首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of the 1,25-dihydroxyvitamin D3 receptor from chick intestine was examined in regard to its response to sodium molybdate. Sodium molybdate (10 mM) stabilized the receptor from crude nuclear extract but not that from the supernatant or cytoplasmic fraction, suggesting the molybdate may act by binding to the DNA binding region of the receptor. At a concentration of 50 mM, sodium molybdate prevented aggregation of the nuclear receptor. This concentration of sodium molybdate also inhibited the receptor from binding to DNA cellulose while the same ionic strength KCl (90 mM) did not. These properties also suggest that molybdate interacts with the DNA binding region. Purification of the receptor using DNA cellulose chromatography has also been improved by using a sodium molybdate gradient (0-0.2 M) instead of the KCl gradient used previously.  相似文献   

2.
This study investigated the influence of the degree of concentration of breast tumor cytosols on the apparent estrogen receptor content as measured by the Dextran-charcoal assay. It was found that the dilution of cytosols to 1-2 mg protein/ml frequently but not always causes highly underestimated receptor concentrations. This could not be explained by the protein loss through adsorption to the charcoal. The effect was also studied in the presence of gelatin, sodium molybdate or with limited trypsinization of the incubation mixture. Addition of 1 mg/ml gelatin in the Dextran-charcoal suspension was very useful in most cases in preventing dilution induced losses in receptor sites. Both trypsinization and addition of sodium molybdate produced increases in receptor concentrations that were not as susceptible to inactivation through dilution of the cytosol. These data suggest that the observed high variability in the dilution induced receptor losses can be explained by receptor heterogeneity: some receptor form(s) are either readily absorbed to or "stripped" by the charcoal particles. As a conclusion we recommend that in order to optimize the estrogen receptor assay as regards both binding sites and affinities the cytosol concentrations should be maintained as high as possible and a protein expander be included in the Dextran-charcoal suspension. Though sodium molybdate frequently gives considerable increases in estrogen binding sites it occasionally has an opposite effect. For this reason we hesitate to recommend its use in routine assays of estrogen receptors.  相似文献   

3.
The effect of molybdate on the kinetic and thermodynamic properties of the dexamethasone-receptor interaction was studied in calf thymus cytosol. In the presence of molybdate both the equilibrium binding studies and the association and dissociation experiments reveal a significantly lower affinity of the receptor for [3]dexamethasone. At 0 degrees C the equilibrium dissociation constant increases from 0.8 nM to 1.8 nM, the association rate constant shifts from 1.5 X 10(8) M-1 h-1 to 0.2 X 10(8) M-1 h-1, whereas the rate of dissociation of the untransformed receptor increases from 0.04 h-1 to 1.1 h-1 in the molybdate-containing buffer. All these effects appear dependent on the concentration of molybdate but the dissociation of the transformed receptor (0.01 h-1) is unaffected. The enthalpy for the association, delta H not equal to, increases at least twofold whereas the entropy, both for the association (delta S not equal to = -25 to +104 J K-1 mol-1) and for the equilibrium (delta S degrees = -100 to +38 J K-1 mol-1), is markedly influenced by the presence of molybdate. Taken all together these data suggest that molybdate interacts with the receptor molecule turning it into a form that displays low affinity for steroid, in addition to the well-documented incapacity to transform itself. This fact leads us to think that both the binding and the transformation are the expression of conformational modifications involving molybdate-sensitive groups.  相似文献   

4.
The effect of sodium molybdate on the stability and activation of the glucocorticoid receptor from chick and rat thymus were investigated. Molybdate, at a concentration range of 1–10 mM, blocked denaturation of the cytosol receptor by elevated (25 and 37°C) temperatures. This effect could be observed only with the aggregated (low-salt) form of the receptor. Molybdate also inhibited transformation of the receptor-hormone complex to the DNA-binding state which occurs either with incubation at 25°C or with salt treatment. The inhibitory effect of molybdate could be observed only on the non-activated receptor; nuclear- and DNA-binding of the activated receptor was not significantly changed by molybdate. Both effects were concentration-dependent. Molybdate had no effect on the activation of the partially purified glucocorticoid receptor. Molybdate effect was also examined using intact lymphocytes. Sodium molybdate had no effect either on the steroid binding of whole cells or on the nuclear transfer of the hormone-receptor complex. While the mechanism of molybdate action remains unknown the results of experiments on purified receptor suggest that molybdate does not act directly on the receptor molecule; rather through some cytosol factor(s). However, these effects could only be seen in cell-free experiments, and not during the conditions of the living cell.  相似文献   

5.
The 3,5,3'-triiodothyronine (T3) binding activity of solubilized nuclear proteins from rat liver was decreased when molybdate (10 mM) was present in the incubation medium in the absence of thiol reagents. The equilibrium affinity constant was reduced by 40%. The rate of degradation of T3-receptor complexes at 37 degrees C remained unchanged, but when the extracts were further reincubated in the presence of beta-mercaptoethanol, molybdate had a protective effect after 5 h incubation at 37 degrees C. In contrast, the thyroxine (T4) binding activity was not affected by heating at 37 degrees C or by molybdate. Ion-exchange chromatography confirmed the existence of a molybdate-receptor interaction: the T3-receptor complexes shifted from elution at 0.22 to 0.20 M NaCl with the progressive appearance of a small leader peak, whereas the T4-receptor complexes eluted in a large and split peak (0.22-0.4 M NaCl). The destabilizing effect on T3 binding induced by exogenous dephosphorylation is more efficiently reversed by beta-mercaptoethanol when the extracts were pretreated by molybdate. In controls, the loss of saturable T3 binding activity was recovered by 50% at a 10 mM concentration of beta-mercaptoethanol, but in the presence of molybdate, the loss of T3 binding activity was recovered by 50% at a 5 mM concentration of beta-mercaptoethanol. This molybdate-receptor interaction is similar to that with nuclear receptor models in term of (i) stabilization of hormone binding, (ii) dependency on a thiol, and (iii) reversibility of the destabilizing effect by exogenous dephosphorylation.  相似文献   

6.
When freshly prepared glucocorticoid-receptor complex from rat liver cytosol was incubated at 23 degrees C in the presence of sodium molybdate, its subsequent binding to isolated nuclei, DNA-cellulose and ATP-Sepharose was blocked. In addition, binding to these acceptors by cytosol receptor complex fractionated with (NH4)2SO4 was also blocked by incubation of the complexes with 50 mM-sodium molybdate. However, molybdate had no effect on the binding of activated receptor complexes to ATP-Sepharose. Molybdate was also effective in extracting the nuclear- and DNA-cellulose-bound glucocorticoid-receptor complexes in a dose-dependent manner. Molybdate appears to exert its effects directly on the receptor by interacting with both non-activated and activated receptor forms.  相似文献   

7.
The highest molecular weight form of the calf uterine androgen receptor separates as an 11S form in glycerol gradients. This "cytosolic" receptor, prepared in the presence of molybdate, polyethyleneimide and low ionic strength, dissociates into 9S and 7.2S forms with increasing KCl concentration. A 4.5S androgen binding component appears as the predominant form of the receptor in the absence of polyethyleneimide and this unit quantitatively converts to a stable 3.5S form in the absence of molybdate. Renaturation of partially purified protein, separated by SDS-PAGE electrophoresis, demonstrates the presence of an androgen binding component in the 110 kDa region of the gel. This renatured protein separates as a 4.5S component in glycerol gradients and has a Stokes radius of 6 nm. Photoaffinity labelling of partially purified receptor preparations, followed by SDS-PAGE electrophoresis, reveals the presence of an androgen binding component having a molecular weight of 115 kDa. The binding characteristics and specificity of the receptor binding to R1881 have been studied and a DHT-affinity chromatography resin used to purify the receptor.  相似文献   

8.
In structure and general mode of action, the Ah receptor is very similar to the receptors for steroid hormones. Molybdate previously has been shown to be highly effective at preserving ligand-binding function in steroid receptors during their exposure to elevated temperature or high ionic strength and at stabilizing steroid receptors as high molecular weight oligomeric complexes. Since such stabilization by molybdate can be very useful during characterization and purification of receptors, we tested the effects of molybdate on the Ah receptor to determine if the Ah receptor, like the receptors for steroid hormones, might be stabilized. In hepatic cytosols from C57BL/6N mice and Sprague-Dawley rats, molybdate concentrations up to 30 mM in homogenizing and analysis buffers did not alter the concentration of specific Ah receptor sites detected by binding of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin. However, inclusion of 20 mM molybdate in the homogenizing buffer did significantly protect unliganded Ah receptor from thermal inactivation at 20 degrees C and from KCl-induced loss of ligand-binding ability. In accord with previous reports, 20 mM molybdate in homogenizing and analysis buffers greatly increased the concentration of detectable glucocorticoid receptor in rat hepatic cytosol and estrogen receptor in rat uterine cytosol. Exposure to 0.4 M KC1 caused the glucocorticoid receptor from rat liver to shift sedimentation from approximately equal to 8 S to approximately equal to 4 S and caused a severe loss of specific glucocorticoid binding. Presence of 20 mM molybdate stabilized the glucocorticoid receptor as a single discrete peak sedimenting at approximately equal to 8 S. In contrast, the Ah receptor from rat liver exposed to 0.4 M KC1 in the presence of molybdate sedimented as biphasic peaks; one peak (approximately equal to 9.5 S) corresponded to the form of Ah receptor observed at low ionic strength, while the other peak (approximately equal to 5.5 S) corresponded to the form of Ah receptor seen in cytosol treated with 0.4 M KC1 in the absence of molybdate. Addition of heparin to hepatic cytosols from mice or rats shifted sedimentation of Ah receptor from approximately equal to 9.5 S to approximately equal to 5.5 S. Molybdate, again, provided stabilization in the approximately equal to 9.5 S form, but only for about one-half the total Ah receptor content in both rat and mouse hepatic cytosols. In sum, molybdate is far less effective at stabilizing rodent Ah receptors than it is at stabilizing steroid receptors in the same species.  相似文献   

9.
In order to study the receptor system for adrenocortical steroids, hippocampal cytosolic preparations--containing both type I and type II receptors--were subjected to anion exchange fast protein liquid chromatography (FPLC). With running buffer containing Tris, EDTA, and glycerol three peaks (1-3) were eluted from the column at 220, 400 and 560 mM NaCl respectively regardless of whether [3H]corticosterone or [3H]RU 28362 had been used as radiotracer. None of the peaks was caused by serum transcortin as revealed by control studies. However, the sequestering influence of transcortin on receptor binding of corticosterone could be demonstrated by the FPLC technique with mixtures containing serum and hippocampus cytosol. Competition experiments with cytosolic samples revealed that type I receptor was present only in peaks 2 and 3 while type II was found in all three peaks in variable amounts, depending on the presence of molybdate. When molybdate was added to the running buffer only two peaks (2 and 3) were eluted, both containing type I and type II receptors. Peak 1 was attributed to the activated type II receptor while peak 2 represented nonactivated receptors. The origin of peak 3 remains uncertain. The data indicate that molybdate must be present in the cytosolic preparation and in the running buffer to keep type II receptor in its nonactivated form. Type I receptor was probably not transformed into the activated form in the absence of molybdate but lost binding capacity and/or affinity for corticosterone.  相似文献   

10.
Glucocorticoid receptor in rat liver cytosol is inactivated (rendered unable to bind steroid) by incubation with calf intestine alkaline phosphatase or highly purified rabbit muscle phosphoprotein phosphatase (phosphorylase phosphate, protein phosphatase C). The receptor is inactivated by both enzymes even when 10 mM sodium molybdate is present. Receptors that are inactivated by phosphatases in the presence of molybdate can be reactivated to the steroid-binding state by addition of dithiothreitol, but receptors that are inactivated in the absence of molybdate cannot be reactivated. These observations suggest that dephosphorylation leads to oxidation of a moiety (-SH) on the receptor that is required for steroid binding. Molybdate apparently preserves the receptor in a form such that reduction returns the receptor to the steroid binding state. We would propose that molybdate may act by complexing with sulfur groups on the receptor.  相似文献   

11.
The Vervet monkey (Cercopithecus aethiops pygerythrus) uterine estrogen receptor was partially characterised. The effect of the molybdate oxyanion on various molecular properties of the receptor was investigated. Molybdate appeared to affect the subunit structure and apparent heterogeneity of the receptor. Anion exchange chromatography of uterine cytosols yielded two ligand binding subunits in a 1:1 ratio in the absence of sodium molybdate, while only a single labelled complex could be demonstrated in cytosols prepared in molybdate containing buffers. Chromatofocussing of the nonstabilized cytosols revealed substantial receptor heterogeneity (7 peaks) while a much simpler pattern (2 peaks) could be observed in the presence of the molybdate. Likewise, iso-electric focussing of labelled cytosols on agarose gels yielded at least 3 high affinity binding components (pI:6.8, 6.2, 5.9) in the absence and only one major band in the presence of sodium molybdate (pI 5.9).  相似文献   

12.
When sodium molybdate is added at a final concentration of 20 mM, additional 85 and 4S progesterone (3 H-R5020) receptor can be detected in the cytosols from a number of human breast cancers. Additional estrogen receptor also could be measured in some cytosols, and a quantitative temperaturedependent conversion of 8S to 4S binding molecules achieved. Sodium molybdate also prevented the loss of binding activity that occurred when cytosols were incubated at 30° in the absence of added estradiol. In addition to increasing the amount of progesterone receptor, and to a lesser extent estrogen receptor that may be detected, elucidation of the mechanism by which this salt stabilized receptors should contribute to further understanding of how cytosol steroid receptor content and function is regulated.  相似文献   

13.
R A Johnson 《FEBS letters》1982,140(1):80-84
The separate and combined effects of molybdate and dithiothreitol on the stability of human uterine 9 S estrogen receptor were studied. Maximal, short-term, protection of the 9 S estrogen receptor was achieved by the joint inclusion of both stabilizing agents in cytosol buffers. This molybdate—dithiothreitol-mediated stability was dependent on reducing agent concentration inferring sulphydryl involvement in 9 S receptor protection by molybdate. The study also showed that molybdate—dithiothreitol could not prevent the gradual decay of the 9 S estrogen receptor to the 4 S form in cytosols stored at 4°C over prolonged periods.  相似文献   

14.
The cytosolic glucocorticoid receptor of 21st gestational day rat epiphyseal chondrocytes has been evaluated. The receptor, a single class of glucocorticoid binding component approached saturation, utilizing [3H]triamcinolone acetonide ([3H]TA) as the radiolabeled ligand, at approximately 1.8-2.0 x 10(-8) M. The dissociation constant (Kd) reflected high-affinity binding, equaling 4.0 +/- 1.43 x 10(-9) M (n = 7) for [3H]TA. The concentration of receptor estimated from Scatchard analysis was approximately 250 fmol/mg cytosolic protein and when calculated on a sites/cell basis equalled 5800 sites/cell. The relative binding affinities of steroid for receptor were found to be triamcinolone acetonide greater than corticosterone greater than hydrocortisone greater than progesterone greater than medroxyprogesterone acetate much greater than 17 alpha-hydroxyprogesterone much greater than testosterone greater than 17 beta-estradiol. Cytosolic preparations activated in vitro by warming (25 degrees C for 20 min) were shown to exhibit an increased affinity for DNA-cellulose. 46% of the total specifically bound activated ligand-receptor complex was bound to DNA-cellulose. Cytosol maintained at 0-4 degrees C in the presence of 10 mM molybdate or activated in vitro in the presence of molybdate, bound to DNA-cellulose at 8 and 10% respectively. DEAE-Sephadex elution profiles of the nonactivated receptor were indicative of a single binding moiety which eluted from the columns at 0.4 M KCl. Elution profiles of activated receptor were suggestive of an activation induced receptor lability. The 0.4 M KCl peak was diminished, while a concomitant increase in the 0.2 M KCl peak was only modestly discernible. Evaluation of endogenous proteolytic activity in chondrocyte cytosol using [methyl-14C]casein as substrate show a temperature-dependent proteolytic activity with a pH optimum of 5.9-6.65. The proteolytic activity was susceptible to heat inactivation and was inhibitable, by 20 mM EDTA. The sedimentation coefficient of the nonactivated receptor was 9.3s (n = 6) on sucrose density gradients and exhibited steroid specificity and a resistance to activation induced molecular alterations when incubated in the presence of 10 mM molybdate. Receptor activation in vitro, in the absence of molybdate induced an increased receptor susceptibility to proteolytic attack and/or enhanced ligand receptor dissociation as evidenced by a diminution of the 9.3s binding form without a concomitant increase in 5s or 3s receptor fragments.  相似文献   

15.
Modulator is the low molecular weight heat-stable inhibitor of glucocorticoid-receptor complex activation. We have purified modulator to apparent homogeneity from heated rat liver cytosol. This was accomplished using Sephadex G-15 gel filtration, Dowex 1 anion-exchange chromatography, and preparative silica high-performance liquid chromatography. The modulator preparation was judged to be homogeneous by analytical silica high-performance liquid chromatography, two-dimensional silica thin-layer chromatography, and proton nuclear magnetic resonance spectroscopy. The apparent concentration of modulator in rat liver cytosol is 6.5 microM. The purified modulator inhibits heat activation of the rat liver glucocorticoid-receptor complex and stabilizes the steroid binding ability of the unoccupied rat liver glucocorticoid receptor in a dose-dependent manner. At a concentration of 5-6.5 microM, modulator inhibits receptor activation and stabilizes the unoccupied receptor by 50%. At a concentration of 500-630 microM, sodium molybdate also inhibits receptor activation and stabilizes the unoccupied receptor by 50%. Thus, modulator appears to be the endogenous factor that exogenous sodium molybdate mimics in vitro. Chemical analysis of the purified modulator following two-dimensional silica thin-layer chromatography indicates that modulator is an aminophospholipid. Physical analysis of the purified modulator by infrared and nuclear magnetic resonance spectroscopy, as well as mass spectrometry, demonstrates that modulator is an ether aminophosphoglyceride.  相似文献   

16.
Abstract

We studied the effects of temperature, ribonucleotides and sodium molybdate on the activation and DNA cellulose binding of estrogen, glucocorticoid, progesterone and androgen receptor complexes in MCF-7 cells. Using DNA cellulose binding as a measure of receptor activation, we found that ribonucleotides activated all four of these receptor complexes. Temperature also activated glucocorticoid receptor complexes efficiently but activated progesterone and androgen receptor complexes less well. Temperature did not activate estrogen receptor complexes. Sodium molybdate blocked either ATP or temperature induced activation of glucocorticoid, progesterone and androgen receptor complexes but only partially blocked estrogen activation. Sodium molybdate also prevented the formation of multiple forms of estrogen and glucocorticoid receptor complexes seen on DEAE cellulose and hydroxylapatite chromatography of crude cytosol. The mechanism by which ribonucleotide enhances and molybdate inhibits activation are discussed.  相似文献   

17.
Two forms of rat liver aryl hydrocarbon receptor were separated by chromatography on DEAE-cellulose in the presence of molybdate. After labeling for 2 h at 0 degrees C, the receptor separated on the DEAE column into a flow-through peak (peak I) and a peak eluting at 80 mM KCl (peak II). It had been reported previously that exposure to high salt in the presence of molybdate caused the appearance of both 9 and 5-6 S receptor forms. After confirming this, I examined the relationship of the peak I and peak II receptors to these receptor forms. In high salt buffer containing molybdate, the peak I receptor sedimented in the 5-6 S region and the peak II receptor at 9 S. High salt buffer lacking molybdate converted both peak I and peak II receptors to forms sedimenting in the 5-6 S region. In low salt buffer containing molybdate, the peak I receptor sedimented at slightly more than 7 S and the peak II receptor at 9-10 S. Thus, the peak II receptor could be stabilized by molybdate as a 9 S form, and the peak I receptor was converted by high salt from a 7 to a 5-6 S form, despite the presence of molybdate. Most of the peak I receptor bound to a DNA-cellulose column and was eluted by high salt. The peak II receptor showed very little DNA binding.  相似文献   

18.
The activation of the rat uterine oestrogen receptor has been measured in vitro by its binding to oligodeoxythymidylate cellulose (oligo(dT] and was found to be sensitive to the time and temperature of prior incubation of cytosol with oestradiol. The presence of 20 mM dithiothreitol promoted receptor activation and was partially inhibited by 10 mM molybdate; molybdate also inhibited the time- and temperature-dependent activation of receptor. The nucleotides GTP, ATP, ADP, CTP and UTP all promoted receptor activation; the effect of GTP was significantly greater than that of ATP. It is unlikely that phosphate donation is involved in receptor activation as the effects of GTP could be reproduced by p[NH]ppG (guanosine 5'-[beta, gamma-imido]triphosphate), while PPi was also effective in activating receptor. The results provide evidence for the distinct regulation of the oligonucleotide- and ligand-binding domains, since manipulations which promoted binding to oligo(dT) did not affect either ligand binding capacity or the rate constant and composition the biphasic dissociation of the ligand receptor complex.  相似文献   

19.
The molybdate-stabilized GHRC was isolated from rat liver cytosol with a 9000-fold purification and 46% yield. The major purification step was achieved using an affinity matrix consisting of an agarose support coupled to a dexamethasone ligand via an aliphatic spacer arm. Spacer arms containing disulfide bridges were found to be unsuitable due to their instability in cytosol. To reduce the non-specific binding properties of the affinity matrix, underivatized amino groups were acetylated, since the receptor was found to bind avidly to such groups thus evading elution by the ligand. Sodium molybdate present during biospecific elution from the gel stabilized the steroid-binding activity of the receptor. The use of denaturing and sulfhydryl modifying reagents (NaSCN, DMSO, Mersalyl) during elution led to partial or complete irreversible loss of steroid-binding activity of the unoccupied receptor. Efficient biospecific elution occurred at competing concentration of high affinity steroid in the presence of sodium molybdate. The ligand specific eluate was further purified by DEAE-Sephacel chromatography resulting in additional purification of 3.2-fold. The GHRC eluted from the DEAE-Sephacel column at a salt concentration characteristic of the untransformed GHRC. Molybdate was removed from the purified untransformed GHRC in the ligand eluate by DEAE-Sephacel chromatography in the absence of molybdate, for subsequent heat transformation.  相似文献   

20.
The glucocorticoid receptor from rat liver cytosol prepared in 2 ml buffer/g tissue sedimented at approximately 10 S in low salt density gradient centrifugation without molybdate. When the receptor was heated at 25 degrees C, both approximately 10 S and approximately 7 S forms were seen in low salt gradient. The approximately 10 S form was not capable of binding to DNA-cellulose and was stabilized by sodium molybdate, namely it corresponded to untransformed receptor. The approximately 7 S form was capable of binding to DNA-cellulose and regarded as transformed receptor. On the other hand, partially-purified transformed receptor labeled with [3H]dexamethasone-21-mesylate sedimented at approximately 5 S, which migrated as a approximately 94 kDa species in SDS-polyacrylamide gel electrophoresis. The reconstitution analysis of this partially-purified approximately 5 S receptor and liver cytosol, showed the shift to approximately 7 S form. RNase A or T1 converted approximately 7 S transformed form into approximately 5 S but it did not affect approximately 10 S untransformed form. 5-20 mM sodium molybdate also shifted approximately 7 S to approximately 5 S. These results indicate that the approximately 7 S transformed form of the glucocorticoid receptor observed in low salt conditions might be an oligomer, probably including both approximately 5 S steroid-binding component and RNA/ribonucleoprotein, and that molybdate dissociates these interactions in a specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号