction resolution and sensitivity of DS after fine molecular and cellular changes, and hence, highlight the high potential of DS as non invasive screening tool in cell biology research.  相似文献   

12.
本文用生物控制论方法研究声波—耳蜗微音电位系统,建立了该系统的数学模型,提出了一种以此为基础的分离听神经动作电位的新方法.在耳蜗电位中将该模型预测出的微音电位成份减掉,便得到单独的听神经动作电位.与国内外通行使用的声音交替倒相迭加法相比,本文提出的方法有不改变听神经发放时间,可用于较复杂声音引起的耳蜗电位分析等优点,对听觉生理基础研究和耳科临床实践都有实用意义,对人工耳蜗声电特性的设计也提供了依据.  相似文献   

13.
Scorpion toxins have been the subject of many studies exploring their pharmacological potential. The high affinity and the overall selectivity to various types of ionic channels endowed scorpion toxins with a potential therapeutic effect against many channelopathies. These are diseases in which ionic channels play an important role in their development. Cancer is considered as a channelopathy since overexpression of some ionic channels was highlighted in many tumor cells and was linked to the pathology progression.Interestingly, an increasing number of studies have shown that scorpion venoms and toxins can decrease cancer growth in vitro and in vivo. Furthermore through their ability to penetrate the cell plasma membrane, certain scorpion toxins are able to enhance the efficiency of some clinical chemotherapies. These observations back-up the applicability of scorpion toxins as potential cancer therapeutics.In this review, we focused on the anti-cancer activity of scorpion toxins and their effect on the multiple hallmarks of cancer. We also shed light on effectors and receptors involved in signaling pathways in response to scorpion toxins effect. Until now, the anticancer mechanisms described for scorpion peptides consist on targeting ion channels to (i) inhibit cell proliferation and metastasis; and (ii) induce cell cycle arrest and/or apoptosis through membrane depolarization leading to hemostasis deregulation and caspase activation. Putative targets such as metalloproteinases, integrins and/or growth factor receptors, beside ion channels, have been unveiled to be affected by scorpion peptides.  相似文献   

14.
Assessing immune responses and cell death in Nicotiana benthamiana leaf agro-infiltration assays is a powerful and widely used experimental approach in molecular plant pathology. Here, we describe a reliable high-throughput protocol to quantify strong, macroscopically visible cell death responses in N. benthamiana agro-infiltration assays. The method relies on measuring the reduction of leaf autofluorescence in the red spectrum upon cell death induction and provides quantitative data suitable for straightforward statistical analysis. Two different well-established model nucleotide-binding and leucine-rich repeat domain proteins (NLRs) were used to ensure the genericity of the approach. Its accuracy and versatility were compared to visual scoring of the cell death response and standard methods commonly used to characterize NLR activities in N. benthamiana. A discussion of the advantages and limitations of our method compared to other protocols demonstrates its robustness and versatility and provides an effective means to select the best-suited protocol for a defined experiment.  相似文献   

15.
Summary The mammalian intestinal epithelium has been found, based on in vivo experiments, to be resistant to insecticidal Cry toxins, which are derived from Bacillus thuringiensis and fatally damage insect midgut cells. Thus, the toxins are commonly used as a genetic resource in insect-resistant transgenic plants for feed. However, Cry toxins bind to the cellular brush border membrane vescle (BBMV) of mammalian intestinal cells. In this study, we investigated the affinity of Cry1Ab toxin, a lepidopteran-specific Cry1-type toxin, to the cellular BBMV of two mammalian intestinal cells as well as the effect of the toxin on the membrane potential of three mammalian intestinal cells compared to its effects on the silkworm midgut cell. We found that Cry1Ab toxin did bind to the bovine and porcine BBMV, but far more weakly than it did to the silkworm midgut BBMV. Furthermore, although the silkworm midgut cells developed severe membrane potential changes within 1 h following the toxin treatment at a final concentration of 2 μg/ml, no such membraneous changes were observed on the bovine, procine, and human intestinal cells. The present in vitro results suggest that, although Cry1Ab toxin may bind weakly or nonspecifically to certain BBMV components in the mammalian intestinal cell, it does not damage the cell’s membrane integrity, thus exerting no subsequent adverse effects on the cell.  相似文献   

16.
The cell line C9 used in this paper has a resting potential of --50 mV (+/- 10 mV) but is unable to generate an action potential upon electrical stimulation. The cell membrane has receptors for the selectivity filter toxin tetrodotoxin as well as for the gating system toxins, veratridine, scorpion toxin and sea anemone toxin. The Na+ channel which remains silent to electrical stimulation in the absence of toxins can be chemically activated by the gating system toxins. This has been demonstarted by electrophysiological techniques and by 22Na+ flux studies. The electrophysiological approach has shown that the sea anemone toxin is able to induce a spontaneous slow-wave activity inhibited by tetrodotoxin. 22Na+ influx analyses have shown that veratridine and the sea anemone toxin produce an important increase of the initial rate of 22Na+ influx into the C9 cell. The stimulation of 22Na+ entry by these gating system toxins is similar to that found using spiking neuroblastoma cells. Veratridine and the sea anemone toxin on one hand as well as veratridine and the scorpion toxin on the other hand are synergistic in their action to stabilize an open and highly permeable form of the sodium channel. Stimulation of 22Na+ entry into the cell through the sodium channel maintained open by the gating system neurotoxins is completely suppressed by tetrodotoxin.  相似文献   

17.
The aging stress response   总被引:1,自引:0,他引:1  
Aging is the outcome of a balance between damage and repair. The rate of aging and the appearance of age-related pathology are modulated by stress response and repair pathways that gradually decline, including the proteostasis and DNA damage repair networks and mitochondrial respiratory metabolism. Highly conserved insulin/IGF-1, TOR, and sirtuin signaling pathways in turn control these critical cellular responses. The coordinated action of these signaling pathways maintains cellular and organismal homeostasis in the face of external perturbations, such as changes in nutrient availability, temperature, and oxygen level, as well as internal perturbations, such as protein misfolding and DNA damage. Studies in model organisms suggest that changes in signaling can augment these critical stress response systems, increasing life span and reducing age-related pathology. The systems biology of stress response signaling thus provides a new approach to the understanding and potential treatment of age-related diseases.  相似文献   

18.
Recent studies demonstrated that a variety of bacterial pore-forming toxins induce cell death through a process of programmed necrosis characterized by the rapid depletion of cellular ATP. However, events leading to the necrosis and depletion of ATP are not thoroughly understood. We demonstrate that ATP-depletion induced by two pore-forming toxins, the Clostridium perfringens epsilon-toxin and the Aeromonas hydrophila aerolysin toxin, is associated with decreased mitochondrial membrane potential and opening of the mitochondrial permeability transition pore. To gain further insight into the toxin-induced metabolic changes contributing to necrosis and depletion of ATP, we analyzed the biochemical profiles of 251 distinct compounds by GC/MS or LC/MS/MS following exposure of a human kidney cell line to the epsilon-toxin. As expected, numerous biochemicals were seen to increase or decrease in response to epsilon-toxin. However, the pattern of these changes was consistent with the toxin-induced disruption of major energy-producing pathways in the cell including disruptions to the beta-oxidation of lipids. In particular, treatment with epsilon-toxin led to decreased levels of key coenzymes required for energy production including carnitine, NAD (and NADH), and coenzyme A. Independent biochemical assays confirmed that epsilon-toxin and aerolysin induced the rapid decrease of these coenzymes or their synthetic precursors. Incubation of cells with NADH or carnitine-enriched medium helped protect cells from toxin-induced ATP depletion and cell death. Collectively, these results demonstrate that members of the aerolysin family of pore-forming toxins lead to decreased levels of essential coenzymes required for energy production. The resulting loss of energy substrates is expected to contribute to dissipation of the mitochondrial membrane potential, opening of the mitochondrial permeability transition pore, and ultimately cell death.  相似文献   

19.
Activation of cell stress response pathways by Shiga toxins   总被引:1,自引:0,他引:1  
Shiga toxin-producing bacteria cause widespread outbreaks of bloody diarrhoea that may progress to life-threatening systemic complications. Shiga toxins (Stxs), the main virulence factors expressed by the pathogens, are ribosome-inactivating proteins which inhibit protein synthesis by removing an adenine residue from 28S rRNA. Recently, Stxs were shown to activate multiple stress-associated signalling pathways in mammalian cells. The ribotoxic stress response is activated following the depurination reaction localized to the α-sarcin/ricin loop of eukaryotic ribosomes. The unfolded protein response (UPR) may be initiated by toxin unfolding within the endoplasmic reticulum, and maintained by production of truncated, misfolded proteins following intoxication. Activation of the ribotoxic stress response leads to signalling through MAPK cascades, which appears to be critical for activation of innate immunity and regulation of apoptosis. Precise mechanisms linking ribosomal damage with MAPK activation require clarification but may involve recognition of ribosomal conformational changes and binding of protein kinases to ribosomes, which activate MAP3Ks and MAP2Ks. Stxs appear capable of activating all ER membrane localized UPR sensors. Prolonged signalling through the UPR induces apoptosis in some cell types. The characterization of stress responses activated by Stxs may identify targets for the development of interventional therapies to block cell damage and disease progression.  相似文献   

20.
Receptor-ligand interactions are fundamental to the regulation of cell physiology, enabling the communication between cells and their environment via signal transduction. Receptors are also exploited by toxins and infectious agents to mediate pathogenesis. Over the past 20 years, however, this bi-partite paradigm for cellular regulation, that is, receptors and their ligands, has been revised to include an unforeseen participant namely, soluble receptors or molecular decoys. Decoys function as nature's modifiers of potent responses such as inflammation, stimulation of cell proliferation and triggering apoptosis. Decoys not only provide the means to fine tune the regulation of these phenomena; they also serve as potential leads for the development of recombinant anti-toxins, anti-viral agents and novel therapeutics for combating cancer and inflammatory disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号