首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human organic anion transporter hOAT1 belongs to a superfamily of organic anion transporters, which play critical roles in the body disposition of clinically important drugs, including anti-human immunodeficiency virus therapeutics, anti-tumor drugs, antibiotics, anti-hypertensives, and anti-inflammatories. To gain insight into the regulation of hOAT1, detailed information on its structural assembly is essential. In the present study, we investigate the quaternary structure of hOAT1 using combined approaches of chemical cross-linking, gel filtration chromatography, co-immunoprecipitation, cell surface biotinylation, and metabolic labeling. Chemical cross-linking of intact membrane proteins from LLC-PK1 cells stably expressing hOAT1 converted quantitatively hOAT1 monomer to putative trimer and higher order of oligomer, indicating that hOAT1 is present in the membrane as multimeric complexes. When co-expressed in LLC-PK1 cells, FLAG-tagged hOAT1 co-immunoprecipitated with myc-tagged hOAT1. The hOAT1 oligomer was also detected in gel filtration chromatography of total membranes from hOAT1-expressing LLC-PK1 cells. Cell surface biotinylation with membrane-impermeable reagents and metabolic labeling with [(35)S]methionine followed by immunoprecipitation showed that the oligomeric hOAT1 did not contain any other proteins. Taken together, this is the first study demonstrating that hOAT1 exists in the plasma membrane as a homooligomer, possibly trimer, and higher order of oligomer.  相似文献   

2.
Human organic anion transporter hOAT1 plays critical roles in the body disposition of environmental toxins and clinically important drugs. In the present study, we examined the role of the C terminus of hOAT1 in its function. Combined approaches of cell surface biotinylation and transport analysis were employed for such purposes. It was found that deletion of the last 15 amino acids (residues 536-550) or the last 30 amino acids (residues 521-550) had no significant effect on transport activity. However, deletion of the entire C terminus (residues 506-550) completely abolished transport activity. Alanine scanning mutagenesis within the region of amino acids 506-520 led to the discovery of two critical amino acids: Glu-506 and Leu-512. Substitution of negatively charged Glu-506 with neutral amino acids alanine or glutamine resulted in complete loss of transport activity. However, such loss of transport activity could be rescued by substitution of Glu-506 with another negatively charged amino acid aspartic acid, suggesting the importance of negative charge at this position for maintaining the correct tertiary structure of the transporter, possibly by forming a salt bridge with a positively charged amino acid. Substitution of Leu-512 with amino acids carrying progressively smaller side chains including isoleucine, valine, and alanine resulted in mutants (L512I, L512V, and L512A) with increasingly impaired transport activity. However, the cell surface expression of these mutants was not affected. Kinetic analysis of mutant L512V revealed that the reduced transport activity of this mutant resulted mainly from a reduced maximum transport velocity Vmax without affecting the binding affinity (1/Km) of the transporter for its substrates, suggesting that the size of the side chain at position 512 critically affects transporter turnover number. Together, our results are the first to highlight the central role of the C terminus of hOAT1 in the function of this transporter.  相似文献   

3.
Organic anion transporter 1 (OAT1) is key for the secretion of organic anions in renal proximal tubules. These organic anions comprise endogenous as well as exogenous compounds including frequently used drugs of various chemical structures. The molecular basis for the polyspecificity of OAT1 is not known. Here we mutated a conserved positively charged arginine residue (Arg(466)) in the 11(th) transmembrane helix of human OAT1. The replacement by the positively charged lysine (R466K) did not impair expression of hOAT1 at the plasma membrane of Xenopus laevis oocytes but decreased the transport of p-aminohippurate (PAH) considerably. Extracellular glutarate inhibited and intracellular glutarate trans-stimulated wild type and mutated OAT1, suggesting for the mutant R466K an unimpaired interaction with dicarboxylates. However, when Arg(466) was replaced by the negatively charged aspartate (R466D), glutarate no longer interacted with the mutant. PAH uptake by wild type hOAT1 was stimulated in the presence of chloride, whereas the R466K mutant was chloride-insensitive. Likewise, the uptake of labeled glutarate or ochratoxin A was chloride-dependent in the wild type but not in R466K. Kinetic experiments revealed that chloride did not alter the apparent K(m) for PAH but influenced V(max) in wild type OAT1-expressing oocytes. In R466K mutants the apparent K(m) for PAH was similar to that of the wild type, but V(max) was not changed by chloride removal. We conclude that Arg(466) influences the binding of glutarate, but not interaction with PAH, and interacts with chloride, which is a major determinant in substrate translocation.  相似文献   

4.
5.
Human organic anion transporter hOAT1 plays a critical role in the body disposition of environmental toxins and clinically important drugs including anti-HIV therapeutics, anti-tumor drugs, antibiotics, anti-hypertensives, and anti-inflammatories. In the current study, we investigated the role of dileucine (L6L7) at the amino terminus of hOAT1 in the expression and function of the transporter. We substituted L6L7 with alanine (A) simultaneously. The resulting mutant transporter L6A/L7A showed no transport activity due to its complete loss of expression at the cell surface. Such loss of surface expression of L6A/L7A was consistent with a complete loss of an 80 kDa mature form and a dramatic decrease in a 60 kDa immature form of the mutant transporter in the total cell lysates. Treatment of L6A/L7A-expressing cells with proteasomal inhibitor resulted in a significant increase in the immature form of hOAT1, but not its mature form, whereas treatment of these cells with lysosomal inhibitor had no effect on the expression of the mutant transporters, suggesting that the mutant transporter was degraded through proteasomal pathway. The accumulation of mutant transporter in the endoplasmic reticulum (ER) was confirmed by coimmunolocalization of L6L7 with calnexin, an ER marker. Furthermore, treatment of L6A/L7A-expressing cells with sodium 4-phenylbutyrate (4PBA) and glycerol, two chemical chaperones, could not promote the exit of the immature form of the mutant transporter from the ER. Our data suggest that L6L7 are critical for the stability and ER export of hOAT1.  相似文献   

6.
Human organic anion transporter hOAT1 plays a critical role in the body disposition of environmental toxins and clinically important drugs including anti-HIV therapeutics, anti-tumor drugs, antibiotics, anti-hypertensives, and anti-inflammatories. hOAT1 has two GXXXG motifs in its transmembrane domains 2 and 5, a motif linked to the protein processing and oligomerization of other proteins. In the current study, we substituted glycine of these GXXXG motifs with alanine and evaluated the effect of such mutations on the expression and function of hOAT1. Mutations of GXXXG motif in the transmembrane domain 2 resulted in mutants G144A and G148A, both of which had no transport activity due to complete loss in the surface and total cell expression of the transporter protein. Treatment of G144A- and G148A-expressing cells with proteasomal inhibitor resulted in the recovery of ER-resident immature form of hOAT1, but not its surface-resident mature form, whereas treatment of these cells with lysosomal inhibitor had no effect on the expression of the mutant transporters. Mutations of GXXXG motif in the transmembrane domain 5 resulted in mutants G223A and G227A, among which only G227 had dramatic reduction of transport activity due to dramatic loss in the surface and total cell expression of the transporter. The reduction in the surface expression of G227 was consistent with the decrease in maximum transport velocity Vmax. Treatment of G227A-expressing cells with proteasomal inhibitor or lysosomal inhibitor resulted in partial recovery of both the immature form and the mature form of hOAT1 in the total cell extracts. However, such partial recovery of the mature form in total cell extracts did not lead to the partial recovery of surface expression and function of the transporter. Our data suggest that the GXXXG motifs in transmembrane domains 2 and 5 play critical roles in the stability of hOAT1.  相似文献   

7.
Shelden MC  Loughlin P  Tierney ML  Howitt SM 《Biochemistry》2003,42(44):12941-12949
The aim of this study was to identify charged amino acid residues important for activity of the sulfate transporter SHST1. We mutated 10 charged amino acids in or near proposed transmembrane helices and expressed the resulting mutants in a sulfate transport-deficient yeast strain. Mutations affecting four residues resulted in a complete loss of sulfate transport; these residues were D107 and D122 in helix 1 and R354 and E366 in helix 8. All other mutants showed some reduction in transport activity. The E366Q mutant was unusual in that expression of the mutant protein was toxic to yeast cells. The R354Q mutant showed reduced trafficking to the plasma membrane, indicating that the protein was misfolded. However, transporter function (to a low level) and wild-type trafficking could be recovered by combining the R354Q mutation with either the E175Q or E270Q mutations. This suggested that R354 interacts with both E175 and E270. The triple mutant E175Q/E270Q/R354Q retained only marginal sulfate transport activity but was trafficked at wild-type levels, suggesting that a charge network between these three residues may be involved in the transport pathway, rather than in folding. D107 was also found to be essential for the ion transport pathway and may form a charge pair with R154, both of which are highly conserved. The information obtained on interactions between charged residues provides the first evidence for the possible spatial arrangement of transmembrane helices within any member of this transporter family. This information is used to develop a model for SHST1 tertiary structure.  相似文献   

8.
Huang S  Vandenberg RJ 《Biochemistry》2007,46(34):9685-9692
L-Glutamate is the predominant excitatory neurotransmitter in the brain, and its extracellular concentration is tightly controlled by the excitatory amino acid transporters (EAATs). The transport of 1 glutamate molecule is coupled to the cotransport of 3 Na+ and 1 H+ and the countertransport of 1 K+. In addition to substrate transport, the binding of glutamate and Na+ activates an anion current which is thermodynamically uncoupled from the transport process. We have identified three amino acid residues in EAAT1 (D272 in TM5, K384 and R385 in TM7) that influence the amplitude of the anion channel current relative to the transport current. Transporters containing the mutations R268A, D272A, D272K, K384A, K384D, R385A, and R385D were expressed in Xenopus laevis oocytes and their transport and anion channel functions measured using the two-electrode voltage clamp techniques. The D272, K384, and R385 mutant transporters showed no change in transport properties but have increased levels of anion channel activity compared to wild-type transporters. These results identify additional residues of the EAAT1 transporter that may contribute to the gating mechanism of the anion channel of glutamate transporters and also provide hints as to how substrate binding leads to channel activation.  相似文献   

9.
Gui C  Hagenbuch B 《Biochemistry》2008,47(35):9090-9097
Human organic anion transporting polypeptides (OATP) 1B1 and 1B3 are multispecific transporters that mediate uptake of amphipathic organic compounds into hepatocytes. The two OATPs contain 12 transmembrane domains (TMs) and share 80% amino acid sequence identity. Besides common substrates with OATP1B1, OATP1B3 specifically transports cholecystokinin octapeptide (CCK-8). To determine which structural domains and/or residues are important for the substrate selectivity of OATP1B3, we constructed a series of chimeric proteins between OATP1B3 and 1B1, expressed them in HEK293 cells, and determined rates of uptake of CCK-8 along with surface expression of the proteins. Replacing TM10 in OATP1B3 with TM10 of OATP1B1 resulted in a dramatically reduced degree of CCK-8 transport, indicating that TM10 is crucial for recognition and/or translocation of CCK-8. Using site-directed mutagenesis, we identified three key residues within TM10, namely, Y537, S545, and T550. When we replaced these residues with the corresponding amino acid residues found in OATP1B1, the level of CCK-8 transport was similarly low as for the replacement of the whole TM10. Kinetic experiments showed that the K m values for CCK-8 transport in the TM10 replacement and triple mutant were only 1.3 and 1.1 microM, respectively, as compared to 16.3 microM for wild-type OATP1B3. Similarly, the V max values dropped from 495.5 pmol (normalized mg) (-1) min (-1) for wild-type OATP1B3 to 13.3 and 19.0 pmol (normalized mg) (-1) min (-1) for the TM10 replacement and triple mutant, respectively. Molecular modeling indicated that two of the three identified residues might form hydrogen bonds with CCK-8. In conclusion, we have identified three amino acid residues (Y537, S545, and T550) in TM10 of OATP1B3 that are important for CCK-8 transport.  相似文献   

10.
Feng B  Shu Y  Giacomini KM 《Biochemistry》2002,41(28):8941-8947
Organic anion transporters (OATs, SLC21) are important in the excretion of endogenous and exogenous compounds in the kidney. The rat organic anion transporter, rOAT3, mediates the transport of organic anions such as p-aminohippurate (PAH) and estrone sulfate as well as the basic compound, cimetidine. In the present study, we examined the role of conserved transmembrane aromatic amino acid residues of rOAT3 in substrate recognition and transport. Alanine scanning followed by amino acid replacements was used to construct mutants of rOAT3. The uptake of model compounds was studied in Xenopus laevis oocytes expressing the mutant transporters. We observed that four mutants in transmembrane domain 7 (TMD 7), W334A, F335A, Y341A, and Y342Q, and one mutant in transmembrane domain 8 (TMD 8), F362S, exhibited a less than 2-fold enhanced uptake of PAH and cimetidine in comparison to wild-type rOAT3, which exhibited a 16-fold enhanced uptake of PAH and an 8-fold enhanced uptake of cimetidine. Estrone sulfate uptake in oocytes expressing any one of these five mutants remained at least 8-fold enhanced. The data suggest that the five residues, W334, F335, Y341, Y342, and F362, contribute differently to the transport of the small hydrophilic organic substrates PAH and cimetidine in comparison to the large hydrophobic organic substrate estrone sulfate. The effects of side chains of these five residues on transporter functions were also evaluated by constructing conservative mutations. We observed that the residues contribute to PAH and cimetidine transport in different ways: the -OH group of Y342, the indole ring of W334, and the aromatic rings of F335, Y341, and F362 are important for PAH and cimetidine transport by rOAT3. These data suggest that there is an aromatic pocket composed mainly of residues in TMD 7 in the translocation pathway of rOAT3, which is important for the transport of PAH and cimetidine. Aromatic residues in this pocket may interact directly with substrates of rOAT3 through hydrogen bonds and pi-pi interactions.  相似文献   

11.
The proton-coupled amino acid transporter 1 (PAT1) represents a major route by which small neutral amino acids are absorbed after intestinal protein digestion. The system also serves as a novel route for oral drug delivery. Having shown that H+ affects affinity constants but not maximal velocity of transport, we investigated which histidine residues are obligatory for PAT1 function. Three histidine residues are conserved among the H+-coupled amino acid transporters PAT1 to 4 from different animal species. We individually mutated each of these histidine residues and compared the catalytic function of the mutants with that of the wild type transporter after expression in HRPE cells. His-55 was found to be essential for the catalytic activity of hPAT1 because the corresponding mutants H55A, H55N and H55E had no detectable l-proline transport activity. His-93 and His-135 are less important for transport function since H93N and H135N mutations did not impair transport function. The loss of transport function of His-55 mutants was not due to alterations in protein expression as shown both by cell surface biotinylation immunoblot analyses and by confocal microscopy. We conclude that His-55 might be responsible for binding and translocation of H+ in the course of cellular amino acid uptake by PAT1.  相似文献   

12.
The proton-coupled amino acid transporter 1 (PAT1) represents a major route by which small neutral amino acids are absorbed after intestinal protein digestion. The system also serves as a novel route for oral drug delivery. Having shown that H+ affects affinity constants but not maximal velocity of transport, we investigated which histidine residues are obligatory for PAT1 function. Three histidine residues are conserved among the H+-coupled amino acid transporters PAT1 to 4 from different animal species. We individually mutated each of these histidine residues and compared the catalytic function of the mutants with that of the wild type transporter after expression in HRPE cells. His-55 was found to be essential for the catalytic activity of hPAT1 because the corresponding mutants H55A, H55N and H55E had no detectable l-proline transport activity. His-93 and His-135 are less important for transport function since H93N and H135N mutations did not impair transport function. The loss of transport function of His-55 mutants was not due to alterations in protein expression as shown both by cell surface biotinylation immunoblot analyses and by confocal microscopy. We conclude that His-55 might be responsible for binding and translocation of H+ in the course of cellular amino acid uptake by PAT1.  相似文献   

13.
This paper reports the development of liquid chromatographic columns containing immobilized organic anion transporters (hOAT1 and hOAT2). Cellular membrane fragments from MDCK cells expressing hOAT1 and S2 cells expressing hOAT2 were immobilized on the surface of the immobilized artificial membrane (IAM) liquid chromatographic stationary phase. The resulting stationary phases were characterized by frontal affinity chromatography, using the marker ligand [3H]-adefovir for the hOAT1 and [14C]-p-aminohippurate for the hOAT2 in the presence of multiple displacers. The determined binding affinities (Kd) for eight OAT1 ligands and eight OAT2 ligands were correlated with literature values and a statistically significant correlation was obtained for both the hOAT1 and hOAT2 columns: r2=0.688 (p<0.05) and r2=0.9967 (p<0.0001), respectively. The results indicate that the OAT1 and OAT2 have been successfully immobilized with retention of their binding activity. The use of these columns to identify ligands to the respective transporters will be presented.  相似文献   

14.
The cloned organic anion transporters from rat, mouse, and winter flounder (rOAT1, mOAT1, fROAT) mediate the coupled exchange of alpha-ketoglutarate with multiple organic anions, including p-aminohippurate (PAH). We have isolated two novel gene products from human kidney which bear significant homology to the known OATs and belong to the amphiphilic solute facilitator (ASF) family. The cDNAs, hOAT1 and hOAT3, encode for 550- and 568-amino-acid residue proteins, respectively. hOAT1 and hOAT3 mRNAs are expressed strongly in kidney and weakly in brain. Both genes map to chromosome 11 region q11.7. PAH uptake by Xenopus laevis oocytes injected with hOAT1 mRNA is increased 100-fold compared to water-injected oocytes. PAH uptake is chloride dependent and is not further increased by preincubation of oocytes in 5 mM glutarate. Uptake of PAH is inhibited by probenicid, alpha-ketoglutarate, bumetanide, furosemide, and losartan, but not by salicylate, urate, choline, amilioride, and hydrochlorothiazide.  相似文献   

15.
Hong M  Tanaka K  Pan Z  Ma J  You G 《The Biochemical journal》2007,401(2):515-520
The OAT (organic anion transporter) family mediates the absorption, distribution and excretion of a diverse array of environmental toxins and clinically important drugs. OAT dysfunction significantly contributes to renal, hepatic, neurological and fetal toxicity and disease. As a first step to establish the topological model of hOAT1 (human OAT1), we investigated the external loops and the cellular orientation of the N- and the C-termini of this transporter. Combined approaches of immunofluorescence studies and site-directed chemical labelling were used for such purpose. Immunofluorescence microscopy of Myc-tagged hOAT1 expressed in cultured cells identified that both the N- and the C-termini of the transporter were located in the cytoplasm. Replacement of Lys59 in the predicted extracellular loop I with arginine resulted in a mutant (K59R), which was largely inaccessible for labelling by membrane-impermeable NHS (N-hydroxysuccinimido)-SS (dithio)-biotin present in the extracellular medium. This result suggests that loop I faces outside of the cell membrane. A single lysine residue introduced into putative extracellular loops III, V and VI of mutant K59R, which is devoid of extracellular lysine, reacted readily with membrane-impermeable NHS-SS-biotin, suggesting that these putative extracellular loops are in the extracellular domains of the protein. These studies provided the first experimental evidence on the extracellular loops and the cellular orientation of the N- and the C-termini of hOAT1.  相似文献   

16.
hOAT1 is a renal membrane protein able to efficiently transport acyclic nucleoside phosphonates (ANPs). When expressed in CHO cells, hOAT1 mediates the uptake and cytotoxicity of ANPs suggesting that it plays an active role in the nephrotoxicity associated with cidofovir CMV therapy and high-dose adefovir HIV therapy. Although efficiently transported by hOAT1, tenofovir did not show any significant cytotoxicity in isolated human proximal tubular cells, which correlates with the lack of nephrotoxicity observed in HIV-infected patients on prolonged tenofovir therapy.  相似文献   

17.
The liver‐specific organic anion transporting polypeptides OATP1B1 and OATP1B3 are highly homologous and share numerous substrates. However, at low concentrations OATP1B1 shows substrate selectivity for estrone‐3‐sulfate. In this study, we investigated the molecular mechanism for this substrate selectivity of OATP1B1 by constructing OATP1B1/1B3 chimeric transporters and by site‐directed mutagenesis. Functional studies of chimeras showed that transmembrane domain 10 is critical for the function of OATP1B1. We further identified four amino acid residues, namely L545, F546, L550, and S554 in TM10, whose simultaneous mutation caused almost complete loss of OATP1B1‐mediated estrone‐3‐sulfate transport. Comparison of the kinetics of estrone‐3‐sulfate transport confirmed a biphasic pattern for OATP1B1, but showed a monophasic pattern for the quadruple mutant L545S/F546L/L550T/S554T. This mutant also showed reduced transport for other OATP1B1 substrates such as bromosulfophthalein and [D ‐penicillamine2,5]enkephalin. Helical wheel analysis and molecular modeling suggest that L545 is facing the substrate translocation pathway, whereas F546, L550, and S554 are located inside the protein. These results indicate that L545 might contribute to OATP1B1 function by interacting with substrates, whereas F546, L550, and S554 seem important for protein structure. In conclusion, our results show that TM10 is critical for the function of OATP1B1.  相似文献   

18.
19.
Organic anion transporters (OATs) play a critical role in the handling of endogenous and exogenous organic anions by excretory and barrier tissues. Little is known about the OAT three-dimensional structure or substrate/protein interactions involved in transport. In this investigation, a theoretical three-dimensional model was generated for human OAT1 (hOAT1) based on fold recognition to the crystal structure of the glycerol 3-phosphate transporter (GlpT) from Escherichia coli. GlpT and hOAT1 share several sequence motifs as major facilitator superfamily members. The structural hOAT1 model shows that helices 5, 7, 8, 10, and 11 surround an electronegative putative active site ( approximately 830A(3)). The site opens to the cytoplasm and is surrounded by three residues not previously examined for function (Tyr(230) (domain 5) and Lys(431) and Phe(438) (domain 10)). Effects of these residues on p-aminohippurate (PAH) and cidofovir transport were assessed by point mutations in a Xenopus oocyte expression system. Membrane protein expression was severely limited for the Y230A mutant. For the K431A and F438A mutants, [(3)H]PAH uptake was less than 30% of wild-type hOAT1 uptake after protein expression correction. Reduced V(max) values for the F438A mutant confirmed lower protein expression. In addition, the F438A mutant exhibited an increased affinity for cidofovir but was not significantly different for PAH. Differences in handling of PAH and cidofovir were also observed for the Y230F mutant. Little uptake was determined for cidofovir, whereas PAH uptake was similar to wild-type hOAT1. Therefore, the hOAT1 structural model has identified two new residues, Tyr(230) and Phe(438), which are important for substrate/protein interactions.  相似文献   

20.
Li N  Hong W  Huang H  Lu H  Lin G  Hong M 《PloS one》2012,7(5):e36647
As an important structure in membrane proteins, transmembrane domains have been found to be crucial for properly targeting the protein to cell membrane as well as carrying out transport functions in transporters. Computer analysis of OATP sequences revealed transmembrane domain 2 (TM2) is among those transmembrane domains that have high amino acid identities within different family members. In the present study, we identify four amino acids (Asp70, Phe73, Glu74, and Gly76) that are essential for the transport function of OATP1B1, an OATP member that is specifically expressed in the human liver. A substitution of these four amino acids with alanine resulted in significantly reduced transport activity. Further mutagenesis showed the charged property of Asp70 and Glu74 is critical for proper function of the transporter protein. Comparison of the kinetic parameters indicated that Asp70 is likely to interact with the substrate while Glu74 may be involved in stabilizing the binding site through formation of a salt-bridge. The aromatic ring structure of Phe73 seems to play an important role because substitution of Phe73 with tyrosine, another amino acid with a similar structure, led to partially restored transport function. On the other hand, replacement of Gly76 with either alanine or valine could not recover the function of the transporter. Considering the nature of a transmembrane helix, we proposed that Gly76 may be important for maintaining the proper structure of the protein. Interestingly, when subjected to transport function analysis of higher concentration of esteone-3-sulfate (50 μM) that corresponds to the low affinity binding site of OATP1B1, mutants of Phe73, Glu74, and Gly76 all showed a transport function that is comparable to that of the wild-type, suggesting these amino acids may have less impact on the low affinity component of esteone-3-sulfate within OATP1B1, while Asp 70 seems to be involved in the interaction of both sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号